1
|
Jiang H, Okoye CO, Chen X, Zhang F, Jiang J. High-throughput 16S rRNA gene-based amplicon sequencing reveals the functional divergence of halophilic bacterial communities in the Suaeda salsa root compartments on the eastern coast of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173775. [PMID: 38844238 DOI: 10.1016/j.scitotenv.2024.173775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The rhizosphere environment of plants, which harbors halophilic bacterial communities, faces significant challenges in coping with environmental stressors, particularly saline soil properties. This study utilizes a high-throughput 16S rRNA gene-based amplicon sequencing to investigate the variations in bacterial community dynamics in rhizosphere soil (RH), root surface soil (RS), root endophytic bacteria (PE) compartments of Suaeda salsa roots, and adjoining soils (CK) across six locations along the eastern coast of China: Nantong (NT), Yancheng (YC), Dalian (DL), Tianjin (TJ), Dongying (DY), and Qingdao (QD), all characterized by chloride-type saline soil. Variations in the physicochemical properties of the RH compartment were also evaluated. The results revealed significant changes in pH, electrical conductivity, total salt content, and ion concentrations in RH samples from different locations. Notably, the NT location exhibited the highest alkalinity and nitrogen availability. The pH variations were linked to HCO3- accumulation in S. salsa roots, while salinity stress influenced soil pH through H+ discharge. Despite salinity stress, enzymatic activities such as catalase and urease were higher in soils from various locations. The diversity and richness of bacterial communities were higher in specific locations, with Proteobacteria dominating PE samples from the DL location. Additionally, Vibrio and Marinobacter were prevalent in RH samples. Significant correlations were found between soil pH, salinity, nutrient content, and the abundance and diversity of bacterial taxa in RH samples. Bioinformatics analysis revealed the prevalence of halophilic bacteria, such as Bacillus, Halomonas, and Streptomyces, with diverse metabolic functions, including amino acid and carbohydrate metabolisms. Essential genes, such as auxin response factor (ARF) and GTPase-encoding genes, were abundant in RH samples, suggesting adaptive strategies for harsh environments. Likewise, proline/betaine transport protein genes were enriched, indicating potential bioremediation mechanisms against high salt stress. These findings provide insight into the metabolic adaptations facilitating resilience in saline ecosystems and contribute to understanding the complex interplay between soil conditions, bacterial communities, and plant adaptation.
Collapse
Affiliation(s)
- Huifang Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xunfeng Chen
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fusheng Zhang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Khan MI, Yoo K, Schwab L, Kümmel S, Nijenhuis I. Characterization of anaerobic biotransformation of hexachlorocyclohexanes by novel microbial consortia enriched from channel and river sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135198. [PMID: 39013321 DOI: 10.1016/j.jhazmat.2024.135198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
The microbial biotransformation of hexachlorocyclohexane (HCH) by novel anaerobic microbial consortia enriched from sediments of an industrial effluent channel and the river Ravi in Pakistan was examined. The anaerobic consortia were capable of biotransforming α-, β-, γ-, and δ-HCH through reductive dichloroelimination, resulting in the formation of benzene and monochlorobenzene. Concerning γ-HCH biotransformation by the channel and river cultures, isotopic fractionations for carbon (εC) were - 5.3 ± 0.4 (‰) and - 10.6 ± 1.2 (‰), while isotopic fractionations for chlorine (εCl) were - 4.4 ± 0.4 (‰) and - 7.8 ± 0.9 (‰), respectively. Furthermore, lambda values (Λ), representing the correlation of δ13C and δ37Cl fractionation, were determined to be 1.1 ± 0.1 and 1.3 ± 0.1 for γ-HCH biotransformation, suggesting a reductive dichloroelimination as the initial step of HCH biotransformation in both cultures. Amplicon sequencing targeting the 16S rRNA genes revealed that Desulfomicrobium populations were considerably increased in both cultures, indicating their possible involvement in the degradation process. These findings suggest that Desulfomicrobium-like populations may have an important role in biotransformation of HCH and novel anaerobic HCH-degrading microbial consortia could be useful bioaugmentation agents for the bioremediation of HCH-contaminated sites in Pakistan.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Laura Schwab
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
3
|
