1
|
Hoch CC, Shoykhet M, Weiser T, Griesbaum L, Petry J, Hachani K, Multhoff G, Bashiri Dezfouli A, Wollenberg B. Isothiocyanates in medicine: A comprehensive review on phenylethyl-, allyl-, and benzyl-isothiocyanates. Pharmacol Res 2024; 201:107107. [PMID: 38354869 DOI: 10.1016/j.phrs.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
In recent years, isothiocyanates (ITCs), bioactive compounds primarily derived from Brassicaceae vegetables and herbs, have gained significant attention within the biomedical field due to their versatile biological effects. This comprehensive review provides an in-depth exploration of the therapeutic potential and individual biological mechanisms of the three specific ITCs phenylethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC), and benzyl isothiocyanate (BITC), as well as their collective impact within the formulation of ANGOCIN® Anti-Infekt N (Angocin). Angocin comprises horseradish root (Armoracia rusticanae radix, 80 mg) and nasturtium (Tropaeoli majoris herba, 200 mg) and is authorized for treating inflammatory diseases affecting the respiratory and urinary tract. The antimicrobial efficacy of this substance has been confirmed both in vitro and in various clinical trials, with its primary effectiveness attributed to ITCs. PEITC, AITC, and BITC exhibit a wide array of health benefits, including potent anti-inflammatory, antioxidant, and antimicrobial properties, along with noteworthy anticancer potentials. Moreover, we highlight their ability to modulate critical biochemical pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription (STAT) pathways, shedding light on their involvement in cellular apoptosis and their intricate role to guide immune responses.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maria Shoykhet
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Khouloud Hachani
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
2
|
Zhang Y, Du J, Jin L, Pan L, Yan X, Lin S. Iberverin exhibits antineoplastic activities against human hepatocellular carcinoma via DNA damage-mediated cell cycle arrest and mitochondrial-related apoptosis. Front Pharmacol 2023; 14:1326346. [PMID: 38152688 PMCID: PMC10751328 DOI: 10.3389/fphar.2023.1326346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with high incidence and mortality rates in the world. Isothiocyanates (ITCs), bioactive substances present primarily in the plant order Brassicales, have been proved to be promising candidates for novel anti-HCC drugs with chemopreventive and anticancer activities. Iberverin, a predominant ITC isolated from the seeds of oxheart cabbage, has been discovered with anticancer property in lung cancer cells. However, the roles of iberverin in HCC remain elusive. In the present study, the effect and potential mechanisms of iberverin against human HCC were dissected. We demonstrated that low concentrations of iberverin inhibited cell proliferation, suppressed migration and induced mitochondrial-related apoptosis in vitro, and hampered tumorigenicity in vivo, with no obvious toxicity. Furthermore, we found that iberverin treatment induced DNA damage and G2/M phase arrest. Iberverin treatment also caused increased intracellular reactive oxygen species formation and glutathione depletion. Taken together, these results suggest that iberverin promotes mitochondrial-mediated apoptosis and induces DNA damage and G2/M cell cycle arrest in HCC by enhancing oxidative stress. Our findings provide better understanding of the anti-HCC mechanisms of ITCs and the potential for the natural product iberverin as a promising new anti-HCC biotherapeutic.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Xiao Q, Sun CC, Tang CF. Heme oxygenase-1: A potential therapeutic target for improving skeletal muscle atrophy. Exp Gerontol 2023; 184:112335. [PMID: 37984695 DOI: 10.1016/j.exger.2023.112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Skeletal muscle atrophy is a common muscle disease that is directly caused by an imbalance in protein synthesis and degradation. At the histological level, it is mainly characterized by a reduction in muscle mass and fiber cross-sectional area (CSA). Patients with skeletal muscle atrophy present with reduced motor ability, easy fatigue, and poor life quality. Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes the degradation of heme and has attracted much attention for its anti-oxidation effects. In addition, there is growing evidence that HO-1 plays an important role in anti-inflammatory, anti-apoptosis, pro-angiogenesis, and maintaining skeletal muscle homeostasis, making it a potential therapeutic target for improving skeletal muscle atrophy. Here, we review the pathogenesis of skeletal muscle atrophy, the biology of HO-1 and its regulation, and the biological function of HO-1 in skeletal muscle homeostasis, with a specific focus on the role of HO-1 in skeletal muscle atrophy, aiming to observe the therapeutic potential of HO-1 for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Qin Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China; School of Physical Education, Hunan First Normal University, Changsha, Hunan 410205, China
