1
|
Suzauddula M, Kobayashi K, Park S, Sun XS, Wang W. Bioengineered Anthocyanin-Enriched Tomatoes: A Novel Approach to Colorectal Cancer Prevention. Foods 2024; 13:2991. [PMID: 39335919 PMCID: PMC11430996 DOI: 10.3390/foods13182991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, with barriers to effective prevention and treatment including tumor recurrence, chemoresistance, and limited overall survival rates. Anthocyanins, known for their strong anti-cancer properties, have shown promise in preventing and suppressing various cancers, including CRC. However, natural sources of anthocyanins often fail to provide sufficient quantities needed for therapeutic effects. Bioengineered crops, particularly anthocyanin-enriched tomatoes, offer a viable solution to enhance anthocyanin content. Given its large-scale production and consumption, tomatoes present an ideal target for bioengineering efforts aimed at increasing dietary anthocyanin intake. This review provides an overview of anthocyanins and their health benefits, elucidating the mechanisms by which anthocyanins modulate the transcription factors involved in CRC development. It also examines case studies demonstrating the successful bioengineering of tomatoes to boost anthocyanin levels. Furthermore, the review discusses the effects of anthocyanin extracts from bioengineered tomatoes on CRC prevention, highlighting their role in altering metabolic pathways and reducing tumor-related inflammation. Finally, this review addresses the challenges associated with bioengineering tomatoes and proposes future research directions to optimize anthocyanin enrichment in tomatoes.
Collapse
Affiliation(s)
- Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Sunghun Park
- Department of Horticulture and Nature Resources, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| |
Collapse
|
2
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
3
|
Chen B, Zhang Y, Niu Y, Wang Y, Liu Y, Ji H, Han R, Tian Y, Liu X, Kang X, Li Z. RRM2 promotes the proliferation of chicken myoblasts, inhibits their differentiation and muscle regeneration. Poult Sci 2024; 103:103407. [PMID: 38198913 PMCID: PMC10825555 DOI: 10.1016/j.psj.2023.103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
During myogenesis and regeneration, the proliferation and differentiation of myoblasts play key regulatory roles and may be regulated by many genes. In this study, we analyzed the transcriptomic data of chicken primary myoblasts at different periods of proliferation and differentiation with protein‒protein interaction network, and the results indicated that there was an interaction between cyclin-dependent kinase 1 (CDK1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Previous studies in mammals have a role for RRM2 in skeletal muscle development as well as cell growth, but the role of RRM2 in chicken is unclear. In this study, we investigated the effects of RRM2 on skeletal muscle development and regeneration in chickens in vitro and in vivo. The interaction between RRM2 and CDK1 was initially identified by co-immunoprecipitation and mass spectrometry. Through a dual luciferase reporter assay and quantitative real-time PCR, we identified the core promoter region of RRM2, which is regulated by the SP1 transcription factor. In this study, through cell counting kit-8 assays, 5-ethynyl-2'-deoxyuridine incorporation assays, flow cytometry, immunofluorescence staining, and Western blot analysis, we demonstrated that RRM2 promoted the proliferation and inhibited the differentiation of myoblasts. In vivo studies showed that RRM2 reduced the diameter of muscle fibers and slowed skeletal muscle regeneration. In conclusion, these data provide preliminary insights into the biological functions of RRM2 in chicken muscle development and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Mohsen G, Soliman SS, Mahgoub EI, Ismail TA, Mansour E, Alwutayd KM, Safhi FA, Abd El-Moneim D, Alshamrani R, Atallah OO, Shehata WF, Hassanin AA. Gamma-rays induced mutations increase soybean oil and protein contents. PeerJ 2023; 11:e16395. [PMID: 38025746 PMCID: PMC10668811 DOI: 10.7717/peerj.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Mutation breeding is one of the effective techniques used for improving desired traits such as yield quality and quantity in economic crops. The present study aims to develop oil and protein contents in addition to high yield attributes in soybean using gamma rays as a mutagen. Seeds of the soybean genotypes Giza 21, Giza 22, Giza 82, Giza 83 and 117 were treated with gamma rays doses 50, 100, 200 and 300 Gy. Plants were then scored based on morphological parameters correlated with yield quantity including plant height, seed weight and valuable protein and oil contents. Mutant lines exhibiting the highest yield attributes were selected and used as parents for M2 generation. The M2 progeny was further assessed based on their ability to maintain their yield attributes. Twenty mutant lines were selected and used as M3 lines. The yield parameters inferred a positive effect of gamma irradiation on the collected M3 mutant lines compared to their parental genotypes. 100 Gy of gamma rays gave the highest effect on the number of pods, branches and seeds per plant in addition to protein content, while 200 Gy was more effective in increasing plant height, number of pods per plant, and oil content. Six mutant lines scored the highest yield parameters. Further assessment inferred an inverse relationship between oil and protein content in most of the tested cultivars with high agronomic features. However, four mutant lines recorded high content of oil and protein besides their high seed yield as well, which elect them as potential candidates for large-scale evaluation. The correlation among examined parameters was further confirmed via principal component analysis (PCA), which inferred a positive correlation between the number of pods, branches, seeds, and seed weight. Conversely, oil and protein content were inversely correlated in most of yielded mutant lines. Together, those findings introduce novel soybean lines with favorable agronomic traits for the market. In addition, our research sheds light on the value of using gamma rays treatment in enhancing genetic variability in soybean and improving oil, protein contents and seed yield.
Collapse
Affiliation(s)
- Geehan Mohsen
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Said S. Soliman
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Elsayed I. Mahgoub
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tarik A. Ismail
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khairiah M. Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental and Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Rahma Alshamrani
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama O. Atallah
- Department of Plant Pathology & Microbiology, Faculty of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Wael F. Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Plant Production Department of, College of Environmental Agricultural Science, Arish University, North Sinai, Egypt
| | | |
Collapse
|
5
|
Parhar M, Bansal P. Development of a High Penetration Safe Irrigant from Withania somnifera. Int J Appl Basic Med Res 2023; 13:149-152. [PMID: 38023598 PMCID: PMC10666837 DOI: 10.4103/ijabmr.ijabmr_89_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 12/01/2023] Open
Abstract
Background Herbal medicine is regaining a strong position in health care by virtue of better safety and minimal toxicity as compared to conventional chemotherapies. It is making a place in dental care in the form of various toothpastes, lotions, and mouthwashes. It has been analyzed that very few discrete herbal irrigants have an action comparable to that of sodium hypochlorite. No data about any study on penetration depth and penetration area for herbal-based irrigants used in root canal treatment are available. Aim The aim of this study was to assess the efficacy of Withania somnifera extracts by assessing its penetration depth and area inside dentinal tubules using a confocal laser scanning microscope. Materials and Methods Freshly extracted 25 maxillary central incisors were divided into three groups: Group 1: W. somnifera; Group 2: sodium hypochlorite; and Group 3: distilled water. Results W. somnifera showed better results with respect to penetration depth and area inside the dentinal tubules thansodium hypochlorite. Conclusion From the study, it can be concluded that W. somnifera extract-based irrigant may be used as an alternative to sodium hypochlorite-based irrigant. It also shows that more herbal drugs need such types of screening and incorporation in dental practice to reduce the potential side effects of the conventional drugs used in daily practice.