Dong R, Wang X, Li Y, Zhang H, Li X, Song J, Chang F, Feng W, Pang H, Wang J. Soil bacterial diversity and community structure of Suaeda glauca vegetation in the Hetao Irrigation District, Inner Mongolia, China. Front Microbiol 2024; 15:1358783. [PMID: 38939186 PMCID: PMC11210291 DOI: 10.3389/fmicb.2024.1358783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Exploring the bacterial community in the S. glauca rhizosphere was of great value for understanding how this species adapted to the saline-alkali environment and for the rational development and use of saline-alkali soils. In this study, high-throughput sequencing technology was used to investigate the diversity characteristics and distribution patterns of soil bacterial communities in the rhizosphere of S.glauca-dominated communities in the Hetao Irrigation Distract, Inner Mongolia, China. The relationships among bacterial characteristics, soil physicochemical properties and vegetation in four sampling sites were analyzed. The soil bacterial communities in the rhizosphere of S. glauca-dominated communities were mainly composed of 16 phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, Deinococcus-Thermus, Verrucomicrobia, Saccharibacteria, Cyanobacteria, Nitrospirae, JL-ETNP-Z39, Parcubacteria and Chlorobi), and these populations accounted for more than 99% of the total bacterial community. At the genus level, the main bacterial communities comprised Halomonas, Nitriliruptor, Euzebya and Pelagibius, which accounted for 15.70% of the total bacterial community. An alpha diversity analysis indicated that the richness and diversity of rhizosphere soil bacteria differed significantly among the sampling sites, and the bacterial richness and diversity indices of severe saline-alkali land were higher than those of light and moderate saline-alkali land. The principal component analysis (PCA) and linear discriminant analysis effect size (LEfSe) showed significant differences in the species composition of the rhizosphere soil bacterial community among different sampling sites. A correlation analysis showed that the number of bacterial species exhibited the highest correlation with the soil water content (SWC). The richness and evenness indices were significantly correlated with the SWC and SO4 2-, K+ and Mg2+ concentrations. The electrical conductivity (EC), soluble ions (Na+, CO3 2- + HCO3 -, K+, Ca2+, Mg2+, and SO4 2+), SWC and vegetation coverage (VC) were the main drivers affecting the changes in its community structure. The bacterial community in the rhizosphere of S. glauca enhanced the adaptability of S. glauca to saline-alkali environment by participating in the cycling process of nutrient elements, the decomposition of organic matter and the production of plant growth regulating substances. These results provided a theoretical reference for further study on the relationship among rhizosphere soil microorganisms and salt tolerance in halophytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing, China
| |
Collapse
|
4
|
Su H, Zhu T, Lv J, Wang H, Zhao J, Xu J. Leveraging machine learning for prediction of antibiotic resistance genes post thermal hydrolysis-anaerobic digestion in dairy waste. BIORESOURCE TECHNOLOGY 2024; 399:130536. [PMID: 38452951 DOI: 10.1016/j.biortech.2024.130536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Anaerobic digestion holds promise as a method for removing antibiotic resistance genes (ARGs) from dairy waste. However, accurately predicting the efficiency of ARG removal remains a challenge. This study introduces a novel appproach utilizing machine learning to forecast changes in ARG abundances following thermal hydrolysis-anaerobic digestion (TH-AD) treatment. Through network analysis and redundancy analyses, key determinants of affect ARG fluctuations were identified, facilitating the development of machine learning models capable of accurately predicting ARG changes during TH-AD processes. The decision tree model demonstrated impressive predictive power, achieving an impessive R2 value of 87% against validation data. Feature analysis revealed that the genes intI2 and intI1 had a critical impact on the absolute abundance of ARGs. The predictive model developed in this study offers valuable insights for improving operational and managerial practices in dairy waste treatment facilities, with the ultimate goal of mitigating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Haiyan Su
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tianjiao Zhu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiaqiang Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Hongcheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Inner Mongolia University, Hohhot 010021, China
| | - Jifei Xu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
5
|
Islam W, Zeng F, Ahmed Dar A, Sohail Yousaf M. Dynamics of soil biota and nutrients at varied depths in a Tamarix ramosissima-dominated natural desert ecosystem: Implications for nutrient cycling and desertification management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120217. [PMID: 38340666 DOI: 10.1016/j.jenvman.2024.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The underground community of soil organisms, known as soil biota, plays a critical role in terrestrial ecosystems. Different ecosystems exhibit varied responses of soil organisms to soil physical and chemical properties (SPCPs). However, our understanding of how soil biota react to different soil depths in naturally established population of salinity tolerant Tamarix ramosissima in desert ecosystems, remains limited. To address this, we employed High-Throughput Illumina HiSeq Sequencing to examine the population dynamics of soil bacteria, fungi, archaea, protists, and metazoa at six different soil depths (0-100 cm) in the naturally occurring T. ramosissima dominant zone within the Taklimakan desert of China. Our observations reveal that the alpha diversity of bacteria, fungi, metazoa, and protists displayed a linear decrease with the increase of soil depth, whereas archaea exhibited an inverse pattern. The beta diversity of soil biota, particularly metazoa, bacteria, and protists, demonstrated noteworthy associations with soil depths through Non-Metric Dimensional Scaling analysis. Among the