1
|
Zhang Y, Xu Z, Dou M, Xu Y, Fu X, Zhu F, Ye H, Zhang J, Feng G. Design, Synthesis, and Bioactivity of Novel Coumarin-3-carboxylic Acid Derivatives Containing a Thioether Quinoline Moiety. ACS OMEGA 2024; 9:50695-50704. [PMID: 39741815 PMCID: PMC11683614 DOI: 10.1021/acsomega.4c08627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
A series of coumarin-3-carboxylic acid derivatives containing a thioether quinoline moiety were designed and synthesized. The structures of these compounds were determined using 1H NMR, 13C NMR, and HRMS. The antibacterial activity of the compounds was evaluated against Xanthomonas oryzae pv oryzae (Xoo), Ralstonia solanacearum (Rs), and Acidovorax citrulli (Aac). The results showed that most of the compounds exhibited significant antibacterial activity against these pathogens. Particularly, compound A9 demonstrated potent activity against Xoo and Aac, with EC50 values of 11.05 and 8.05 μg/mL respectively. In addition, A9 indicated strong protective and curative effects against Aac in vivo, with efficacy rates of 61.50 and 54.86%, respectively, surpassing those of the positive control thiodiazole copper. The scanning electron microscopy observations revealed that treatment of Aac cells with A9 at a concentration of 2EC50 resulted in a curved and sunken cell morphology, along with destroyed cell membrane integrity. Additionally, the motility and exopolysaccharide production of Aac were inhibited, and biofilm formation was prevented. Consequently, these newly developed derivatives of coumarin-3-carboxylic acid, incorporating the thioether quinoline moiety, hold promise as potential templates for the development of innovative antibacterial agents.
Collapse
Affiliation(s)
- Yuanquan Zhang
- National
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Zhiyuan Xu
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Minxiang Dou
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Yan Xu
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Xin Fu
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Fadi Zhu
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Huochun Ye
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Jing Zhang
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| | - Gang Feng
- Environment
and Plant Protection Institute, Chinese Academy of Tropical Agricultural
Science, Haikou 571101, China
| |
Collapse
|
2
|
Yu HL, Liang XL, Ge ZY, Zhang Z, Ruan Y, Tang H, Zhang QY. Metabolic Flux Analysis of Xanthomonas oryzae Treated with Bismerthiazol Revealed Glutathione Oxidoreductase in Glutathione Metabolism Serves as an Effective Target. Int J Mol Sci 2024; 25:12236. [PMID: 39596301 PMCID: PMC11594844 DOI: 10.3390/ijms252212236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pathovar oryzae (Xoo) is a serious global rice disease. Due to increasing bactericide resistance, developing new inhibitors is urgent. Drug repositioning offers a potential strategy to address this issue. In this study, we integrated transcriptional data into a genome-scale metabolic model (GSMM) to screen novel anti-Xoo targets. Two RNA-seq datasets (before and after bismerthiazol treatment) were used to constrain the GSMM and simulate metabolic processes. Metabolic fluxes were calculated using parsimonious flux balance analysis (pFBA) identifying reactions with significant changes for target screening. Glutathione oxidoreductase (GSR) was selected as a potential anti-Xoo target and validated through antibacterial experiments. Virtual screening based on the target identified DB12411 as a lead compound with the potential for new antibacterial agents. This approach demonstrates that integrating metabolic networks and transcriptional data can aid in both understanding antibacterial mechanisms and discovering novel drug targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Zhang TH, Yang YK, Feng YM, Luo ZJ, Wang MW, Qi PY, Zeng D, Liu HW, Liao YM, Meng J, Zhou X, Liu LW, Yang S. Engineering the novel azobenzene-based molecular photoswitches for suppressing bacterial infection through dynamic regulation of biofilm formation. PEST MANAGEMENT SCIENCE 2024. [PMID: 39373165 DOI: 10.1002/ps.8453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Bacterial biofilm is a strong fortress for bacteria to resist harsh external environments, which can enhance their tolerance and exacerbate the drug/pesticide resistance risk. Currently, photopharmacology provides an advanced approach via precise spatiotemporal control for regulating biological activities by light-controlling the molecular configurations, thereby having enormous potential in the development of drug/pesticides. RESULTS To further expand the photopharmacology application for discovering new antibiofilm agents, we prepared a series of light-controlled azo-active molecules and explored their photo isomerization, fatigue resistance, and anti-biofilm performance. Furthermore, their mechanisms of inhibiting biofilm formation were systematically investigated. Overall, designed azo-derivative A11 featured excellent anti-Xoo activity with an half-maximal effective concentration (EC50) value of 5.45 μg mL-1, and the EC50 value could be further elevated to 2.19 μg mL-1 after ultraviolet irradiation (converted as cis-configuration). The photo-switching behavior showed that A11 had outstanding anti-fatigue properties. An in-depth analysis of the action mechanism showed that