Collapse
Affiliation(s)
- Manreet Parhar
- Department of Conservative Dentistry and Endodontics, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Parveen Bansal
- Department of Herbal Drug Technology, University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| |
Collapse
|
6
|
Alowaiesh BF, Alhaithloul HAS, Saad AM, Hassanin AA. Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:1410. [PMID: 36987100 PMCID: PMC10057938 DOI: 10.3390/plants12061410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Agro-industrial wastes are rich in polyphenols and other bioactive compounds, and valorizing these wastes is a crucial worldwide concern for saving health and the environment. In this work, olive leaf waste was valorized by silver nitrate to produce silver nanoparticles (OLAgNPs), which exhibited various biological, antioxidant, anticancer activities against three cancer cell lines, and antimicrobial activity against multi-drug resistant (MDR) bacteria and fungi. The obtained OLAgNPs were spherical, with an average size of 28 nm, negatively charged at -21 mV, and surrounded by various active groups more than the parent extract based on FTIR spectra. The total phenolic and total flavonoid contents significantly increased in OLAgNPs by 42 and 50% over the olive leaf waste extract (OLWE); consequently, the antioxidant activity of OLAgNPs increased by 12% over OLWE, recording an SC50 of OLAgNPs of 5 µg/mL compared to 30 µg/mL in the extract. The phenolic compound profile detected by HPLC showed that gallic acid, chlorogenic acid, rutin, naringenin, catechin, and propyl gallate were the main compounds in the HPLC profile of OLAgNPs and OLWE; the content of these compounds was higher in OLAgNPs than OLWE by 16-fold. The higher phenolic compounds in OLAgNPs are attributable to the significant increase in biological activities of OLAgNPs than that of OLWE. OLAgNPs successfully inhibited the proliferation of three cancer cell lines, MCF-7, HeLa, and HT-29, by 79-82% compared to 55-67% in OLWE and 75-79% in doxorubicin (DOX). The preliminary worldwide problem is multi-drug resistant microorganisms (MDR) because of the random use of antibiotics. Therefore, in this study, we may find the solution in OLAgNPs with concentrations of 2.5-20 µg/mL, which significantly inhibited the growth of six MDR bacteria L. monocytogenes, B. cereus, S. aureus, Y. enterocolitica, C. jejuni, and E. coli with inhibition zone diameters of 25-37 mm and six pathogenic fungi in the range of 26-35 mm compared to antibiotics. OLAgNPs in this study may be applied safely in new medicine to mitigate free radicals, cancer, and MDR pathogens.
Collapse
Affiliation(s)
- Bassam F. Alowaiesh
- Olive Research Center, Jouf University, Sakaka 72341, Saudi Arabia
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Haifa Abdulaziz Sakit Alhaithloul
- Olive Research Center, Jouf University, Sakaka 72341, Saudi Arabia
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Maddiboyina B, Vanamamalai HK, Roy H, Ramaiah, Gandhi S, Kavisri M, Moovendhan M. Food and drug industry applications of microalgae Spirulina platensis: A review. J Basic Microbiol 2023. [PMID: 36720046 DOI: 10.1002/jobm.202200704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 02/02/2023]
Abstract
Spirulina platensis is a photosynthetic, blue-green, spiral- or bulb-shaped microalgae. Due to the presence of minerals, vitamins, pigments (carotenes, phycocyanin and chlorophyll) proteins (55%-70%), carbohydrates (15%-25%), and essential fatty acids (5%-8%), it has been used as a nutritional supplement for decades. NASA successfully employed it as a nutritional supplement for astronauts on space missions then its popularity was increased. The chemical composition of Spirulina, which is rich in vitamins, minerals, phenolics, vital fatty acids, amino acids, and pigments, can be beneficial to human health when incorporated into meals. The pharmacological effects include antibacterial, anticancer, metalloprotective, immune-stimulating, and antioxidant. It modulates immunological activities and possesses anti-inflammatory qualities by preventing mast cells from releasing histamine. Due to its high quantity of protein, carbohydrate, lipid, vital amino and fatty acids, dietary minerals and vitamins, Spirulina exerts the abovementioned benefits. In this review, up-to-date and possible biological aspects, patents applied on Spirulina and heights of confirmation are addressed, and the extent of current and future exploration is also explored.
Collapse
Affiliation(s)
- Balaji Maddiboyina
- Freyr Solutions, Phoenix SEZ, HITEC City 2, Gachibowli, Hyderabad, Telangana, India
| | | | - Harekrishna Roy
- Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | - Ramaiah
- Freyr Solutions, Phoenix SEZ, HITEC City 2, Gachibowli, Hyderabad, Telangana, India
| | - Sivaraman Gandhi
- Department of Chemistry, Gandhigram Rural Institute Deemed University, Dindigul, Tamilnadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Meivelu Moovendhan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Tamilnadu, Chennai, India
| |
Collapse
|
8
|
The Biological Activity of Illicium verum (Star Anise) on Lernaea cyprinacea-Infested Carassius auratus (Goldfish): In Vivo Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122054. [PMID: 36556419 PMCID: PMC9781784 DOI: 10.3390/life12122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Lernaea cyprinacea infestation is considered a serious economic problem in the fish market. An assessment to control this parasite is needed to manage this problem. The Illicium verum oil extract has considerable antioxidant activity and scavenges 96.22% of free radicals; the high antioxidant activity refers to the phenolic content presence. The extract contains minerals, especially K, fibers, and dry matter. So, the Illicium verum ingredients were tested against this copepod for in vitro and in vivo investigation with the assessment of the treatment trial using a scanning electron microscope and evaluating the change in different immunological genes in goldfish. Female parasitic L. cyprinacea worms were blackish and hairy. The in vitro study on L. cyprinacea adults using star anise revealed that the LC50 was 12.5 and 25 μg/mL for 2 and 1 h exposure periods, respectively. Interleukin (IL-1β) and IL-6 were grossly upregulated in C. auratus-infested skin by L. cyprinacea after treatment by 1 week, then declined after 3 weeks. In contrast, TNF-α was 18 folds upregulated in the first week after treatment, with a decline after 3 weeks. In conclusion, star anise is recommended as a safe and economical agent for controlling L. cyprinacea infestation in fish.
Collapse
|
9
|
Ghareeb YE, Soliman SS, Ismail TA, Hassan MA, Abdelkader MA, Abdel Latef AAH, Al-Khayri JM, ALshamrani SM, Safhi FA, Awad MF, El-Moneim DA, Hassanin AA. Improvement of German Chamomile ( Matricaria recutita L.) for Mechanical Harvesting, High Flower Yield and Essential Oil Content Using Physical and Chemical Mutagenesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2940. [PMID: 36365394 PMCID: PMC9653700 DOI: 10.3390/plants11212940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Chamomile (Matricariarecutita L.) is one of the most important medicinal plants with various applications. The flowers and flower heads are the main organs inthe production of essential oil. The essential improvement goals of chamomile are considered to be high flower yield and oil content, as well asthe suitability for mechanical harvesting. The present study aimed to improve the flower yield, oil content and mechanical harvestability of German chamomile via chemical and physical mutagens. Three German chamomile populations (Fayum, Benysuif and Menia) were irradiated with 100, 200, 300 and 400 Gray doses of gamma rays, as well as chemically mutagenized using 0.001, 0.002 and 0.003 mol/mL of sodium azide for 4 h. The two mutagens produced a wide range of changes in the flowers' shape and size. At M3 generation, 18 mutants (11 from gamma irradiation and 7 from sodium azide mutagenization) were selected and morphologically characterized. Five out of eighteen mutants were selected for morphological and chemical characterization for oil content, oil composition and oil quality in M4 generation. Two promising mutants, F/LF5-2-1 and B/HNOF 8-4-2, were selected based on their performance in most studied traits during three generations, as well as the high percentage of cut efficiency and a homogenous flower horizon, which qualify them as suitable candidates for mechanical harvesting. The two mutants are late flowering elite mutants; the F/LF5-2-1 mutant possessed the highest oil content (1.77%) and number of flowers/plant (1595), while the second promising B/HNOF 8-4-2 mutant hada high oil content (1.29%) and chamazulene percentage (13.98%) compared to control plants. These results suggest that the B/HNOF 8-4-2 and F/LF5-2-1 mutants could be integrated as potential parents into breeding programs for a high number of flowers, high oil content, oil composition and oil color traits for German chamomile improvement.