most abundant classes of soil organisms, we observed Actinobacteria, Sordariomycetes, Halobacteria, Spirotrichea, and Nematoda for bacteria, fungi, archaea, protists, and metazoa, respectively. Additionally, we identified associations between the vertical distribution of dominant biotic communities and SPCPs. Bacterial changes were mainly influenced by total potassium, available phosphorus (AP), and soil water content (SWC), while fungi were impacted by nitrate (NO3-) and available potassium (AK). Archaea showed correlations with total carbon (TC) and AK thus suggesting their role in methanogenesis and methane oxidation, protists with AP and SWC, and metazoa with AP and pH. These correlations underscore potential connections to nutrient cycling and the production and consumption of greenhouse gases (GhGs). This insight establishes a solid foundation for devising strategies to mitigate nutrient cycling and GHG emissions in desert soils, thereby playing a pivotal role in the advancement of comprehensive approaches to sustainable desert ecosystem management.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec H3G1M8, Canada
| | | |
Collapse
|
6
|
Sun X, Han B, Han Q, Yu Q, Wang S, Feng J, Feng T, Li X, Zhang S, Li H. Similarity of Chinese and Pakistani oral microbiome. Antonie Van Leeuwenhoek 2024; 117:38. [PMID: 38372789 DOI: 10.1007/s10482-024-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Oral microbiota is vital for human health and can be affected by various factors (i.e. diets, ethnicity). However, few studies have compared oral microbiota of individuals from different nationalities in the same environment. Here, we explored the assembly and interaction of oral microbial communities of Chinese and Pakistanis in one university. Firmicutes and Proteobacteria were the predominant microorganisms in the oral cavity of Chinese and Pakistanis. Streptococcus and Neisseria were the dominant genera of China, while Streptococcus and Haemophilus were the dominant genera of Pakistanis. In addition, the oral community membership and structure were not influenced by season, Chinese/Pakistani student and gender, reflecting the stability of the human oral microbiome. The beta diversity of oral microbiomes between Chinese and Pakistanis significantly differed in winter, but not in spring. The alpha diversity of Chinese students and Pakistani students was similar. Moreover, oral microbial community of both Chinese and Pakistani students was mainly driven by stochastic processes. The microbial network of Chinese was more complexity and stability than that of Pakistanis. Our study uncovers the characteristics of human oral microbiota, which is of great significance for oral and human health.
Collapse
Affiliation(s)
- Xiaofang Sun
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qian Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jie Feng
- Department of Digestive, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Tianshu Feng
- School of Public Health, Peking University, Beijing, 100871, China
| | - Xiaoshan Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, 404120, China
| | - Shiheng Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, 404120, China.
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Chen J, Xiao Q, Xu D, Li Z, Chao L, Li X, Liu H, Wang P, Zheng Y, Liu X, Qu H, Bao Y. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165889. [PMID: 37524180 DOI: 10.1016/j.scitotenv.2023.165889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Soil physicochemical properties and vegetation types are the main factors affecting soil microorganisms, but there are few studies on the effects of the disturbance following volcanic eruption. To make up for this lack of knowledge, we used Illumina Miseq high-throughput sequencing to study the characteristics of soil microorganisms on both shores of a volcanically disturbed lake. Soil microorganisms in the two sites were subjected to different degrees of volcanic disturbance and showed significant heterogeneity. Mild volcanic disturbance area had higher enrichment of prokaryotic community. Co-occurrence network analysis showed that a total of 12 keystone taxa (9 prokaryotes and 3 fungi) were identified, suggesting that soil prokaryote may play a more significant role than fungi in overall community structure and function. Compared with severe volcanic disturbance area, the soil microbial community in mild volcanic disturbance area had the higher modular network (0.327 vs 0.291). The competition was stronger (positive/negative link ratio, P/N: 1.422 vs 1.159). Random forest analysis showed that soil superoxide dismutase was the most significant variable associated with soil microbial community. Structural equation model (SEM) results showed that keystone had a directly positive effect on prokaryotic (λ = 0.867, P < 0.001) and fungal (λ = 0.990, P < 0.001) multifunctionality while had also a directly positive effect on fungal diversity (λ = 0.553, P < 0.001), suggesting that keystone taxa played a key role in maintaining ecosystem stability. These results were important for understanding the effects of different levels of volcanic disturbance on soil ecosystems.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Qingchen Xiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Daolong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zishan Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Pengfei Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Hanting Qu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China.