A11 could effectively inhibit biofilm formation and the expression of relevant virulence factors. This performance could be dynamically regulated via loading with private light-switch property. CONCLUSION In this work, designed light-controlled azo molecules provide a new model for resisting bacterial infection via dynamic regulation of bacterial biofilm formation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tai-Hong Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yi-Ke Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yu-Mei Feng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Jun Luo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ming-Wei Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pu-Ying Qi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Dan Zeng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan-Mei Liao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Qin LL, Yang L, Zhang ZJ, Zhang LJ, Zhang W, Jin YR, Luo XF, Li FP, Zhang SY, Bian Q, Mou GL, Dai TL, Ma L, Liu YQ. Design, Synthesis, and Biological Evaluation of Novel Quinoline Derivatives against Phytopathogenic Bacteria Inspired from Natural Quinine Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39363616 DOI: 10.1021/acs.jafc.4c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A series of 2-(trifluoromethyl)-4-hydroxyquinoline derivatives were designed and synthesized with introduction of the antibacterial fragment amino alcohols, and their antibacterial activity against plant phytopathogenic bacteria was evaluated for the development of quinoline bactericides. It is worth noting that compound Qa5 exhibited excellent antibacterial activity in vitro with a minimum inhibitory concentration (MIC) value of 3.12 μg/mL against Xanthomonas oryzae (Xoo). Furthermore, in vivo assays demonstrated that the protective efficacy of Qa5 against rice bacterial blight at 200 μg/mL (33.0%) was superior to that of the commercial agent bismerthiazol (18.3%), while the curative efficacy (35.0%) was comparable to that of bismerthiazol (35.7%). The antibacterial mechanisms of Qa5 indicated that it affected the activity of bacteria by inducing intracellular oxidative damage in Xoo and disrupting the integrity of the bacterial cell membrane. The above results demonstrated that the novel quinoline derivative Qa5 possessed excellent in vitro and in vivo antibacterial activity, indicating its potential as a novel green agricultural antibacterial agent.
Collapse
Affiliation(s)
- Lu-Lu Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Liu Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li-Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wen Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fu-Ping Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Liang Mou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tian-Li Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
5
|
Yang L, Ding M, Shi J, Luo N, Wang Y, Lin D, Bao X. Design, synthesis, X-ray crystal structure, and antimicrobial evaluation of novel quinazolinone derivatives containing the 1,2,4-triazole Schiff base moiety and an isopropanol linker. Mol Divers 2024; 28:3215-3224. [PMID: 37935911 DOI: 10.1007/s11030-023-10749-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023]
Abstract
A series of novel quinazolinone derivatives (E1-E31) containing the 1,2,4-triazole Schiff base moiety and an isopropanol linker were designed, synthesized and assessed as antimicrobial agents in agriculture. All the target compounds were fully characterized by 1 H NMR, 13 C NMR, and high-resolution mass spectrometry (HRMS). Among them, the structure of compound E12 was further confirmed via single crystal X-ray diffraction method. The experimental results indicated that many compounds displayed good in vitro antibacterial efficacies against the tested phytopathogenic bacteria including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Ralstonia solanacearum (Rs). For example, compounds E3, E4, E10, E13, and E22 had EC50 (half-maximal effective concentration) values of 55.4, 39.5, 49.5, 53.5, and 57.4 µg/mL against Xoo, respectively, superior to the commercialized bactericide Bismerthiazol (94.5 µg/mL). In addition, the antibacterial efficacies of compounds E10 and E13 against Xac were about two times more effective than control Bismerthiazol, in terms of their EC50 values. Last, the antifungal assays showed that compounds E22 and E30 had the inhibition rates of 52.7% and 54.6% at 50 µg/mL against Gibberella zeae, respectively, higher than the commercialized fungicide Hymexazol (48.4%).
Collapse
Affiliation(s)
- Lan Yang
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Muhan Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jun Shi
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Medical University, Guiyang, 550014, China
| | - Na Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yuli Wang
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Dongyun Lin
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Xiaoping Bao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Kostova I. Special Issue: "Rational Design and Synthesis of Bioactive Molecules". Int J Mol Sci 2024; 25:9927. [PMID: 39337415 PMCID: PMC11432531 DOI: 10.3390/ijms25189927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The rational design of novel bioactive molecules is a critical but challenging task in drug discovery [...].