Collapse
Affiliation(s)
- Yasser E. Ghareeb
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Said S. Soliman
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Tarek A. Ismail
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohammed A. Hassan
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohammed A. Abdelkader
- Horticulture Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Salha M. ALshamrani
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental and Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
10
|
Alamoudi SA, Saad AM, Alsubhi NH, Alrefaei GI, Al-Quwaie DA, Binothman N, Aljadani M, Alharbi M, Alanazi H, Babalghith AO, Almuhayawi MS, Gattan HS, Alruhaili MH, Selim S. Upgrading the physiochemical and sensory quality of yogurt by incorporating polyphenol-enriched citrus pomaces with antioxidant, antimicrobial, and antitumor activities. Front Nutr 2022; 9:999581. [PMID: 36225874 PMCID: PMC9549274 DOI: 10.3389/fnut.2022.999581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Industrial pomaces are cheap sources of phenolic compounds and fibers but dumping them in landfills has negative environmental and health consequences. Therefore, valorizing these wastes in the food industry as additives significantly enhances the final product. In this study, the citrus pomaces, orange pomace (OP), mandarin pomace (MP), and lemon pomace (LP) were collected by a juice company and subjected to producing polyphenols and fiber-enriched fractions, which are included in functional yogurt; the pomace powder with different levels (1, 3, and 5%) was homogenized in cooled pasteurized milk with other ingredients (sugar and starter) before processing the yogurt fermentation. The HPLC phenolic profile showed higher phenolic content in OP extract, i.e., gallic acid (1,702.65), chlorogenic acid (1,256.22), naringenin (6,450.57), catechin (1,680.65), and propyl gallate (1,120.37) ppm with massive increases over MP (1.34–37 times) and LP (1.49–5 times). The OP extract successfully scavenged 87% of DPPH with a relative increase of about 16 and 32% over LP and MP, respectively. Additionally, it inhibits 77–90% of microbial growth at 5–8 μg/mL while killing them in the 9–14 μg/mL range. Furthermore, OP extract successfully reduced 77% of human breast carcinoma. Each of pomace powder sample (OP, MP, LP) was added to yogurt at three levels; 1, 3, and 5%, while the physiochemical, sensorial, and microbial changes were monitored during 21 days of cold storage. OP yogurt had the highest pH and lowest acidity, while LP yogurt recorded the reverse. High fat and total soluble solids (TSS) content are observed in OP yogurt because of the high fiber content in OP. The pH values of all yogurt samples decreased, while acidity, fat, and TSS increased at the end of the storage period. The OP yogurts 1 and 3% scored higher in color, flavor, and structure than other samples. By measuring the microbial load of yogurt samples, the OP (1 and 3%) contributes to the growth of probiotics (Lactobacillus spp) in yogurt samples and reduces harmful microbes. Using citrus pomace as a source of polyphenols and fiber in functional foods is recommended to enhance their physiochemical and sensory quality.
Collapse
Affiliation(s)
- Soha A. Alamoudi
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed M. Saad
| | - Nouf H. Alsubhi
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Diana A. Al-Quwaie
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humidah Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Yousef Abdullatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hattan S. Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H. Alruhaili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Samy Selim
| |
Collapse
|
11
|
Hassanin AA, Osman A, Atallah OO, El-Saadony MT, Abdelnour SA, Taha HSA, Awad MF, Elkashef H, Ahmed AE, Abd El-Rahim I, Mohamed A, Eldomiaty AS. Phylogenetic comparative analysis: Chemical and biological features of caseins (alpha-S-1, alpha-S-2, beta- and kappa-) in domestic dairy animals. Front Vet Sci 2022; 9:952319. [PMID: 36187819 PMCID: PMC9519386 DOI: 10.3389/fvets.2022.952319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Caseins determine the physicochemical, physiological, and biological characteristics of milk. Four caseins—alpha-S-1, alpha-S-2, beta, and kappa—were analyzed phylogenetically and in silico and characterized regarding chemical, antimicrobial, and antioxidant features in five dairy animals: Arabian camels, sheep, goats, cattle, and water buffalos. The sequence of full-length amino acids of the four caseins for the five species was retracted from the NCBI GenBank database. Multiple sequence alignment is used to examine further the candidate sequences for phylogenetic analysis using Clustal X and NJ-Plot tools. The results revealed that sheep and goats possess strong similarities (98.06%) because of their common ancestor. The same was observed with cattle and water buffalos (96.25%). The Arabian camel was located in a single subclade due to low similarity in casein residues and compositions with other dairy animals. Protein modeling showed that alpha-S1- and alpha-S2-caseins possess the highest number of phosphoserine residues. The in silico computed chemical properties showed that β-casein recorded highest hydrophobicity index and lowest basic amino acid content, while α-S2-casein showed the opposite. The computed biological parameters revealed that α-S2-casein presented the highest bactericidal stretches. Only Arabian camel β-casein and k-casein showed one bactericidal stretches. The analysis also revealed that β-casein, particularly in Arabian camels, possesses the highest antioxidant activity index. These results support the importance of the bioinformatics resources to determine milk casein micelles' chemical and biological activities.
Collapse
Affiliation(s)
- Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- *Correspondence: Abdallah A. Hassanin
| | - Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Osama Osman Atallah
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Mohamed T. El-Saadony
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hany Elkashef
- Dairy Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ibrahim Abd El-Rahim
- Department of Environmental and Health Research, Umm Al-Qura University, Mecca, Saudi Arabia
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | | | - Ahmed S. Eldomiaty
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Salem HM, El-Saadony MT, Abd El-Mageed TA, Soliman SM, Khafaga AF, Saad AM, Swelum AA, Korma SA, Gonçalves Lima CM, Selim S, Babalghith AO, Abd El-Hack ME, Omer FA, AbuQamar SF, El-Tarabily KA, Conte-Junior CA. Promising prospective effects of Withania somnifera on broiler performance and carcass characteristics: A comprehensive review. Front Vet Sci 2022; 9:918961. [PMID: 36118334 PMCID: PMC9478662 DOI: 10.3389/fvets.2022.918961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Poultry production contributes markedly to bridging the global food gap. Many nations have limited the use of antibiotics as growth promoters due to increasing bacterial antibiotic tolerance/resistance, as well as the presence of antibiotic residues in edible tissues of the birds. Consequently, the world is turning to use natural alternatives to improve birds' productivity and immunity. Withania somnifera, commonly known as ashwagandha or winter cherry, is abundant in many countries of the world and is considered a potent medicinal herb because of its distinct chemical, medicinal, biological, and physiological properties. This plant exhibits antioxidant, cardioprotective, immunomodulatory, anti-aging, neuroprotective, antidiabetic, antimicrobial, antistress, antitumor, hepatoprotective, and growth-promoting activities. In poultry, dietary inclusion of W. somnifera revealed promising results in improving feed intake, body weight gain, feed efficiency, and feed conversion ratio, as well as reducing mortality, increasing livability, increasing disease resistance, reducing stress impacts, and maintaining health of the birds. This review sheds light on the distribution, chemical structure, and biological effects of W. somnifera and its impacts on poultry productivity, livability, carcass characteristics, meat quality, blood parameters, immune response, and economic efficiency.