| |
Collapse
|
8
|
Li Z, Zhang M. Progress in the Preparation of Stimulus-Responsive Cellulose Hydrogels and Their Application in Slow-Release Fertilizers. Polymers (Basel) 2023; 15:3643. [PMID: 37688270 PMCID: PMC10490241 DOI: 10.3390/polym15173643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Agriculture is facing challenges such as water scarcity, low fertilizer utilization, food security and environmental sustainability. Therefore, the development of slow-release fertilizer (SRF) with controlled water retention and release is particularly important. Slow-release fertilizer hydrogel (SRFH) has a three-dimensional (3D) network structure combined with fertilizer processing, displaying excellent hydrophilicity, biocompatibility and controllability. Cellulose has abundant hydroxyl groups as well as outstanding biodegradability and special mechanical properties, which make it a potential candidate material for the fabrication of hydrogels. This work would analyze and discuss various methods for preparing stimulus-responsive cellulose hydrogels and their combinations with different fertilizers. Moreover, the application and release mechanism of stimulus-responsive cellulose hydrogels in SRF have been summarized as well. Finally, we would explore the potential issues of stimulus-responsive cellulose hydrogels serving as an SRF, propose reasonable solutions and give an outlook of the future research directions.
Collapse
Affiliation(s)
- Zhenghui Li
- School of Material Science and Engineering, Beihua University, Jilin City 132013, China;
| | - Ming Zhang
- School of Material Science and Engineering, Beihua University, Jilin City 132013, China;
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City 132013, China
| |
Collapse
|
9
|
Liu J, Yu J, Si W, Ding G, Zhang S, Gong D, Bi J. Variations in bacterial diversity and community structure in the sediments of an alkaline lake in Inner Mongolia plateau, China. PeerJ 2023; 11:e15909. [PMID: 37637159 PMCID: PMC10448878 DOI: 10.7717/peerj.15909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Alkaline lakes are a special aquatic ecosystem that act as important water and alkali resource in the arid-semiarid regions. The primary aim of the study is to explore how environmental factors affect community diversity and structure, and to find whether there are key microbes that can indicate changes in environmental factors in alkaline lakes. Therefore, four sediment samples (S1, S2, S3, and S4) were collected from Hamatai Lake which is an important alkali resource in Ordos' desert plateau of Inner Mongolia. Samples were collected along the salinity and alkalinity gradients and bacterial community compositions were investigated by Illumina Miseq sequencing. The results revealed that the diversity and richness of bacterial community decreased with increasing alkalinity (pH) and salinity, and bacterial community structure was obviously different for the relatively light alkaline and hyposaline samples (LAHO; pH < 8.5; salinity < 20‰) and high alkaline and hypersaline samples (HAHR; pH > 8.5; salinity > 20‰). Firmicutes, Proteobacteria and Bacteriodetes were observed to be the dominant phyla. Furthermore, Acidobacteria, Actinobacteria, and low salt-tolerant alkaliphilic nitrifying taxa were mainly distributed in S1 with LAHO characteristic. Firmicutes, Clostridia, Gammaproteobacteria, salt-tolerant alkaliphilic denitrifying taxa, haloalkaliphilic sulfur cycling taxa were mainly distributed in S2, S3 and S4, and were well adapted to haloalkaline conditions. Correlation analysis revealed that the community diversity (operational taxonomic unit numbers and/or Shannon index) and richness (Chao1) were significantly positively correlated with ammonium nitrogen (r = 0.654, p < 0.05; r = 0.680, p < 0.05) and negatively correlated with pH (r = -0.924, p < 0.01; r = -0.800, p < 0.01; r = -0.933, p < 0.01) and salinity (r = -0.615, p < 0.05; r = -0.647, p < 0.05). A redundancy analysis and variation partitioning analysis revealed that pH (explanation degrees of 53.5%, pseudo-F = 11.5, p < 0.01), TOC/TN (24.8%, pseudo-F = 10.3, p < 0.05) and salinity (9.2%, pseudo-F = 9.5, p < 0.05) were the most significant factors that caused the variations in bacterial community structure. The results suggested that alkalinity, nutrient salt and salinity jointly affect bacterial diversity and community structure, in which one taxon (Acidobacteria), six taxa (Cyanobacteria, Nitrosomonadaceae, Nitrospira, Bacillus, Lactococcus and Halomonas) and five taxa (Desulfonatronobacter, Dethiobacter, Desulfurivibrio, Thioalkalivibrio and Halorhodospira) are related to carbon, nitrogen and sulfur cycles, respectively. Classes Clostridia and Gammaproteobacteria might indicate changes of saline-alkali conditions in the sediments of alkaline lakes in desert plateau.