| | - Chen-Chen Sun
- School of Physical Education, Hunan First Normal University, Changsha, Hunan 410205, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| |
Collapse
|
4
|
Ma Y, Yin J, Wang J, Liu X, He J, Zhang R, Rao S, Cong X, Xiong Y, Wu M. Selenium speciation and volatile flavor compound profiles in the edible flowers, stems, and leaves of selenium-hyperaccumulating vegetable Cardamine violifolia. Food Chem 2023; 427:136710. [PMID: 37406448 DOI: 10.1016/j.foodchem.2023.136710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cardamine violifolia is a unique selenium (Se)-hyperaccumulating vegetable in China. The total Se content and Se speciation of three edible parts, including flowers, stems, and leaves were detected by HPLC-ICP-MS. Volatile organic compounds (VOCs) greatly impact food flavor. The VOCs of three samples were analyzed by E-nose, HS-GC-IMS, and HS-SPME-GC-MS. The results showed that the total Se content in flowers was significantly higher than that in leaves and was the lowest in stems. Organic Se accounts for more than 98% of the total Se content, primarily selenocystine, followed by methyl selenocysteine. A total of 102 VOCs were identified from C. violifolia, mainly esters, aldehydes, alcohols, and ketones. Flowers contained abundant VOCs, while stems and leaves contained fewer but similar profiles. Moreover, multivariate statistical analysis was applied to investigate the VOC variations and marker VOCs. This work can provide useful knowledge for understanding the Se characteristics and flavor of C. violifolia.
Collapse
Affiliation(s)
- Yan Ma
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinjing Yin
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingyi Wang
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Liu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingren He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China
| | - Yin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
5
|
Ma Y, Wang Z, Hu Y. Insight into Nrf2: a bibliometric and visual analysis from 2000 to 2022. Front Genet 2023; 14:1266680. [PMID: 37779908 PMCID: PMC10540848 DOI: 10.3389/fgene.2023.1266680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Nrf2 plays a pivotal role in governing the antioxidant defense system, triggering the transcription of diverse genes involved in cellular protection. Its role in mitigating oxidative damage and modulating inflammatory processes has made Nrf2 an attractive target for therapeutic interventions. Despite the growing interest in Nrf2 research, a bibliometric analysis is relatively rare. This study aimed to clarify Nrf2's role in multiple diseases, identify emerging trends and hotspots using bibliometric analysis, and provide valuable insights and potential directions for future therapeutic interventions. Methods: The Science Citation Index of Web of Science Core library from 2000 to 2022 was searched on 22 October 2022. Use Microsoft Excel, CiteSpace, Bibliometrix, and VOS viewers for data collection and visualization of research focus and trends. Results: A vast collection of 22,040 research studies on Nrf2 published between 2000 and 2022 were identified. Nrf2 research has seen significant growth globally from 2000 to 2022. China leaded in publication numbers (9,623, 43.66%), while the United States dominated in citation frequency with 261,776 citations. China Medical University was the most productive institutions (459, 2.08%). Masayuki Yamamoto topped in publications (307), while Itoh K. ranked first in citations with 3669. Free Radical Biology and Medicine was the journal with the most studies and citations on Nrf2 (613, 29,687 citations). The analysis of keyword clustering enhanced the categorization of topics and can be summarized as oxidative stress, cancer, disorders in glycolipid metabolism, inflammation, and neurological conditions. Conclusion: China and the United States are the pioneers in Nrf2 research. Recently, there has been a comprehensive exploration of Nrf2 involving both experimental and clinical aspects, as well as mechanisms and therapeutic applications. Investigating novel molecular mechanisms, including NF-κB, Ho1, and Keap1, and developing enhanced, targeted Nrf2 activators or inhibitors to uncover the interplay among cancer, glycolipid metabolic disorder, inflammation, and neurological disorders will be upcoming trends and hotspots.