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., 1000 Sofia, Bulgaria
| |
Collapse
|
7
|
Wang N, Jian W, Liang H, Zhang T, Qi P, Feng Y, Zhou X, Liu L, Yang S. Engineering a biomimicking strategy for discovering nonivamide-based quorum-sensing inhibitors for controlling bacterial infection. Eur J Med Chem 2024; 275:116609. [PMID: 38896993 DOI: 10.1016/j.ejmech.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The overuse of antibiotics over an extended period has led to increasing antibiotic resistance in pathogenic bacteria, culminating in what is now considered a global health crisis. To tackle the escalating disaster caused by multidrug-resistant pathogens, the development of new bactericides with new action mechanism is highly necessary. In this study, using a biomimicking strategy, a series of new nonivamide derivatives that feature an isopropanolamine moiety [the structurally similar to the diffusible signal factor (DSF) of Xanthomonas spp.] were prepared for serving as potential quorum-sensing inhibitors (QSIs). After screening and investigation of their rationalizing structure-activity relationships (SARs), compound A26 was discovered as the most optimal active molecule, with EC50 values of 9.91 and 7.04 μg mL-1 against Xanthomonas oryzae pv oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac). A docking study showed that compound A26 exhibited robust interactions with Glu A: 161 of RpfF, which was strongly evidenced by fluorescence titration assay (KA value for Xoo RpfF-A26 = 104.8709 M-1). Furthermore, various bioassays showed that compound A26 could inhibit various bacterial virulence factors, including biofilm formation, extracellular polysaccharides (EPS), extracellular enzyme activity, DSF production, and swimming motility. In addition, in vivo anti-Xoo results showed that compound A26 had excellent control efficiency (curative activity: 43.55 %; protective activity: 42.56 %), surpassing that of bismerthiazol and thiodiazole copper by approximately 8.0%-37.3 %. Overall, our findings highlight a new paradigm wherein nonivamide derivatives exhibit potential in combating pathogen resistance issues by inhibiting bacterial quorum sensing systems though attributing to their new molecular skeleton, novel mechanisms of action, and non-toxic features.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wujun Jian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Taihong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Puying Qi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yumei Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Qi PY, Zhang TH, Yang YK, Liang H, Feng YM, Wang N, Ding ZH, Xiang HM, Zhou X, Liu LW, Jin LH, Li XY, Yang S. Beyond the β-amino alcohols framework: identification of novel β-hydroxy pyridinium salt-decorated pterostilbene derivatives as bacterial virulence factor inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:4098-4109. [PMID: 38578108 DOI: 10.1002/ps.8116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS A series of novel β-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 μg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yi-Ke Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong Liang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yu-Mei Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Na Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zheng-Hao Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Mei Xiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lin-Hong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang-Yang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Raman APS, Aslam M, Awasthi A, Ansari A, Jain P, Lal K, Bahadur I, Singh P, Kumari K. An updated review on 1,2,3-/1,2,4-triazoles: synthesis and diverse range of biological potential. Mol Divers 2024:10.1007/s11030-024-10858-0. [PMID: 39066993 DOI: 10.1007/s11030-024-10858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 07/30/2024]
Abstract
The synthesis of triazoles has attracted a lot of interest in the field of organic chemistry because of its versatile chemical characteristics and possible biological uses. This review offers an extensive overview of the different pathways used in the production of triazoles. A detailed analysis of recent research indicates that triazole compounds have a potential range of pharmacological activities, including the ability to inhibit enzymes, and have antibacterial, anticancer, and antifungal activities. The integration of computational and experimental methods provides a thorough understanding of the structure-activity connection, promoting sensible drug design and optimization. By including triazoles as essential components in drug discovery, researchers can further explore and innovate in the synthesis, biological assessment, and computational studies of triazoles as drugs, exploring the potential therapeutic significance of triazoles.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Amardeep Awasthi
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Anas Ansari
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar of Science and Technology, Hisar, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, 2745, South Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
10
|
Almeida lima Â, Moreira LC, Gazolla PR, Oliveira MB, Teixeira RR, Queiroz VT, Rocha MR, Moraes WB, dos Santos NA, Romão W, Lacerda V, Bezerra Morais PA, Oliveira OVD, Júnior WCJ, Barbosa LCA, Nascimento C, Junker J, Costa AV. Design and Synthesis of Eugenol Derivatives Bearing a 1,2,3-Triazole Moiety for Papaya Protection against Colletotrichum gloeosporioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12459-12468. [PMID: 38771934 PMCID: PMC11157534 DOI: 10.1021/acs.jafc.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.