Collapse
Affiliation(s)
- Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Fatima A. Omer
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Synan F. AbuQamar
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- Khaled A. El-Tarabily
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Al-Khayri JM, Mahdy EMB, Taha HSA, Eldomiaty AS, Abd-Elfattah MA, Abdel Latef AAH, Rezk AA, Shehata WF, Almaghasla MI, Shalaby TA, Sattar MN, Ghazzawy HS, Awad MF, Alali KM, Jain SM, Hassanin AA. Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131722. [PMID: 35807674 PMCID: PMC9268761 DOI: 10.3390/plants11131722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 05/14/2023]
Abstract
Determining the appropriate parents for breeding programs is the most important decision that plant breeders must make to maximize the genetic variability and produce excellent recombinant genotypes. Several methods are used to identify genotypes with desirable phenotypic features for breeding experiments. In this study, five kalanchoe genotypes were morphologically characterized by assessing plant height, number of inflorescences, number of flowers, flower length, flower diameter and number of petals. The analysis showed the distinction of yellow kalanchoe in the plant height trait, while the orange kalanchoe was distinguished in the number of inflorescences, the number of flowers and flower length traits, whereas the violet kalanchoe possessed the largest flower diameter and the highest number of petals. The molecular profiling was performed by random amplified polymorphism DNA (RAPD), inter-simple sequence repeats (ISSR) and start codon targeted (SCoT)-polymerase chain reaction (PCR) tools. Genomic DNA was extracted from young leaves and the PCR reactions were performed using ten primers for each SCoT, ISSR and RAPD marker. Only four out of ten primers showed amplicon profiles in all PCR markers. A total of 70 bands were generated by SCoT, ISSR and RAPD-PCR with 35 polymorphic bands and 35 monomorphic bands. The total number of bands of RAPD, ISSR and SCoT was 15, 17 and 38, respectively. The polymorphism percentages achieved by RAPD, ISSR and SCoT were 60.25%, 15% and 57%, respectively. The cluster analysis based on morphological data revealed two clusters. Cluster I consisted of violet and orange kalanchoe, and cluster II comprised red, yellow and purple kalanchoe. Whereas the cluster analysis based on molecular data revealed three clusters. Cluster I included only yellow kalanchoe, cluster II comprised orange and violet kalanchoe while cluster III comprised red, and purple kalanchoe. The study concluded that orange, violet and yellow kalanchoe are distinguished parents for breeding economically valued traits in kalanchoe. Also, the study concluded that SCoT and RAPD markers reproduced reliable banding patterns to assess the genetic polymorphism among kalanchoe genotypes that consider the basis stone for genetic improvements in ornamental plants.
Collapse
Affiliation(s)
- Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.R.); (W.F.S.); (K.M.A.)
- Correspondence: (J.M.A.-K.); (A.A.H.A.L.); (A.A.H.)
| | - Ehab M. B. Mahdy
- National Gene Bank (NGB), Agricultural Research Centre (ARC), Giza 12613, Egypt;
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (H.S.A.T.); (A.S.E.)
| | - Ahmed S. Eldomiaty
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (H.S.A.T.); (A.S.E.)
| | | | - Arafat Abdel Hamed Abdel Latef
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
- Correspondence: (J.M.A.-K.); (A.A.H.A.L.); (A.A.H.)
| | - Adel A. Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.R.); (W.F.S.); (K.M.A.)
| | - Wael F. Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.R.); (W.F.S.); (K.M.A.)
| | - Mustafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (T.A.S.)
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (T.A.S.)
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Muhammad N. Sattar
- Central Laboratories, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khalid M. Alali
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.R.); (W.F.S.); (K.M.A.)
| | - Shri Mohan Jain
- Department of Agricultural Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (H.S.A.T.); (A.S.E.)
- Correspondence: (J.M.A.-K.); (A.A.H.A.L.); (A.A.H.)
| |
Collapse
|
14
|
El-Sitiny MF, M. Omar H, El-Shehawi AM, Elseehy MM, El-Tahan AM, El-Saadony MT, Selem GS. Biochemical and molecular diagnosis of different tomato cultivars susceptible and resistant to Tuta absoluta (Meyrick) infestation. Saudi J Biol Sci 2022; 29:2904-2910. [PMID: 35531183 PMCID: PMC9073022 DOI: 10.1016/j.sjbs.2022.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 11/03/2022] Open
Abstract
Resistant plant cultivars which used in breeding programs are considered one of the modern integrated management programs to reduce the usage of synthetic insecticides and environmental contamination the present study aimed to characterize the resistant and susceptible tomato cultivars to Tuta absoluta based on biochemical and molecular levels, in Egypt. The biochemical characters of the tested tomato cultivars (tomato- 86, tomato- Alissa, tomato- Fayarouz, tomato- Omniya, tomato- 036, tomato- GS) were determined colorimetrically and characterized by using native- polyacrylamide gel electrophoresis (PAGE) and agarose gel. Our results showed that there were variations highly significant in all biochemical constituents of the resistant tomato cultivar (tomato- 86) compared with the susceptible one (tomato- GS). Also, native-(PAGE) for peroxidase (POD) isoenzymes techniques of the tested tomato cultivars showed variations in protein band numbers and densities in tomato-86 resistant compared with tomato-GS susceptible to Tuta absoluta infestation. The correlation coefficient between total phenols and peroxidases in infested tomato leaves and percentages of damaged leaves with the tested insect pest was negative and highly significant, while in case of total proteins and reducing sugars in infested tomato leaves as well as lycopene contents in infested tomato fruits was positive, highly significant and significant, respectively. The correlation coefficient between tomato yield means and the infested fruit percentage with T. absoluta larvae was negative and highly significant. Respecting molecular diagnosis random amplified polymorphism DNA- polymerase chain reaction (RAPD- PCR), the results demonstrated that the presence of polymorphism in the resistant tomato cultivar (tomato- 86) compared with (tomato- GS), the most susceptible to the tested insect pest infestation.
Collapse
Affiliation(s)
- Mona F.A. El-Sitiny
- Plant Protection Department, Agricultural Faculty, Zagazig University, Egypt
| | - Habeba M. Omar
- Plant Protection Department, Agricultural Faculty, Zagazig University, Egypt
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria 21545, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Gamila Sh. Selem
- Plant Protection Department, Agricultural Faculty, Zagazig University, Egypt
| |
Collapse
|
15
|
Abd El-Aty MS, Abo-Youssef MI, Galal AA, Salama AM, Salama AA, El-Shehawi AM, Elseehy MM, El-Saadony MT, El-Tahan AM. Genetic behavior of earliness and yield traits of some rice (Oryza sativa L.) genotypes. Saudi J Biol Sci 2022; 29:2691-2697. [PMID: 35531209 PMCID: PMC9072890 DOI: 10.1016/j.sjbs.2021.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/27/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Rice (Oryza sativa L.) is a critical staple food crop that provides more than half of the world's population with its primary nutritional source. Breeders and growers of rice would profit from robust genotypes with improved morphological and yield-related characteristics. The aim of this work is to determine the nature and magnitude of gene action on yield quantity and quality, to define the best combinations of earliness and yield characters, develop hybrids that perform better on yield quantity and quality. Three replications were used in the experiment's randomized complete block design (RCBD). During the 2016 season, seven different parents, namely Sakha 101, Sakha 104, Sakha 105, Giza 177, Black rice 1, Black rice 2, and Black rice 3, were crossed using A 7 × 7 half-diallel set analysis without reciprocals to generate 21 F1 crosses. The results indicated that genotype-dependent mean squares were very significant for main characteristics. Significant combining ability SCA variance estimates were more considerable than general combining ability (GCA) variance for all characters except days to 50% flowering. It demonstrated that both additive and non-additive genetic variance played a role in expressing the attributes investigated. The Parents, Black rice, Sakha 105, and Sakha 101, were recognized as the best general combiner for most growth and yield attributes. Sakha105 × Black Rice 1, Sakha105 × Black Rice 2, Sakha101 × Sakha104, Sakha105 × Giza 177, and Sakha101 × Giza 177 all demonstrated non-additive gene activity for the majority of maturity and yield traits. Heterosis breeding would be most efficient for qualities where high performance was determined by dominance and dominance gene effects. The increased yield of crosses results from parents with a diverse genetic background and genetic diversity.