Collapse
Affiliation(s)
- Yawei Ma
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Yuedong Hu
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Huang CY, Chen HW, Lo CW, Wang YR, Li CC, Liu KL, Lii CK. Luteolin ameliorates palmitate-induced lipotoxicity in hepatocytes by mediating endoplasmic reticulum stress and autophagy. Food Chem Toxicol 2022; 171:113554. [PMID: 36509263 DOI: 10.1016/j.fct.2022.113554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Abnormal accumulation of lipids in liver leads to uncontrolled endoplasmic reticulum (ER) stress and autophagy. Luteolin is known to have antioxidant, anti-inflammatory, and anti-cancer properties, but whether it protects against lipotoxicity in liver remains unclear. In this study, we challenged AML12 liver cells and mouse primary hepatocytes with palmitic acid (PA) with or without luteolin pretreatment. In the presence of PA, reactive oxygen species (ROS) production was increased at 3 h, followed by enhancement of expression of p-PERK, ATF4, p-eIF2α, CHOP, and TXNIP (ER stress markers) and p-p62 and LC3II/LC3I ratio (autophagy markers), in both primary hepatocytes and AML12 cells. When PA treatment was extended up to 24 h, apoptosis was induced as evidenced by an increase in caspase-3 activation. RFP-GFP-LC3B transfection further revealed that the fusion of autophagosomes with lysosomes was damaged by PA. With luteolin treatment, the expression of antioxidant enzymes, i.e., heme oxygenase-1 and glutathione peroxidase, was upregulated, and PA-induced ROS production, ER stress, and cell death were dose-dependently ameliorated. Luteolin could also reverse the damage caused to autophagic flux. These results indicate that luteolin protects hepatocytes against PA assault by enhancing antioxidant defense, which can attenuate ER stress and autophagy as well as promote autophagic flux.
Collapse
Affiliation(s)
- Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Ru Wang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
7
|
Yen CC, Lii CK, Chen CC, Li CC, Tseng MH, Lo CW, Liu KL, Yang YC, Chen HW. Andrographolide Inhibits Lipotoxicity-Induced Activation of the NLRP3 Inflammasome in Bone Marrow-Derived Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:129-147. [PMID: 36419253 DOI: 10.1142/s0192415x23500088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Andrographolide is the major bioactive component of the herb Andrographis paniculata and is a potent anti-inflammatory agent. Obesity leads to an excess of free fatty acids, particularly palmitic acid (PA), in the circulation. Obesity also causes the deposition of ectopic fat in nonadipose tissues, which leads to lipotoxicity, a condition closely associated with inflammation. Here, we investigated whether andrographolide could inhibit PA-induced inflammation by activating autophagy, activating the antioxidant defense system, and blocking the activation of the NLRP3 inflammasome. Bone marrow-derived macrophages (BMDMs) were primed with lipopolysaccharide (LPS) and then activated with PA. LPS/PA treatment increased both the mRNA expression of NLRP3 and IL-1[Formula: see text] and the release of IL-1[Formula: see text] in BMDMs. Andrographolide inhibited the LPS/PA-induced protein expression of caspase-1 and the release of IL-1[Formula: see text]. Furthermore, andrographolide attenuated LPS/PA-induced mtROS generation by first promoting autophagic flux and catalase activity, and ultimately inhibiting activation of the NLRP3 inflammasome. Our results suggest that the mechanisms by which andrographolide downregulates LPS/PA-induced IL-1[Formula: see text] release in BMDMs involve promoting autophagic flux and catalase activity. Andrographolide may thus be a candidate to prevent obesity- and lipotoxicity-driven chronic inflammatory disease.