Collapse
Affiliation(s)
- Jumei Liu
- College of Chemistry and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jingli Yu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wantong Si
- College of Chemistry and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Ge Ding
- College of Chemistry and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Donghui Gong
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Jie Bi
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| |
Collapse
|
10
|
Wang R, Liu T, Lu C, Zhang Z, Guo P, Jia B, Hao B, Wang Y, Guo W. Bioorganic fertilizers improve the adaptability and remediation efficiency of Puccinellia distans in multiple heavy metals-contaminated saline soil by regulating the soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130982. [PMID: 36860055 DOI: 10.1016/j.jhazmat.2023.130982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Soil salinization and heavy metal (HM) pollution are global environmental problems. Bioorganic fertilizers facilitate phytoremediation, but their roles and microbial mechanisms in natural HM-contaminated saline soils have not been explored. Therefore, greenhouse pot trials were conducted with three treatments: control (CK), manure bioorganic fertilizer (MOF), and lignite bioorganic fertilizer (LOF). The results showed that MOF and LOF significantly increased nutrient uptake, biomass, toxic ion accumulation in Puccinellia distans, soil available nutrients, SOC, and macroaggregates. More biomarkers were enriched in MOF and LOF. Network analysis confirmed that MOF and LOF increased the number of bacterial functional groups and fungal community stability and strengthened their positive association with plants; Bacteria have a more significant effect on phytoremediation. Most biomarkers and keystones play important roles in promoting plant growth and stress resistance in the MOF and LOF treatments. In summary, besides enrichment of soil nutrients, MOF and LOF can also improve the adaptability and phytoremediation efficiency of P. distans by regulating the soil microbial community, with LOF having a greater effect.
Collapse
Affiliation(s)
- Run Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Chengyan Lu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Peiran Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
11
|
Zhang T, Han J, Zhang H. Rapid saline-alkali sensitivity testing using hydrogel/gold nanoparticles-modified screen-printed electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160814. [PMID: 36509274 DOI: 10.1016/j.scitotenv.2022.160814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapid screening of microorganisms with good saline-alkali tolerance is of great significance for the improvement of saline-alkali land. In this study, a novel electrochemical method was developed for the rapid screening of saline-alkali-tolerant bacteria using a hydrogel/gold nanoparticles-modified screen-printed electrode. Monitoring bacterial growth using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) yielded a new method to measure saline-alkali sensitivity. The strains were deposited on agarose hydrogel-AuNPs composite-modified electrodes with saline-alkali treatment control at a concentration of 50 mM. The electrochemical-derived growth curve of each bacterial strain was established to monitor the effect of saline-alkaline conditions on bacterial growth. The results showed that E. coli could grow on the hydrogel-AuNPs composite-modified electrodes without saline and alkali, while the growth of E. coli was inhibited after adding saline and alkali to the modified electrodes. In contrast, Paenibacillus lautus (HC_A) and Lysinibacillus fusiformis (HC_B) were able to grow on electrodes containing saline-alkali hydrogel-AuNPs composite modification. This fast growth curves of the strains derived from electrochemical analysis indicate that the possible time for salinity sensitivity results is <45 min. Compared to the traditional bacterial culture method lasting at least 1-2 days, this method has the clear advantages of rapidity, high efficiency, and low cost.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Juan Han
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
12
|
Xu F, Liang Y, Wang X, Guo Y, Tang K, Feng F. Synergic mitigation of saline-alkaline stress in wheat plant by silicon and Enterobacter sp. FN0603. Front Microbiol 2023; 13:1100232. [PMID: 36726561 PMCID: PMC9885204 DOI: 10.3389/fmicb.2022.1100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Although microorganisms and silicon are well documented as factors that mitigate salt stress, their effect mitigating saline-alkaline stress in plants remains unknown. In this study, wheat plant seeds were treated with silicon, Enterobacter sp. FN0603 alone and in combination of both. Wheat seeds were soaked in silicon and bacterial solutions and sown in pots containing artificial saline-alkaline soils to compare the effects among all treatments. The results showed that the treatments with silicon and FN0603 alone significantly changed plant morphology, enhanced the rhizosphere soil nutrient content and enzyme activities, improved some important antioxidant enzyme activities (e.g., superoxide dismutase) and the contents of small molecules (e.g., proline) that affected osmotic conditions in the top second leaves. However, treatment with silicon and FN0603 in combination significantly further increased these stress tolerance indexes and eventually promoted the plant growth dramatically compared to the treatments with silicon or FN0603 alone (p < 0.01), indicating a synergic plant growth-promoting effect. High relative abundance of strain FN0603 was detected in the treated plants roots, and silicon further improved the colonization of FN0603 in stressed wheat roots. Strain FN0603 particularly when present in combination with silicon changed the root endophytic bacterial and fungal communities rather than the rhizosphere communities. Bipartite network analysis, variation partitioning analysis and structure equation model further showed that strain FN0603 indirectly shaped root endophytic bacterial and fungal communities and improved plant physiology, rhizosphere soil properties and plant growth through significantly and positively directing FN0603-specific biomarkers (p < 0.05). This synergetic effect of silicon and plant growth-promoting microorganism in the mitigation of saline-alkaline stress in plants via shaping root endophyte community may provide a promising approach for sustainable agriculture in saline-alkaline soils.