Collapse
Affiliation(s)
- Ângela
Maria Almeida lima
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Luíza Carvalheira Moreira
- Departamento
de Química, Universidade Federal
de Viçosa, Av. P.H. Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil
| | - Poliana Rodrigues Gazolla
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Mariana Belizario Oliveira
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Róbson Ricardo Teixeira
- Departamento
de Química, Universidade Federal
de Viçosa, Av. P.H. Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil
| | - Vagner Tebaldi Queiroz
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Matheus Ricardo Rocha
- Departamento
de Agronomia, Universidade Federal do Espírito
Santo, Alto Universitário,
s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Willian Bucker Moraes
- Departamento
de Agronomia, Universidade Federal do Espírito
Santo, Alto Universitário,
s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Nayara Araújo dos Santos
- Laboratório
de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo, Brazil
| | - Wanderson Romão
- Laboratório
de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo, Brazil
| | - Valdemar Lacerda
- Laboratório
de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo, Brazil
| | - Pedro Alves Bezerra Morais
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | | | | | - Luiz C. A. Barbosa
- Departamento
de Química, Universidade Federal
de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo
Horizonte 31270-901, Minas Gerais, Brazil
| | - Cláudia
Jorge Nascimento
- Departamento
de Ciências Naturais, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pauster, Rio de Janeiro 22290-240, Rio de Janeiro, Brazil
| | - Jochen Junker
- Centro
de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Adilson Vidal Costa
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| |
Collapse
|
11
|
Teng K, Liu Q, Zhang M, Naz H, Zheng P, Wu X, Chi YR. Design and Enantioselective Synthesis of Chiral Pyranone Fused Indole Derivatives with Antibacterial Activities against Xanthomonas oryzae pv oryzae for Protection of Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4622-4629. [PMID: 38386000 DOI: 10.1021/acs.jafc.3c07491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A new class of chiral pyranone fused indole derivatives were prepared by means of N-heterocyclic carbene (NHC) organocatalysis and demonstrated notable antibacterial activity against Xanthomonas oryzae pv oryzae (Xoo). Bioassays showed that compounds (3S,4R)-5b, (3S,4R)-5d, and (3S,4R)-5l exhibited promising in vitro efficacy against Xoo, with EC50 values of 9.05, 9.71, and 5.84 mg/L, respectively, which were superior to that of the positive controls with commercial antibacterial agents, bismerthiazol (BT, EC50 = 27.8 mg/L) and thiodiazole copper (TC, EC50 = 70.1 mg/L). Furthermore, single enantiomer (3S,4R)-5l was identified as an optimal structure displaying 55.3% and 52.0% curative and protective activities against Xoo in vivo tests at a concentration of 200 mg/L, which slightly surpassed the positive control with TC (curative and protective activities of 47.2% and 48.8%, respectively). Mechanistic studies through molecular docking analysis revealed preliminary insights into the distinct anti-Xoo activity of the two single enantiomers (3S,4R)-5l and (3R,4S)-5l, wherein the (3S,4R)-configured stereoisomer could form a more stable interaction with XooDHPS (dihydropteroate synthase). These findings underscore the significant anti-Xoo potential of these chiral pyranone fused indole derivatives, and shall inspire further exploration as promising lead structures for a novel class of bactericides to combat bacterial infections and other plant diseases.
Collapse
Affiliation(s)
- Kunpeng Teng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Qian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Hira Naz
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
12
|
Liu Q, Zuo M, Song Y, He S, Huang J, Chen Y. Bioinspired total synthesis and biological activity of Pegaharine A. PEST MANAGEMENT SCIENCE 2024; 80:1372-1381. [PMID: 37926482 DOI: 10.1002/ps.7868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Phytopathogens cause various diseases by parasitizing crops, reducing crop yield and resulting in substantial economic losses in agricultural production. A novel type isolated from the perennial herbaceous Peganum harmala L. seeds, β-carboline alkaloids pegaharine A (PA), has become a hot topic in developing plant-originated green pesticides owing to their significant physiological activities. RESULTS A scalable bioinspired total synthesis of PA is accomplished in the present work. The systematical biological assay study showed that PA exhibited moderate inhibitory activity against nine tested plant pathogenic fungi and showed significant inhibitory activity in vitro against the three tested plant pathogenic bacteria. Most noteworthy is the inhibitory rates of PA on Xanthomonas oryzae pv. oryzae (Xoo), X. oryzae pv. oryzicola (Xoc) and X. axonopodis pv. citri (Xac) of 93.6%, 92.1% and 86.1%, respectively, which are better than the control drug, bismerthiazol (63.4%, 61.2% and 53.7% at 100 μg mL-1 concentration). Furthermore, the EC50 value of PA against Xoo, Xoc and Xac was 52.2, 60.0 and 65.1 μg mL-1 , respectively, superior to 72.9, 64.2 and 70.1 μg mL-1 of the control drug. Moreover, the anti-Xoo mechanistic studies revealed that PA exerted its antibacterial effects by increasing the permeability of the bacterial membrane, reducing the extracellular polysaccharide content and inducing morphological changes in bacterial cells. CONCLUSION A novel β-carboline alkaloid, PA, was prepared by biomimetic total synthesis. Its significant antibacterial activity was closely related to the permeation of bacterial cell membranes, which was confirmed by anti-Xoo mechanistic studies. More importantly, the structure could be regarded as a model for developing novel bactericides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qichang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Mei Zuo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yi Song