Collapse
Affiliation(s)
- Chih-Ching Yen
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan.,Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chih-Chieh Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Meng-Hsien Tseng
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
9
|
Jiao Y, Williams A, Wei N. Quercetin ameliorated insulin resistance via regulating METTL3-mediated N6-methyladenosine modification of PRKD2 mRNA in skeletal muscle and C2C12 myocyte cell line. Nutr Metab Cardiovasc Dis 2022; 32:2655-2668. [PMID: 36058761 DOI: 10.1016/j.numecd.2022.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS N6-Methyladenosine (m6A) modification is involved in many pathological processes, including insulin resistance (IR). Quercetin (Que), a bioactive compound with strong antioxidant activity, has potential therapeutic effects on IR-related metabolic diseases. The aim of this study is to investigate the roles of m6A and Que in hyperinsulinemia. METHODS AND RESULTS Male C57Bl/6 mice received a high-fat diet (HFD) for 8 weeks to establish an IR model. Que treatment reduced the body weight, blood glucose, plasma triglycerides (TG) and serum insulin, ameliorated IR, and decreased oxidative stress in HFD-fed mice. Cellular IR model was established in C2C12 cells by palmitic acid (PA) stimulation, and a noncytotoxic dose of Que was found to promote glucose uptake and inhibit oxidative stress. Moreover, methyltransferase-like 3 (METTL3) and serine-threonine kinase protein kinase D2 (PRKD2) was downregulated in skeletal muscle of HFD-fed mouse and in PA-induced C2C12 cells. The online bioinformatic tool SRAMP revealed that there were multiple m6A modification sites in the PRKD2 mRNA sequence. Downregulation of METTL3 enhanced PRKD2 expression by reducing m6A level and promoting mRNA stability in PRKD2 mRNA transcript. Que decreased m6A, METTL3, and phosphorylated insulin receptor substrate 1 (p-IRS1) levels, increased the protein expression of PRKD2, glucose transporter type 4 (GLUT4) and p-AKT, promoted glucose uptake, and reduced oxidative stress in PA-induced C2C12 cells. Moreover, METTL3 overexpression or PRKD2 silence reversed the inhibitory effects of Que on the levels of MDA and p-IRS1 and the promotive effects on glucose uptake, superoxide dismutase (SOD), GSH and GLUT4 and p-AKT levels. CONCLUSION Que promoted glucose uptake, repressed oxidative stress and improved IR through METTL3-mediated m6A of PRKD2 mRNA.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi Province, China
| | - Albert Williams
- LKS Faculty of Medicine, The University of Hongkong, Hongkong 999077, China
| | - Ning Wei
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
10
|
Effect of Carica papaya on IRS-1/Akt Signaling Mechanisms in High-Fat-Diet-Streptozotocin-Induced Type 2 Diabetic Experimental Rats: A Mechanistic Approach. Nutrients 2022; 14:nu14194181. [PMID: 36235831 PMCID: PMC9573020 DOI: 10.3390/nu14194181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Despite rigorous endeavors, existing attempts to handle type 2 diabetes (T2DM) are still a long way off, as a substantial number of patients do not meet therapeutic targets. Insulin resistance in skeletal muscle is discerned as a forerunner in the pathogenesis of T2DM and can be detected years before its progress. Studies have revealed the antidiabetic properties of Carica papaya (C. papaya), but its molecular mechanism on insulin receptor substrate-1 (IRS-1)/Akt signaling mechanisms is not yet known. The present study aimed to evaluate the role of C. papaya on IRS1 and Akt in high-fat-diet-streptozotocin-induced type 2 diabetic rats and also to analyze the bioactive compounds of C. papaya against IRS-1 and Akt via in silico analysis. Ethanolic extract of the leaves of C. papaya (600 mg/kg of body weight) was given daily for 45 days postinduction of T2DM up to the end of the study. Gluconeogenic enzymes, glycolytic enzymes, gene expression, and immunohistochemical analysis of IRS-1 and Akt in skeletal muscle were evaluated. C. papaya treatment regulated the levels of gluconeogenic and glycolytic enzymes and the levels of IRS-1 and Akt in skeletal muscle of type 2 diabetic animals. In silico studies showed that trans-ferulic acid had the greatest hit rate against the protein targets IRS-1 and Akt. C. papaya restored the normoglycemic effect in diabetic skeletal muscle by accelerating the expression of IRS-1 and Akt.