Collapse
|
16
|
Sehsah MD, El-Kot GA, El-Nogoumy BA, Alorabi M, El-Shehawi AM, Salama NH, El-Tahan AM. Efficacy of Bacillus subtilis, Moringa oleifera seeds extract and potassium bicarbonate on Cercospora leaf spot on sugar beet. Saudi J Biol Sci 2022; 29:2219-2229. [PMID: 35531157 PMCID: PMC9072934 DOI: 10.1016/j.sjbs.2021.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Cercospora leaf spot caused by Cercospora beticola are among the most dangerous plant diseases on sugar beet plants. It causes heavy economic losses, whether on the yield of roots, the percentage of sugar in them, or the quality of sugar produced. In addition to the economic cost caused by chemical control, these chemical pesticides cause an imbalance in the ecosystem and harm the health of humans and animals. In an attempt to search for a safer method than pesticides and environmentally friendly, an evaluation of using biocontrol agents, Bacillus subtilis as cell suspension (108 cell/ml), was conducted in this study. Seeds extract of Moringa oleifera with two concentrations (25 and 50 g/L) and potassium bicarbonate at (5 and10 g/L (compared to fungicide Montoro 30% EC (Propiconazole 15% + Difenoconazole 15%). The evaluation results for twenty-five sugar beet varieties showed a significant discrepancy between these varieties in the extent of their susceptibility to infection with the disease under investigation. In-Vitro, B. subtilis induced an antagonist to C. beticola, and both M. oleifera seeds extract and potassium bicarbonate significantly reduced the linear growth of this pathogen. Under field conditions, the treatments used have given positive results in controlling Cercospora leaf spots. They significantly decreased the severity of disease and prevented C. beticola from creating conidiophores and conidiospores, along with examining their cell walls with the formation of plasmolysis of the fungus cells and reducing both the number and diameter of the spots on the surface leaves; this was demonstrated using a scanning electron microscope (SEM). It is worth noting that the best results obtained were most often when treated with M. oleifera seeds extract, followed by potassium bicarbonate, then cell suspension of B. subtilis. In addition, the percentage of the content of beet roots from total soluble solids and sucrose has improved significantly due to spraying sugar beet plants with the substances mentioned earlier. These treatments also contributed to a significant improvement in the enzymes polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase.
Collapse
Affiliation(s)
- Mohamed D. Sehsah
- Maize and Sugar Crops Diseases Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Gabr A. El-Kot
- Agriculture Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Baher A. El-Nogoumy
- Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nagwa H. Salama
- Maize and Sugar Crops Diseases Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
- Corresponding author.
| |
Collapse
|
17
|
In vitro study on the effect of cytokines and auxins addition to growth medium on the micropropagation and rooting of Paulownia species (Paulownia hybridandPaulownia tomentosa). Saudi J Biol Sci 2022; 29:1598-1603. [PMID: 35280564 PMCID: PMC8913400 DOI: 10.1016/j.sjbs.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
This study represents an efficient preliminary protocol for in vitro mass production of two Paulownia species (Paulownia hybrid and Paulownia tomentosa) seedlings by using seed explant. Different concentrations of benzyladenine (BA) or Kinetin (Kin) (0.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mg/L) were tested during multiplication stage. The number of shoots/explants was significantly increased with increasing either BA or Kin concentration; however, the shoot length significantly decreased. Data show that media fortified by BA (10 mg/L) combined with indole butyric acid (IBA) at 1.0 or 1.5 mg/L recorded the highest number of shoots/explant (9.13 and 9.25, respectively). After six weeks during the multiplication stage, data cleared that media fortified by benzyladenine (10 mg/L) combined with IBA at 0.5 mg/L recorded the highest shoot length (3.23 cm). The inclusion of indole butyric acid (IBA) or naphthalene acetic acid (NAA) at 1.0–1.5 mg/L to the medium significantly increased the number of roots/plantlets and the highest root length. The results indicated that IBA supplementation was more effective than NAA for in vitro rooting of both Paulownia species. The best treatment for multiplication was 10 mg/L and 8.0–10 mg/L BA for P. hybrid and P. tomentosa, respectively. Peat moss and sand (1:1, v/v) or peat moss and sand (1:2, v/v) were investigated as soil mixture during the adaptation stage. The results referred that Paulownia species plantlets were successfully survived (100 %) in soil mixture contained peat moss: sand (1:2, v/v). This mixture recorded the highest values of plantlet height and number of leaves/plantlets.
Collapse
|
18
|
Evaluation of genetic behavior of some Egyption Cotton genotypes for tolerance to water stress conditions. Saudi J Biol Sci 2022; 29:1611-1617. [PMID: 35280572 PMCID: PMC8913392 DOI: 10.1016/j.sjbs.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Water stress is a critical abiotic stress for plant reduction in arid and semiarid zones and, has been discovered to be detrimental to the development of seedlings as well as the growth and physiological characteristics of many crops such as cotton. The objectives of our study were to determine the combining ability and genetic components for five quantitative traits [(leaf area (LA), leaf dry weight (LDW), plant height (PH), fiber length (2.5 percent SL), and lint cotton yield/plant (LCY/P)] under water shortage stress, a half diallel cross between six cotton genotypes representing a wide range of cotton characteristics was evaluated in RCBD with four replications. The genotype mean squares were significant for all traits studied, demonstrating significant variation among genotypes for all characters under water shortage stress. LCY/P had the highest phenotypic and genotypic correlation co-efficient with PH, LDW, and LA shortage. The highest direct effect on lint cotton yield was exhibited by leaf area (3.905), and the highest indirect effects of all traits were through LA, with the exception of 2.5 percent SL, which was through LDW. The highest dissimilarity (Euclidean Distance) between parental genotypes was between G.87 and G.94, followed by G.87 and Menoufi. G.94 was also a well-adapted genotype, and the combinations G.87 x G.94 and G.87 x Menoufi may outperform their parents. The combining ability analysis revealed highly significant differences between parental GCA effects and F1 crosses SCA effects. The variation of GCA and SCA demonstrated the assurance of additive and non- additive gene action in the inheritance of all traits studied. In terms of general combining ability (GCA) effects, parental genotype G.94 demonstrated the highest significant and positive GCA effects for all traits studied, with the exception of 2.5 percent SL, where G.87 revealed the highest significant and positive GCA effects. The effects of specific combining ability (SCA) revealed that the cross (G.87 x2G.94) revealed stable, positive, and significant SCA for all of the studied traits.