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Shuzhong He
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Jian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
13
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Ke S, Gao Z, Zhang Z, Liu F, Wen S, Wang Y, Huang D. Discovery of Novel Carboxamide Derivatives Containing Biphenyl Pharmacophore as Potential Fungicidal Agents Used for Resistance Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14505-14516. [PMID: 37754847 DOI: 10.1021/acs.jafc.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Natural products are one of the main sources of drug and agrochemicals discovery. Biphenyls skeleton are ubiquitous structures in many classes of natural products, which indicate extensive biological activities. So, in order to investigate the potential applications for natural biphenyl derivatives, a series of novel carboxamide derivatives with diverse substituent patterns were designed and synthesized based on active pharmacophore from natural biphenyl lignans, and their in vitro antifungal activities against several typical plant pathogens belonging to oomycetes, ascomycete, deuteromycetes, and basidiomycetes were fully investigated. The highly potential compounds were further tested in vivo assay against Botrytis cinerea Pers. of cucumber to demonstrate a practical application for controlling common plant diseases, which indicated four compounds could effectively control the resistant strains of carbendazim, rutamycin, and pyrazolidide. The potential modes of action for compound B12 against B. cinerea were also explored using molecular docking, microscopic technology, and label-free quantitative proteomics analysis. The results show that compound B12 may be a potential novel fungicidal agent used for gray mold resistance control, which can influence the protein synthesis of B. cinerea. These findings can provide a certain theoretical basis for the development of novel biphenyl derivatives as potential green antifungal agents.
Collapse
Affiliation(s)
- Shaoyong Ke
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zilin Gao
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhigang Zhang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaohua Wen
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yueying Wang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Daye Huang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
15
|
Li Z, Yang B, Ding Y, Meng J, Hu J, Zhou X, Liu L, Wu Z, Yang S. Insights into a class of natural eugenol and its optimized derivatives as potential tobacco mosaic virus helicase inhibitors by structure-based virtual screening. Int J Biol Macromol 2023; 248:125892. [PMID: 37473893 DOI: 10.1016/j.ijbiomac.2023.125892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Plant diseases caused by malignant and refractory phytopathogenic viruses have considerably restricted crop yields and quality. To date, drug design targeting functional proteins or enzymes of viruses is an efficient and viable strategy to guide the development of new pesticides. Herein, a series of novel eugenol derivatives targeting the tobacco mosaic virus (TMV) helicase have been designed using structure-based virtual screening (SBVS). Structure-activity relationship indicated that 2 t displayed the most powerful bonding capability (Kd = 0.2 μM) along with brilliant TMV helicase ATPase inhibitory potency (IC50 = 141.9 μM) and applausive anti-TMV capability (EC50 = 315.7 μg/mL), ostentatiously outperforming that of commercial Acyclovir (Kd = 23.0 μM, IC50 = 183.7 μM) and Ribavirin (EC50 = 624.3 μg/mL). Molecular dynamics simulations and docking suggested ligand 2 t was stable and bound in the active pocket of the TMV helicase by multiple interactions. Given these superior properties, eugenol-based derivatives could be considered as the novel potential plant viral helicase inhibitors. Furthermore, this effective and feasible SBVS strategy established a valuable screening platform for helicase-targeted drug development.
Collapse
Affiliation(s)
- Zhenxing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Binxin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinhong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
16
|
Liu HW, Su SS, Ma SY, Li T, Fang W, Ding Y, Liu ST, Zhang JR, Xiang HM, Zhou X, Yang S. Discovery and Structural Optimization of 1,2,3,4-Tetrahydro-β-carbolines as Novel Reactive Oxygen Species Inducers for Controlling Intractable Plant Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37450840 DOI: 10.1021/acs.jafc.3c02615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nowadays, reactive oxygen species (ROS) have been acknowledged as promising bactericidal targets against pesticide-resistant bacteria. Herein, to further excavate more excellent ROS inducers, simple 1,2,3,4-tetrahydro-β-carboline derivatives containing a 3-aminopropanamide moiety were prepared and assessed for their antibacterial potency. Notably, three promising compounds displayed significant antibacterial potency. Compound I29 exhibits excellent in vitro bioactivity, with an EC50 value of 5.73 μg/mL, and admirable in vivo activities (protective activity of 55.74% and curative activity of 65.50%) toward Xanthomonas oryzae pv. oryzae. Compound I16 has good activity in vitro, with an EC50 of 3.43 μg/mL, and outstanding bioactivities in vivo (protective activity of 92.50% and curative activity of 59.68%) against Xanthomonas axonopodis pv. citri. Compound I6 shows excellent in vitro bioactivity (EC50 = 2.86 μg/mL) and significant protective activity (94.02%) for preventing Pseudomonas syringae pv. actinidiae. Antibacterial mechanism investigations indicate that these compounds disrupt the balance of the redox system to kill bacteria. These simple 1,2,3,4-tetrahydro-β-carboline derivatives are promising leads to the discovery of bactericidal agents.