Collapse
Affiliation(s)
- Fangfang Xu
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yungang Liang
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaobing Wang
- Laboratory for Wheat Breeding and Cultivation, Institute of Crop Sciences, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yuze Guo
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Kai Tang
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Fuying Feng
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
13
|
Zhang S, Yan L, Cao J, Wang K, Luo Y, Hu H, Wang L, Yu R, Pan B, Yu K, Zhao J, Bao Z. Salinity significantly affects methane oxidation and methanotrophic community in Inner Mongolia lake sediments. Front Microbiol 2023; 13:1067017. [PMID: 36687579 PMCID: PMC9853545 DOI: 10.3389/fmicb.2022.1067017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Methanotrophs oxidize methane (CH4) and greatly help in mitigating greenhouse effect. Increased temperatures due to global climate change can facilitate lake salinization, particularly in the regions with cold semiarid climate. However, the effects of salinity on the CH4 oxidation activity and diversity and composition of methanotrophic community in the sediment of natural lakes at a regional scale are still unclear. Therefore, we collected lake sediment samples from 13 sites in Mongolian Plateau; CH4 oxidation activities of methanotrophs were investigated, and the diversity and abundance of methanotrophs were analyzed using real-time quantitative polymerase chain reaction and high throughput sequencing approach. The results revealed that the diversity of methanotrophic community decreased with increasing salinity, and community structure of methanotrophs was clearly different between the hypersaline sediment samples (HRS; salinity > 0.69%) and hyposaline sediment samples (HOS; salinity < 0.69%). Types II and I methanotrophs were predominant in HRS and HOS, respectively. Salinity was significantly positively correlated with the relative abundance of Methylosinus and negatively correlated with that of Methylococcus. In addition, CH4 oxidation rate and pmoA gene abundance decreased with increasing salinity, and salinity directly and indirectly affected CH4 oxidation rate via regulating the community diversity. Moreover, high salinity decreased cooperative association among methanotrophs and number of key methanotrophic species (Methylosinus and Methylococcus, e.g). These results suggested that salinity is a major driver of CH4 oxidation in lake sediments and acts by regulating the diversity of methanotrophic community and accociation among the methanotrophic species.
Collapse
Affiliation(s)
- Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lei Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiahui Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kexin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Haiyang Hu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Baozhu Pan
- Institute of Water Resources and Hydro-electric Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China,*Correspondence: Zhihua Bao, ✉
| |
Collapse
|
14
|
Zhang K, Chang L, Li G, Li Y. Advances and future research in ecological stoichiometry under saline-alkali stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5475-5486. [PMID: 36418830 DOI: 10.1007/s11356-022-24293-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Saline-alkali stress is a serious abiotic factor which negatively impacts agricultural production and the ecological environment. Thus, improving the development of saline-alkali soil and reducing the effects of saline-alkali stress is a key issue for sustainable agricultural development and environmental protection. As such, it is unsurprising that researchers have lately focused on how to improve saline-alkali soil, increase the agricultural yield of saline-alkali land, and promote the adaptive growth of plants in saline-alkali soil. This paper reviews the latest research concerning nutrient content changes in saline-alkali soil, along with the associated changes in key nutrients in plants, to summarize which methods are most effective for improving the plant growth under saline-alkali stress. Finally, the prospects for alleviating saline-alkali stress and improving saline-alkali soil are put forward as a theoretical foundation for the stabilization of plant growth in saline-alkali soil, expansion of arable land area, crop yield improvement, and effective environmental protection.
Collapse
Affiliation(s)
- Keyi Zhang
- College of Earth Sciences, Jilin University, Changchun, 130061, China
| | - Lei Chang
- College of Earth Sciences, Jilin University, Changchun, 130061, China
| | - Guanghui Li
- College of Earth Sciences, Jilin University, Changchun, 130061, China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Changchun, 130061, China.
- Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources, Changchun, 130061, China.
| |
Collapse
|
15
|
Xie H, Chen Z, Feng X, Wang M, Luo Y, Wang Y, Xu P. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155801. [PMID: 35561922 DOI: 10.1016/j.scitotenv.2022.155801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Root exudate metabolites are a key medium for the interaction between plants and soil microbiota. L-theanine is a unique non-protein amino acid critical for the flavor and potential health benefits of tea products; however, its biological function in tea plants is not well understood. As L-theanine is mainly synthesized in the roots of tea plants, we hypothesized that L-theanine could affect the function of the rhizosphere microbiota by modulating microbial assembly. In the present study, L-theanine was detected in the exudates of tea plant roots using liquid chromatography-mass spectrometry. Additionally, 16S rRNA gene sequencing revealed that L-theanine significantly altered the structure of the rhizosphere microbiota and selectively shaped rhizosphere microbial assembly. Moreover, metagenomic data showed that L-theanine affected the abundance of genes encoding element cycling in soil. Interestingly, the denitrification and complete nitrification pathways were significantly inhibited by L-theanine by decreasing the narH, napA, and napB genes abundance. These findings provide new insights into the biological function of L-theanine, as well as the implications of interactions between tea plant root exudates and the rhizosphere microbiome.
Collapse
Affiliation(s)
- Hengtong Xie
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Zimeng Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Yu Luo
- Institute of Soil & Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
| |
Collapse
|
16
|
Optimization of nitrogen, water and salinity for maximizing soil organic carbon in coastal wetlands. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
17
|
Shi M, Liu C, Wang Y, Zhao Y, Wei Z, Zhao M, Song C, Liu Y. Nitrate shifted microenvironment: Driven aromatic-ring cleavage microbes and aromatic compounds precursor biodegradation during sludge composting. BIORESOURCE TECHNOLOGY 2021; 342:125907. [PMID: 34536840 DOI: 10.1016/j.biortech.2021.125907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to clarify the aromatic cleavage pathways and microbes involved in the adverse effect of nitrate on aromatic compounds humic substances during sludge composting. Results showed that the functional microbes involved in aromatic compounds humic substances precursors (catechol, tyrosine, tryptophan and phenylalanine) cleavage pathways significantly enriched after nitrate addition. Linear regression analysis showed that aromatic-ring cleavage functional microbes exhibited significant negative correlation with aromatic humic substances (p < 0.05). Furthermore, network analysis indicated that most of microbial communities prefer cooperative with aromatic-ring cleavage functional microbes. Structural equation model further revealed that composting microenvironment drove aromatic-ring cleavage functional microbes activities, resulting in the biodegradation of complex aromatic compounds. This study parsed the effect of a negative factor on aromatic compounds humic substances from an opposing perspective. Properly controlling nitrate concentration and aromatic-ring cleavage functional microbes involved in precursors cleavage was suggested to the practice of composting.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Chengguo Liu
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, PR China
| | - Yumeng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Maoyuan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Caihong Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Liaocheng University, Liaocheng 252000, PR China
| | - Yan Liu
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, PR China
| |
Collapse
|
18
|
Zhan Y, Zhang Z, Ma T, Zhang X, Wang R, Liu Y, Sun B, Xu T, Ding G, Wei Y, Li J. Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. BIORESOURCE TECHNOLOGY 2021; 337:125433. [PMID: 34171708 DOI: 10.1016/j.biortech.2021.125433] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the changes of phosphorus (P) fractions, bacterial community and their response to available P or carbon (C):P during composting with different rock phosphate (RP) addition levels. Results showed that adding RP at 10% or 15% promoted the rise of temperature, maturity and Olsen P accumulation in composting, which had a higher amount of RP solubilization than other groups. Available P changed bacterial composition and decreased diversity in composts. RP solubilization efficiency was negatively correlated to C:P ratio and the highest (22.7%) when 10% RP was added, in which bacterial community changed from "function redundancy" to "intensive P-solubilization". Low C:P ratio (〈300) increased the RP solubilization ratio especially within 135-160. Therefore, this study proposed that adding P-rich substrates to decrease C:P ratio could regulate P-solubilizers' activity for increasing RP solubilization efficiency during composting.