Collapse
|
19
|
Alagawany M, El‐Saadony MT, El‐Rayes TK, Madkour M, Loschi AR, Di Cerbo A, Reda FM. Evaluation of dried tomato pomace as a non‐conventional feed: Its effect on growth, nutrients digestibility, digestive enzyme, blood chemistry and intestinal microbiota of growing quails. Food Energy Secur 2022. [DOI: 10.1002/fes3.373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department Faculty of Agriculture Zagazig University Zagazig Egypt
| | - Mohamed T. El‐Saadony
- Department of Agricultural Microbiology Faculty of Agriculture Zagazig University Zagazig Egypt
| | - Talaat K. El‐Rayes
- Animal Production Department Faculty of Agriculture Tanta University Tanta Egypt
| | - Mahmoud Madkour
- Animal Production Department National Research Centre Dokki, Giza Egypt
| | - Anna Rita Loschi
- School of Bioscience and Veterinary Medicine University of Camerino Matelica Italy
| | - Alessandro Di Cerbo
- School of Bioscience and Veterinary Medicine University of Camerino Matelica Italy
| | - Fayiz M. Reda
- Poultry Department Faculty of Agriculture Zagazig University Zagazig Egypt
| |
Collapse
|
20
|
Effects of rhizobacteria and seed oils as eco-friendly agents against Meloidogyne incognita infested pepper plants under greenhouse and repeated applications field conditions. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Abdou NM, El-Saadony FM, Roby MH, Mahdy HA, El-Shehawi AM, Elseehy MM, El-Tahan AM, Abdalla H, Saad AM, Idris Badawy AbouSreea A. Foliar spray of potassium silicate, aloe extract composite and their effect on growth and yielding capacity of roselle (Hibiscus sabdariffa L.) under water deficit stress conditions. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Abdel-Moneim AME, El-Saadony MT, Shehata AM, Saad AM, Aldhumri SA, Ouda SM, Mesalam NM. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J Biol Sci 2022; 29:1197-1209. [PMID: 35197787 PMCID: PMC8848030 DOI: 10.1016/j.sjbs.2021.09.046] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
This study investigated the antimicrobial and antioxidant activity of three Spirulina extracts (methanol, acetone, and hexane) and the biological selenium nanoparticles (SeNPs) fabricated by Bacillus subtilis AL43. The results showed that Spirulina extracts exhibited antimicrobial activity against tested pathogens. Besides, Spirulina extracts significantly scavenged ABTS and DPPH radicals in a dose-dependent manner. The methanolic extract had higher total phenolic content, antimicrobial activity, and antioxidant activity than other extracts. The selenium nanoparticles were synthesized by Bacillus subtilis AL43 under aerobic conditions and were characterized as spherical, crystalline with a size of 65.23 nm and a net negative charge of −22.7. We evidenced that SeNPs possess considerable antimicrobial activity against three gram-positive, three gram-negative bacteria, and three strains from both Candida sp. and Aspergillus sp. Moreover, SeNPs were able to scavenge ABTS and DPPH radicals in a dose-dependent manner. An association was found between the total phenolic content of Spirulina and SeNPs and their biological activities. Our results indicate that Spirulina and SeNPs with significant antimicrobial and antioxidant activities seem to be successful candidates for safe and reliable medical applications.
Collapse
Affiliation(s)
- Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
- Corresponding author.
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sami Ali Aldhumri
- Department of Biology, Khurmah University College, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Sahar M Ouda
- Department of Biology, Khurmah University College, Taif University, 11099, Taif 21944, Saudi Arabia
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
| | - Noura M. Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
| |
Collapse
|
23
|
Assessment of the R2R3 MYB gene expression profile during tomato fruit development using in silico, quantitative and semi-quantitative RT-PCR. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Kapoor L, Simkin AJ, George Priya Doss C, Siva R. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC PLANT BIOLOGY 2022; 22:27. [PMID: 35016620 PMCID: PMC8750800 DOI: 10.1186/s12870-021-03411-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/21/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fruits are vital food resources as they are loaded with bioactive compounds varying with different stages of ripening. As the fruit ripens, a dynamic color change is observed from green to yellow to red due to the biosynthesis of pigments like chlorophyll, carotenoids, and anthocyanins. Apart from making the fruit attractive and being a visual indicator of the ripening status, pigments add value to a ripened fruit by making them a source of nutraceuticals and industrial products. As the fruit matures, it undergoes biochemical changes which alter the pigment composition of fruits. RESULTS The synthesis, degradation and retention pathways of fruit pigments are mediated by hormonal, genetic, and environmental factors. Manipulation of the underlying regulatory mechanisms during fruit ripening suggests ways to enhance the desired pigments in fruits by biotechnological interventions. Here we report, in-depth insight into the dynamics of a pigment change in ripening and the regulatory mechanisms in action. CONCLUSIONS This review emphasizes the role of pigments as an asset to a ripened fruit as they augment the nutritive value, antioxidant levels and the net carbon gain of fruits; pigments are a source for fruit biofortification have tremendous industrial value along with being a tool to predict the harvest. This report will be of great utility to the harvesters, traders, consumers, and natural product divisions to extract the leading nutraceutical and industrial potential of preferred pigments biosynthesized at different fruit ripening stages.
Collapse
Affiliation(s)
- Leepica Kapoor
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andrew J Simkin
- School of Biosciences, University of Kent, United Kingdom, Canterbury, CT2 7NJ, UK
| | - C George Priya Doss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ramamoorthy Siva
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
25
|
Naiem SY, Badran AE, Boghdady MS, Alotaibi SS, El-Shehawi AM, Salem HM, El-Tahan AM, El-Saadony MT, Ismail HE. Stability and anatomical parameters of irradiated potato cultivars under drought stress. Saudi J Biol Sci 2022; 29:2819-2827. [PMID: 35531191 PMCID: PMC9073068 DOI: 10.1016/j.sjbs.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022] Open
Abstract
This study was carried out in Desert Research Center and Faculty of Agriculture, Zagazig University, Egypt, under North Sinai conditions during three growing seasons, i.e., summer 2018, fall 2018/2019 and summer 2019 to assess the effect of radiation mutants on leaf histological features and genetic stability of the productivity of some potato cultivars under drought stress conditions. Results reveal that the genotypes can be statistically classified based on regression coefficient (bi), deviation from regression (S2di) to 4 groups (with low in S2di are considered in all groups) as: (i) Genotype with elevated average, bi = 1, it is considered as stable genotype where Cara cultivar (both generations) was included. (ii) Genotype with elevated average, bi > 1 as genotype with average stability where spunta cultivar was involved. (iii) Genotype with low mean, bi < 1 as genotype with low stability where hermes (both primary (M1) and secondary (M2) radiated generations) and Caruso (2nd generation) cultivars were involved. (iv) Genotypes including a few bi values in one generation, as genotype including low stability but are not recommended for use in this generation where Caruso cv in M1 was included. The results indicated that 20 Gy irradiation exposure revealed that Spunta cultivar produced markedly high mean combined over yield during M1 (11.771 ton/fed) and M2 (10.97 ton/fed) generations than other genotypes and ranked first over all environments. It proves that Hermes could be employed as anti-stress genotypes under stress conditions (negative conditions or poor yielding). However, spunta followed by cara cv. represented a good performance in M2 production yield (10.97 and 8.51 ton/fed, respectively), slight drift from the regression line and coefficient close to 1, therefore, both cultivars were excellent between genotypes in shape of yield stability and is recommended for different conditions. According to anatomical studies, 80 % from field capacity (FC) decreased the thickness of medvein and lamina of potato cv. spunta, also, dimensions of medvein bundle and mean diameter of vessels. In conclusion, plants treated with gamma ray at level 20 and grown under 80 % FC induced prominent increase in all previous characters.