Collapse
Affiliation(s)
- Hong-Wu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shan-Shan Su
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Si-Yue Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Ting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wang Fang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shi-Tao Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Jun-Rong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Hong-Mei Xiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
17
|
Yang Y, Chen K, Wang G, Liu H, Shao L, Zhou X, Liu L, Yang S. Discovery of Novel Pentacyclic Triterpene Acid Amide Derivatives as Excellent Antimicrobial Agents Dependent on Generation of Reactive Oxygen Species. Int J Mol Sci 2023; 24:10566. [PMID: 37445744 DOI: 10.3390/ijms241310566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Developing new agricultural bactericides is a feasible strategy for stopping the increase in the resistance of plant pathogenic bacteria. Some pentacyclic triterpene acid derivatives were elaborately designed and synthesized. In particular, compound A22 exhibited the best antimicrobial activity against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac) with EC50 values of 3.34 and 3.30 mg L-1, respectively. The antimicrobial mechanism showed that the compound A22 induced excessive production and accumulation of reactive oxygen species (ROS) in Xoo cells, leading to a decrease in superoxide dismutase and catalase enzyme activities and an increase in malondialdehyde content. A22 also produced increases in Xoo cell membrane permeability and eventual cell death. In addition, in vivo experiments showed that A22 at 200 mg L-1 exhibited protective activity against rice bacterial blight (50.44%) and citrus canker disease (84.37%). Therefore, this study provides a paradigm for the agricultural application of pentacyclic triterpene acid.
Collapse
Affiliation(s)
- Yihong Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kunlun Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Guangdi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongwu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lihui Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Almeida Lima AM, Teixeira RR, Moraes WB, Rocha MR, Moraes AFC, Gomes SC, Gazolla PR, Silva SF, Queiroz VT, Fonseca VR, Romão W, Bezerra Morais PA, Lacerda V, Magalhães de Abreu L, Oliveira FM, Vital de Oliveira O, Costa AV. Synthesis and Fungicide Activity on Asperisporium caricae of Glycerol Derivatives Bearing 1,2,3-Triazole Fragments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6818-6829. [PMID: 37104821 DOI: 10.1021/acs.jafc.2c08941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In agriculture, the control of fungal infections is essential to improve crop quality and productivity. This study describes the preparation and fungicidal activity evaluation of 12 glycerol derivatives bearing 1,2,3-triazole fragments. The derivatives were prepared from glycerol in four steps. The key step corresponded to the Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between the azide 4-(azidomethyl)-2,2-dimethyl-1,3-dioxolane (3) and different terminal alkynes (57-91% yield). The compounds were characterized by infrared spectroscopy, nuclear magnetic resonance (1H and 13C), and high-resolution mass spectrometry. The in vitro assessment of the compounds on Asperisporium caricae, that is, the etiological agent of papaya black spot, at 750 mg L-1 showed that the glycerol derivatives significantly inhibited conidial germination with different degrees of efficacy. The most active compound 4-(3-chlorophenyl)-1-((2,2-dimethyl-1,3-dioxolan-4-yl) methyl)-1H-1,2,3-triazole (4c) presented a 91.92% inhibition. In vivo assays revealed that 4c reduced the final severity (70.7%) and area under the disease severity progress curve of black spots on papaya fruits 10 days after inoculation. The glycerol-bearing 1,2,3-triazole derivatives also present agrochemical-likeness properties. Our in silico study using molecular docking calculations show that all triazole derivatives bind favorably to the sterol 14α-demethylase (CYP51) active site at the same region of the substrate lanosterol (LAN) and fungicide propiconazole (PRO). Thus, the mechanism of action of the compounds 4a-4l may be the same as the fungicide PRO, blocking the entrance/approximation of the LAN into the CYP51 active site by steric effects. The reported results point to the fact that the glycerol derivatives may represent a scaffold to be explored for the development of new chemical agents to control papaya black spot.