Collapse
|
11
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
12
|
Po WW, Choi WS, Khing TM, Lee JY, Lee JH, Bang JS, Min YS, Jeong JH, Sohn UD. Benzyl Isothiocyanate-Induced Cytotoxicity via the Inhibition of Autophagy and Lysosomal Function in AGS Cells. Biomol Ther (Seoul) 2022; 30:348-359. [PMID: 35768332 PMCID: PMC9252883 DOI: 10.4062/biomolther.2022.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/05/2022] Open
Abstract
Gastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells. The purpose of the present study was to investigate the effect of BITC on autophagy mechanism in AGS cells. First, the AGS cells were treated with 5, 10, or 15 μM BITC for 24 h, followed by an analysis of the autophagy mechanism. The expression level of autophagy proteins involved in different steps of autophagy, such as LC3B, p62/SQSTM1, Atg5-Atg12, Beclin1, p-mTOR/mTOR ratio, and class III PI3K was measured in the BITC-treated cells. Lysosomal function was investigated using cathepsin activity and Bafilomycin A1, an autophagy degradation stage inhibitor. Methods including qPCR, western blotting, and immunocytochemistry were employed to detect the protein expression levels. Acridine orange staining and omnicathepsin assay were conducted to analyze the lysosomal function. siRNA transfection was performed to knock down the LC3B gene. BITC reduced the level of autophagy protein such as Beclin 1, class III PI3K, and Atg5-Atg12. BITC also induced lysosomal dysfunction which was shown as reducing cathepsin activity, protein level of cathepsin, and enlargement of acidic vesicle. Overall, the results showed that the BITC-induced AGS cell death mechanism also comprises the inhibition of the cytoprotective autophagy at both initiation and degradation steps.
Collapse
Affiliation(s)
- Wah Wah Po
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tin Myo Khing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong Hyuk Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young Sil Min
- Department of Pharmaceutical Science, Jungwon University, Goesan 28024, Republic of Korea
| | - Ji Hoon Jeong
- College of Medicine, Chung-Ang University, and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
13
|
Egbujor MC, Petrosino M, Zuhra K, Saso L. The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects. Antioxidants (Basel) 2022; 11:1255. [PMID: 35883746 PMCID: PMC9311638 DOI: 10.3390/antiox11071255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling has become a key pathway for cellular regulation against oxidative stress and inflammation, and therefore an attractive therapeutic target. Several organosulfur compounds are reportedly activators of the Nrf2 pathway. Organosulfur compounds constitute an important class of therapeutic agents in medicinal chemistry due to their ability to participate in biosynthesis, metabolism, cellular functions, and protection of cells from oxidative damage. Sulfur has distinctive chemical properties such as a large number of oxidation states and versatility of reactions that promote fundamental biological reactions and redox biochemistry. The presence of sulfur is responsible for the peculiar features of organosulfur compounds which have been utilized against oxidative stress-mediated diseases. Nrf2 activation being a key therapeutic strategy for oxidative stress is closely tied to sulfur-based chemistry since the ability of compounds to react with sulfhydryl (-SH) groups is a common property of Nrf2 inducers. Although some individual organosulfur compounds have been reported as Nrf2 activators, there are no papers with a collective analysis of these Nrf2-activating organosulfur compounds which may help to broaden the knowledge of their therapeutic potentials and motivate further research. In line with this fact, for the first time, this review article provides collective and comprehensive information on Nrf2-activating organosulfur compounds and their therapeutic effects against oxidative stress, thereby enriching the chemical and pharmacological diversity of Nrf2 activators.