Collapse
Affiliation(s)
- Sherin Y. Naiem
- Plant Genetic Resources Dept., Desert Research Center, Cairo, Egypt
| | - Ayman E. Badran
- Plant Genetic Resources Dept., Desert Research Center, Cairo, Egypt
| | - Mohamed S. Boghdady
- Agricultural Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Corresponding author.
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hany E. Ismail
- Horticulture Deptartment Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Saad AM, Salem HM, El-Tahan AM, El-Saadony MT, Alotaibi SS, El-Shehawi AM, Abd El-Mageed TA, Taha AE, Alkahtani MA, Ezzat Ahmed A, Swelum AA. Biological control: An effective approach against nematodes using black pepper plants (Piper nigrum L.). Saudi J Biol Sci 2022; 29:2047-2055. [PMID: 35531173 PMCID: PMC9073003 DOI: 10.1016/j.sjbs.2022.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 01/02/2022] [Indexed: 12/29/2022] Open
Abstract
Black pepper (Piper nigrum L.) is one of the oldest spices in the world, additionally, it is highly demanded. Several biotic and abiotic variables pose black pepper production worldwide. Plant-parasitic nematodes play a key role among biotic factors, causing considerable economic losses and affecting the production. Different synthetic nematicides were used for controlling plant nematodes, however the majority of pesticides have been pulled from the market due to substantial non-target effects and environmental risks. As a result, the search for alternative eco-friendly agents for controlling plant-parasitic nematodes populations. Microbial agents are a precious option. In this review the bacterial and fungal agents used as an alternative nematicides, they were studied and confirmed as essential anti-microbial agents against plant nematodes which infected Piper nigrum L. This work examines the most common plant nematodes infected Piper nigrum L., with a focus on root knot and burrowing nematodes, in addition, how to control plant parasitic nematodes using microorganisms.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Corresponding author.
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific, Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 4451, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Taia A. Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mohammed A. Alkahtani
- Biology Department, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| |
Collapse
|
27
|
El-Saadony MT, Abuljadayel DA, Shafi ME, Albaqami NM, Desoky ESM, El-Tahan AM, Mesiha PK, Elnahal AS, Almakas A, Taha AE, Abd El-Mageed TA, Hassanin AA, Elrys AS, Saad AM. Control of foliar phytoparasitic nematodes through sustainable natural materials: Current progress and challenges. Saudi J Biol Sci 2021; 28:7314-7326. [PMID: 34867034 PMCID: PMC8626253 DOI: 10.1016/j.sjbs.2021.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 10/28/2022] Open
Abstract
Nematodes are hidden enemies that inhibit the entire ecosystem causing adverse effects on animals and plants, leading to economic losses. Management of foliar phytoparasitic nematodes is an excruciating task. Various approaches were used to control nematodes dispersal, i.e., traditional practices, resistant cultivars, plant extract, compost, biofumigants, induced resistance, nano-biotechnology applications, and chemical control. This study reviews the various strategies adopted in combating plant-parasitic nematodes while examining the benefits and challenges. The significant awareness of biological and environmental factors determines the effectiveness of nematode control, where the incorporation of alternative methods to reduce the nematodes population in plants with increasing crop yield. The researchers were interested in explaining the fundamental molecular mechanisms, providing an opportunity to deepen our understanding of the sustainable management of nematodes in croplands. Eco-friendly pesticides are effective as a sustainable nematodes management tool and safe for humans. The current review presents the eco-friendly methods in controlling nematodes to minimize yield losses, and benefit the agricultural production efficiency and the environment.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dalia A. Abuljadayel
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Najah M. Albaqami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Philemon K. Mesiha
- Plant pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed S.M. Elnahal
- Plant pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Aisha Almakas
- Department of Crops and Pastures, Faculty of Agriculture, Sana’a University, Yemen
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Taia A. Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Abdallah A. Hassanin
- Genetics department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
28
|
Hegazy MI, Hegazy AM, Saad AM, Salem HM, El-Tahan AM, El-Saadony MT, Soliman SM, Taha AE, Alshehri MA, Ezzat Ahmed A, Swelum AA. ٍSome biologically active microorganisms have the potential to suppress mosquito larvae (Culex pipiens, Diptera: Culicidae). Saudi J Biol Sci 2021; 29:1998-2006. [PMID: 35531139 PMCID: PMC9072919 DOI: 10.1016/j.sjbs.2021.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria is a disease caused by protozoan species of the genus Plasmodium. It is widespread and becoming a challenge in several African countries in the tropical and subtropical regions. In 2010, a report was published showing that over 1.2 million death cases were occurred globally due to malaria in just one year. The transmission of the disease from one person to another occurs via the bite of the Anopheles female. It is known that Plasmodium ovale, P. vivax, P. malariae, P. falciparum, and P. knowlesi are the highly infective malaria species. The problem of this disease is the absence of any effective medical treatment or vaccine, making the mosquito control is the only feasible way for disease prevention. Pesticides are currently the most widely used method for mosquito control, despite its well-known negative effects, including health hazards on human, the increasing insecticidal resistance, and the negative impact on the environment and beneficial organisms. Biological control (also called: biocontrol) of insects has been a promising method to overcome the negative effects of using chemical insecticides, as it depends on just using the natural enemies of pests to either minimize their populations or eradicate them. This article provides an overview of the recent and effective biological means to control malaria, such as bacteria, fungi, viruses, larvivorous fish, toxorhynchites larva and nematodes. In addition, the importance, advantages, and disadvantages of the biocontrol methods will be discussed in comparison with the traditionally used chemical methods of malaria control with special reference to nanotechnology as a novel method for insects’ control.
Collapse
Affiliation(s)
- Mohamed I. Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmad M. Hegazy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Corresponding authors at: Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia (A.A. Swelum).
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific. Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mohammed A. Alshehri
- Biology Department, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
- Corresponding authors at: Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia (A.A. Swelum).
| |
Collapse
|
29
|
Hassanin AA, Haidar Abbas Raza S, Ahmed Ujjan J, Aysh ALrashidi A, Sitohy BM, AL-surhanee AA, Saad AM, Mohamed Al -Hazani T, Osman Atallah O, Al Syaad KM, Ezzat Ahmed A, Swelum AA, El-Saadony MT, Sitohy MZ. Emergence, evolution, and vaccine production approaches of SARS-CoV-2 virus: Benefits of getting vaccinated and common questions. Saudi J Biol Sci 2021; 29:1981-1997. [PMID: 34924802 PMCID: PMC8667566 DOI: 10.1016/j.sjbs.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of coronavirus disease 2019 (COVID-19) pandemic in Wuhan city, China at the end of 2019 made it urgent to identify the origin of the causal pathogen and its molecular evolution, to appropriately design an effective vaccine. This study analyzes the evolutionary background of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS-2) in accordance with its close relative SARS-CoV (SARS-1), which was emerged in 2002. A comparative genomic and proteomic study was conducted on SARS-2, SARS-1, and Middle East respiratory syndrome coronavirus (MERS), which was emerged in 2012. In silico analysis inferred the genetic variability among the tested viruses. The SARS-1 genome harbored 11 genes encoding 12 proteins, while SARS-2 genome contained only 10 genes encoding for 10 proteins. MERS genome contained 11 genes encoding 11 proteins. The analysis also revealed a slight variation in the whole genome size of SARS-2 comparing to its siblings resulting from sequential insertions and deletions (indels) throughout the viral genome particularly ORF1AB, spike, ORF10 and ORF8. The effective indels were observed in the gene encoding the spike protein that is responsible for viral attachment to the angiotensin-converting enzyme 2 (ACE2) cell receptor and initiating infection. These indels are responsible for the newly emerging COVID-19 variants αCoV, βCoV, γCoV and δCoV. Nowadays, few effective COVID-19 vaccines developed based on spike (S) glycoprotein were approved and become available worldwide. Currently available vaccines can relatively prevent the spread of COVID-19 and suppress the disease. The traditional (killed or attenuated virus vaccine and antibody-based vaccine) and innovated vaccine production technologies (RNA- and DNA-based vaccines and viral vectors) are summarized in this review. We finally highlight the most common questions related to COVID-19 disease and the benefits of getting vaccinated.