Collapse
Affiliation(s)
- Angela Maria Almeida Lima
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal Do Espírito Santo, Alto Universitário, Alegre 29500-000, Espírito Santo State, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa 36570-900, Minas Gerais State, Brazil
| | - Willian Bucker Moraes
- Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo State, Brazil
| | - Matheus Ricardo Rocha
- Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo State, Brazil
| | - Arlan Figueiredo Carvalho Moraes
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal Do Espírito Santo, Alto Universitário, Alegre 29500-000, Espírito Santo State, Brazil
| | - Sâmela Cansi Gomes
- Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo State, Brazil
| | - Poliana Rodrigues Gazolla
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa 36570-900, Minas Gerais State, Brazil
| | - Silma Francielle Silva
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa 36570-900, Minas Gerais State, Brazil
| | - Vagner Tebaldi Queiroz
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal Do Espírito Santo, Alto Universitário, Alegre 29500-000, Espírito Santo State, Brazil
| | - Victor Rocha Fonseca
- Laboratório de Petroleômica e Forense Epartamento de Química, Universidade Federal Do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo State, Brazil
| | - Wanderson Romão
- Laboratório de Petroleômica e Forense Epartamento de Química, Universidade Federal Do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo State, Brazil
| | - Pedro Alves Bezerra Morais
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal Do Espírito Santo, Alto Universitário, Alegre 29500-000, Espírito Santo State, Brazil
| | - Valdemar Lacerda
- Laboratório de Petroleômica e Forense Epartamento de Química, Universidade Federal Do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo State, Brazil
| | - Lucas Magalhães de Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-977, Minas Gerais, Brazil
| | - Fabrício Marques Oliveira
- Instituto Federal de Minas Gerais (IFMG), Campus Ouro Branco, Ouro Branco 36420-000, Minas Gerais, Brazil
| | | | - Adilson Vidal Costa
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal Do Espírito Santo, Alto Universitário, Alegre 29500-000, Espírito Santo State, Brazil
| |
Collapse
|
19
|
Zhang G, Li C, Li Y, Chen D, Li Z, Ouyang G, Wang Z. Discovery and Mechanism of Azatryptanthrin Derivatives as Novel Anti-Phytopathogenic Bacterial Agents for Potent Bactericide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6288-6300. [PMID: 37040536 DOI: 10.1021/acs.jafc.3c01120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The natural alkaloids of tryptanthrin and their derivatives have a wide range of biological activities. In this research, four series of azatryptanthrin derivatives containing 4-aza/3-aza/2-aza/1-aza tryptanthrin were prepared by condensation cyclization reaction against plant pathogens to develop a new natural product-based bacterial pesticide. Compound 4Aza-8 displayed a remarkable growth inhibitory effect on pathogenic bacteria of Xanthomonas axonopodis pv. citri (Xac), Xanthomonas oryzae pv. Oryzae (Xoo), and Pseudomonas syringae pv. actinidiae (Psa) with the final corrected EC50 values of 0.312, 1.91, and 18.0 μg/mL, respectively, which were greatly superior than that of tryptanthrin (Tryp). Moreover, 4Aza-8 also showed effective therapeutic and protective activities in vivo on citrus canker. Further mechanism studies on Xac elucidated that compound 4Aza-8 was able to affect the growth curve of Xac and the formation of biofilm, cause severe shrinkage in bacterial morphology, increase reactive oxygen species levels, and induce apoptosis in bacterial cells. Quantitative analysis of differential protein profiles found that the major differences were mainly concentrated on the endometrial protein in the bacterial secretion system pathway, which blocked the membrane transport and affected the transfer of DNA to the host cell. In summary, these research results suggest that 4Aza-8 represents a promising anti-phytopathogenic-bacteria agent, which is worth being further investigated as a bactericide candidate.
Collapse
Affiliation(s)
- Guanglong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chengpeng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Danping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuirui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Guiping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhenchao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
20
|
Xiao WL, Wang N, Yang LL, Feng YM, Chu PL, Zhang JJ, Liu SS, Shao WB, Zhou X, Liu LW, Yang S. Exploiting Natural Maltol for Synthesis of Novel Hydroxypyridone Derivatives as Promising Anti-Virulence Agents in Bactericides Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6603-6616. [PMID: 37083434 DOI: 10.1021/acs.jafc.3c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Anti-infection strategies based on suppression of bacterial virulence factors represent a crucial direction for the development of new antibacterial agents to address the resistance triggered by traditional drugs'/pesticides' bactericidal activity. To identify and obtain more effective and diverse molecules targeting virulence, we prepared a series of 3-hydroxy-2-methyl-1-pyridin-4-(1H)-one derivatives and evaluated their antibacterial behaviors. Compound B6 exhibited the highest bioactivity, with half-maximal effective concentration (EC50) values ranging fro9m 10.03 to 30.16 μg mL-1 against three plant pathogenic bacteria. The antibacterial mechanism showed that it could considerably reduce various virulence factors (such as extracellular enzymes, biofilm, and T3SS effectors) and inhibit the expression of virulence factor-related genes. In addition, the control efficiency of compound B6 against rice bacterial leaf blight at 200 μg mL-1 was 46.15-49.15%, and their control efficiency was improved by approximately 12% after the addition of pesticide additives. Thus, a new class of bactericidal candidates targeting bacterial virulence factors was developed for controlling plant bacterial diseases.