Collapse
Affiliation(s)
- Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zeyu Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Tiantian Ma
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Xinjun Zhang
- Res. Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture and Animal Husbandry University), Ministry of Education, Nyingchi 860000, China
| | - Ruihong Wang
- Res. Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture and Animal Husbandry University), Ministry of Education, Nyingchi 860000, China
| | - Yongdi Liu
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Baoru Sun
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| |
Collapse
|
19
|
Wu D, Xia T, Zhang Y, Wei Z, Qu F, Zheng G, Song C, Zhao Y, Kang K, Yang H. Identifying driving factors of humic acid formation during rice straw composting based on Fenton pretreatment with bacterial inoculation. BIORESOURCE TECHNOLOGY 2021; 337:125403. [PMID: 34147772 DOI: 10.1016/j.biortech.2021.125403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
The aims of this study were to identify the driving factors of humic acid (HA) during rice straw composting based on Fenton pretreatment with bacterial inoculation. Rice straw was pretreated by Fenton reactions and then inoculated during composting, which was set up CK (control), FeW (Fenton pretreatment) and FeWI (Fenton pretreatment + functional bacterial agents). Results indicated that Fenton pretreatment and inoculation of functional bacteria increased the concentration of HA components, which was due to that bacterial composition was changed and bacterial diversity was decreased. Moreover, Fenton pretreatment and inoculation of functional bacteria increased the bacterial amounts of shikimic acid metabolism genes and the correlation between HA components and shikimic acid metabolism genes. Therefore, the functional bacteria were core driving factors, and NH4--N, pH, cellulose and bacterial diversity as key environmental factors to promote the formation of HA components.
Collapse
Affiliation(s)
- Di Wu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yunxian Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Guangren Zheng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Hongyan Yang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
20
|
Luo J, Zhang Z, Hou Y, Diao F, Hao B, Bao Z, Wang L, Guo W. Exploring Microbial Resource of Different Rhizocompartments of Dominant Plants Along the Salinity Gradient Around the Hypersaline Lake Ejinur. Front Microbiol 2021; 12:698479. [PMID: 34322109 PMCID: PMC8312270 DOI: 10.3389/fmicb.2021.698479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Lake littoral zones can also be regarded as another extremely hypersaline environment due to hypersaline properties of salt lakes. In this study, high-throughput sequencing technique was used to analyze bacteria and fungi from different rhizocompartments (rhizosphere and endosphere) of four dominant plants along the salinity gradient in the littoral zones of Ejinur Salt Lake. The study found that microbial α-diversity did not increase with the decrease of salinity, indicating that salinity was not the main factor on the effect of microbial diversity. Distance-based redundancy analysis and regression analysis were used to further reveal the relationship between microorganisms from different rhizocompartments and plant species and soil physicochemical properties. Bacteria and fungi in the rhizosphere and endosphere were the most significantly affected by SO4 2-, SOC, HCO3 -, and SOC, respectively. Correlation network analysis revealed the potential role of microorganisms in different root compartments on the regulation of salt stress through synergistic and antagonistic interactions. LEfSe analysis further indicated that dominant microbial taxa in different rhizocompartments had a positive response to plants, such as Marinobacter, Palleronia, Arthrobacter, and Penicillium. This study was of great significance and practical value for understanding salt environments around salt lakes to excavate the potential microbial resources.
Collapse
Affiliation(s)
- Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
21
|
Zhang Z, Wei Z, Guo W, Wei Y, Luo J, Song C, Lu Q, Zhao Y. Two types nitrogen source supply adjusted interaction patterns of bacterial community to affect humifaction process of rice straw composting. BIORESOURCE TECHNOLOGY 2021; 332:125129. [PMID: 33857866 DOI: 10.1016/j.biortech.2021.125129] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This study investigated effects of high-nitrogen source (urea) (R_UR) and protein-like nitrogen source (chicken manure) (R_CM) on humification process during lignocellulose biomass composting. It demonstrated that decreasing ratio of crude fiber (CF), polysaccharide (PS) and amino acids (AAs) in R_CM (29.75%, 53.93% and 73.73%, respectively) was higher than that in R_UR (14.73%, 28.74% and 51.92%, respectively). Humic substance (HS) concentration increased by 7.51% and 73.05% during R_UR and R_CM composting, respectively. The lower total links, more independent modularization and higher proportion of positive correlations between functional bacteria and organic components was observed with R_CM network than R_UR, indicating that protein-like nitrogen source supply may alleviate competition within bacterial community. Moreover, chicken manure supply favorably selects greater special functional bacterial taxa (Pusillimonas, Pedomicrobium, Romboustia and other 24 genus) related to AAs and stimulates the collaborative division of bacterial community. This is significance for strengthening effective transformation of organic components.
Collapse
Affiliation(s)
- Zhechao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Guo
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuquan Wei
- Organic Recycling Institute (Suzhou), China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Junqing Luo
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|