Collapse
|
30
|
El-Saadony MT, ALmoshadak AS, Shafi ME, Albaqami NM, Saad AM, El-Tahan AM, Desoky ESM, Elnahal AS, Almakas A, Abd El-Mageed TA, Taha AE, Elrys AS, Helmy AM. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi J Biol Sci 2021; 28:7349-7359. [PMID: 34867037 PMCID: PMC8626263 DOI: 10.1016/j.sjbs.2021.08.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 01/03/2023] Open
Abstract
Nanotechnology has received much attention because of its distinctive properties and many applications in various fields. Nanotechnology is a new approach to increase agricultural production with premium quality, environmental safety, biological support, and financial stability. Ecofriendly technology is becoming progressively important in modern agricultural applications as alternatives to traditional fertilizers and pesticides. Nanotechnology offers an alternative solution to overcome the disadvantages of conventional agriculture. Therefore, recent developments in using nanoparticles (NPs) in agriculture should be studied. This review presented a novel overview about the biosynthesis of NPs, using NPs as nano-fertilizers and nano-pesticides, the applications of NPs in agriculture, and their role in enhancing the function of biofactors. We also, show recent studies on NPs-plant interactions, the fate and safety of nanomaterials in plants, and NPs' function in alleviating the adverse effects of abiotic stress and heavy metal toxicity. Nano-fertilizers are essential to reduce the use of inorganic fertilizers and reduce their antagonistic effects on the environment. Nano-fertilizers are more reactive, can penetrate the epidermis allowing for gradual release, and targeted distribution, and thus reducing nutrients surplus, enhancing nutrient use efficiency. We also, concluded that NPs are crucial in alleviating abiotic stress and heavy metal toxicity. However, some studies reported the toxic effects of NPs on higher plants by induction of oxidative stress signals via depositing NPs on the cell surface and in organelles. The knowledge in our review article is critical in defining limitations and future perspectives of using nano-fertilizers as an alternative to conventional fertilizers.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ameina S. ALmoshadak
- Department of Biological Sciences, Botany (Ecophysiology, chemotexnomy), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Najah M. Albaqami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific, Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed S.M. Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Aisha Almakas
- Department of Crops and Pastures, Faculty of Agriculture, Sana’a University, Yemen
| | - Taia A. Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary, Medicine, Alexandria University, Edfina 22578, Egypt
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ayman M. Helmy
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| |
Collapse
|
31
|
Saad AM, El-Saadony MT, El-Tahan AM, Sayed S, Moustafa MA, Taha AE, Taha TF, Ramadan MM. Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi J Biol Sci 2021; 28:5674-5683. [PMID: 34588879 PMCID: PMC8459111 DOI: 10.1016/j.sjbs.2021.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/28/2023] Open
Abstract
The agricultural wastes adversely affect the environment; however, they are rich in polyphenols; therefore, this study aimed to employ polyphenol-enriched waste extracts for silver nanoparticles synthesis, and study the larvicidal activity of silver nanoparticles fabricated by pomegranate and watermelon peels extracts (PPAgNPs and WPAgNPs) against all larval instars of Spodoptera littoralis. The polyphenol profile of pomegranate and watermelon peel extracts (PP and WP) and silver nanoparticles was detected by HPLC. The antioxidant activity was estimated by DPPH, and FARP assays and the antimicrobial activity was evaluated by disc assay. The Larvicidal activity of AgNPs against Egyptian leaf worm was performed by dipping technique. The obtained AgNPs were spherical with size ranged 15-85 nm and capped with proteins and polyphenols. The phenolic compounds in silver nanoparticles increased about extracts; therefore, they have the best performance in antioxidant/reducing activity, and inhibit the growth of tested bacteria and yeast. The PPAgNPs were the most effective against the first instar larvae instar (LC50 = 68.32 µg/ml), followed by pomegranate extract with (LC50 = 2852 µg/ml). The results indicated that obvious increase in polyphenols content in silver nanoparticles enhance their larvicidal effect and increasing mortality of 1st larval of S. littoralis Egyptian leafworms causing additive effect and synergism. We recommend recycling phenolic enriched agricultural wastes in producing green silver nanoprticles to control cotton leafworm that causes economic loses to crops.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moataz A.M. Moustafa
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | - Taha F. Taha
- Biochemistry Department, Faculty of Agriculture Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud M. Ramadan
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Egypt
| |
Collapse
|
32
|
Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111668] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
El-Saadony MT, S F Khalil O, Osman A, Alshilawi MS, Taha AE, Aboelenin SM, Shukry M, Saad AM. Bioactive peptides supplemented raw buffalo milk: Biological activity, shelf life and quality properties during cold preservation. Saudi J Biol Sci 2021; 28:4581-4591. [PMID: 34354444 PMCID: PMC8325055 DOI: 10.1016/j.sjbs.2021.04.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 11/03/2022] Open
Abstract
This study aimed to prolong the raw buffalo milk handling and cold storage period by controlling the microbes, enhancing sensory properties and their functionality after supplementing bioactive peptides. The additions included hen and duck egg white protein isolates (HPI and DPI), pepper seed protein (PSP), and pepsin-kidney bean protein hydrolysate (PKH). Five milk treatments were prepared and evaluated as non-supplemented milk (M- Control), hen egg white protein isolate-supplemented milk (M-HPI), duck egg white protein isolate-supplemented milk (M-DPI), pepper seeds protein-supplemented milk (M-PSP), and kidney bean hydrolysate-supplemented milk (M-PKH). Pyrogallol, protocatechuic, catechin, benzoic and caffeine were the main phenolic compounds, Apignin-6-arabinose, naringin, hesperidin, naringenin, kaempferol 3-2-p-comaroyl were the dominant flavonoids in milk samples based on HPLC profile. During 30 days of cold storage, the antioxidant potential of peptides-supplemented milk samples was significantly decreased (p ≤ 0.05) as decrement of phenolic compounds and flavonoids; the pH was nearly stable, the titratable acidity and total soluble solids (TTS) were (p ≤ 0.05) raised. PSP and PKH were inhibited (p ≤ 0.05) the decay of sugars in M-PSP, and M-PKH by reducing 45% of bacterial load as compared to other milk samples. PSP was significantly (p ≤ 0.05) scavenged 87% of DPPḢ compared to other peptides. Besides, PSP followed by PKH reduced considerably (p ≤ 0.05) the growth of tested bacteria, molds, and yeasts. The PSP has significantly increased the whiteness of M-PSP as compared to other milk samples. M-PSP had the highest score in color, taste, and flavor, followed by M-PKH.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Osama S F Khalil
- Dairy Science and Technology Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mashaeal S Alshilawi
- Department of Biological Science, Microbiology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| | - Salama M Aboelenin
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|