Collapse
Affiliation(s)
- Melford Chuka Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Abia State, Nigeria
| | - Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karim Zuhra
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
14
|
Dong W, Zhao Y, Hao Y, Sun G, Huo J, Wang W. Integrated molecular biology and metabonomics approach to understand the mechanism underlying reduction of insulin resistance by corn silk decoction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114756. [PMID: 34666141 DOI: 10.1016/j.jep.2021.114756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corn silk is composed of the style and stigma of Zea mays L. Its medical value was first reported in "Southern Yunnan Materia Medica" in the Ming Dynasty. It was considered to be a heat-clearing and diuretic drug. In "Zhejiang Folk Herbal Medicine," the following has been reported: "Corn silk needs one liang. Decoction in water can cure diabetes." Recent studies have shown that corn silk can lower blood sugar levels; however, to date, corn silk has undergone simple pharmacodynamic evaluations, with both its degree and mechanism of action remaining unclear. AIM OF THE STUDY This study aimed to investigate the mechanism of action of corn silk, with respect to having antioxidative ability, reducing insulin resistance, and having a hypoglycemic effect. MATERIALS AND METHODS In this study, a type 2 diabetes mellitus (T2DM) rat model was established via a high sugar and high fat diet combined with streptozotocin (35 mg/kg) administration. Wistar rats were administered corn silk decoction and metformin via gavage for four weeks, and the fasting blood glucose (FBG) and body weight were measured every two weeks. After the experiment, the insulin level, insulin index, and glycogen content were determined. Hematoxylin-eosin staining was used to observe the morphological changes of the skeletal muscle tissue in rats. The levels of malondialdehyde and superoxide dismutase in the serum and skeletal muscle were detected, and the mRNA content and protein levels of key proteins in the JNK-IRS-GLUT4 signaling pathway were determined using real-time quantitative polymerase chain reaction and western blotting. Then, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, combined with multiple statistical analyses, was used to identify potential biomarkers in the serum of T2DM rats, for determining the key metabolic pathways responsible for the action of corn silk. RESULTS The results showed that corn silk could reduce FBG, insulin level, and glycogen content in T2DM rats; reduce the level of oxidative stress in serum and skeletal muscle; restore the pathological structure of skeletal muscle; inhibit the phosphorylation of c-Jun N-terminal kinase (JNK) and insulin receptor substrate (IRS) in skeletal muscle; and upregulate the expression of glucose transporter type 4 (GLUT4) for transport of glucose and to reduce insulin resistance. Moreover, metabonomic analysis elucidated that corn silk could significantly affect 26 biomarkers (such as pentosidine, palmitic acid, lysoPC, and p-Cresol sulfate) and metabolic pathways (such as phenylalanine metabolism, phospholipid metabolism, bile acid metabolism, and biosynthesis of unsaturated fatty acids). CONCLUSION The interaction between endogenous metabolites and proteins in signaling pathways was analyzed using metabonomics and molecular biology methods. Corn silk inhibited JNK-IRS-GLUT4 signal transduction in skeletal muscle via antioxidative effects, by increasing the sensitivity of peripheral tissue to insulin, by reducing insulin resistance, and through hypoglycemic effects.
Collapse
Affiliation(s)
- Wenting Dong
- College of Pharmacy, Harbin University of Commerce, No.138, Tongda Street, Daoli District, Harbin, Heilongjiang, China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| | - Yuanyuan Zhao
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| | - Yiming Hao
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| | - Guodong Sun
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| | - Weiming Wang
- College of Pharmacy, Harbin University of Commerce, No.138, Tongda Street, Daoli District, Harbin, Heilongjiang, China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, No.72 Xiang'an Street, Xiangfang District, Harbin, Heilongjiang, China.
| |
Collapse
|