Collapse
Affiliation(s)
- Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Na Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Li Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pan-Long Chu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao-Jiao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
21
|
Qi PY, Zhang TH, Wang N, Feng YM, Zeng D, Shao WB, Meng J, Liu LW, Jin LH, Zhang H, Zhou X, Yang S. Natural Products-Based Botanical Bactericides Discovery: Novel Abietic Acid Derivatives as Anti-Virulence Agents for Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5463-5475. [PMID: 37012216 DOI: 10.1021/acs.jafc.2c08392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The discovery of natural product-based pesticides is critical for agriculture. In this work, a series of novel tricyclic diterpenoid derivatives decorated with an amino alcohol moiety were elaborately prepared from natural abietic acid, and their antibacterial behavior was explored. Bioassay results indicated that compound C2 exhibited the most promising bioactivity (EC50 = 0.555 μg mL-1) against Xanthomonas oryzae pv. oryzae (Xoo), about 73 times higher than the effect of commercial thiodiazole copper (TC). Results of in vivo bioassays showed that compound C2 displayed significantly higher control of rice bacterial leaf blight (curative activity: 63.8%; protective activity: 58.4%) than TC (curative activity: 43.6%; protective activity: 40.8%), and their bioactivity could be improved maximally 16% by supplementing the auxiliaries. Antibacterial behavior suggested that compound C2 could suppress various virulence factors. Overall, these findings suggested that new botanical bactericide candidates could control intractable plant bacterial diseases by suppressing virulence factors.
Collapse
Affiliation(s)
- Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Na Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Hong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Xie J, Long ZQ, Chen AQ, Ding YG, Liu ST, Zhou X, Liu LW, Yang S. Novel Sulfonamide Derivatives Containing a Piperidine Moiety as New Bactericide Leads for Managing Plant Bacterial Diseases. Int J Mol Sci 2023; 24:ijms24065861. [PMID: 36982936 PMCID: PMC10054644 DOI: 10.3390/ijms24065861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Plant bacterial diseases are an intractable problem due to the fact that phytopathogens have acquired strong resistances for traditional pesticides, resulting in restricting the quality and yield of agricultural products around the world. To develop new agrochemical alternatives, we prepared a novel series of sulfanilamide derivatives containing piperidine fragments and assessed their antibacterial potency. The bioassay results revealed that most molecules displayed excellent in vitro antibacterial potency towards Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac). In particular, molecule C4 exhibited outstanding inhibitory activity toward Xoo with EC50 value of 2.02 µg mL-1, which was significantly better than those of the commercial agents bismerthiazol (EC50 = 42.38 µg mL-1) and thiodiazole copper (EC50 = 64.50 µg mL-1). A series of biochemical assays confirmed that compound C4 interacted with dihydropteroate synthase, and irreversibly damaged the cell membrane. In vivo assays showed that the molecule C4 presented acceptable curative and protection activities of 34.78% and 39.83%, respectively, at 200 µg mL-1, which were greater than those of thiodiazole and bismerthiazol. This study highlights the valuable insights for the excavation and development of new bactericides that can concurrently target dihydropteroate synthase and bacterial cell membranes.
Collapse
Affiliation(s)
- Jiao Xie
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhou-Qing Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ai-Qun Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ying-Guo Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shi-Tao Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
23
|
Liu SS, Zeng D, Zhang TH, Hu JH, Yang BX, Yang J, Zhou X, Wang PY, Liu LW, Wu ZB, Yang S. Novel spiro[chromanone-2,4'-piperidine]-4-one derivatives as potential inhibitors of fatty acid synthesis in pathogens: Design, synthesis, and biological evaluation. Eur J Med Chem 2023; 250:115215. [PMID: 36812655 DOI: 10.1016/j.ejmech.2023.115215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Bacterial survival depends on membrane lipid homeostasis that enables to regulate lipid composition to adapt and optimize their growth in diverse environments. Therefore, the development of inhibitors that interfere with the bacterial fatty acid synthesis process is considered to be a promising tactic. In this study, 58 novel spirochromanone derivatives were prepared and their structure-activity relationship (SAR) was investigated. The bioassay results showed that all most of the compounds showed excellent biological activities, exampled by compounds B14, C1, B15, and B13, which had outstanding inhibitory activities toward various pathogenic bacteria with EC50 values of 0.78 μg/mL ∼3.48 μg/mL. Preliminary antibacterial behavior was studied by a series of biochemical assays including, but not limited to, fluorescence imaging patterns, GC-MS analysis, TEM images, and fluorescence titration experiments. Notably, compound B14 decreased the lipid content of the cell membrane, and increased cell membrane permeability, thereby destroying the integrity of the bacterial cell membrane. Further qRT-PCR results indicated that compound B14 interfered with the mRNA expression levels of fatty acid synthesis process-related genes including ACC, ACP, and Fab family genes. Herein, we highlight the promising bactericidal skeleton based on the spiro[chromanone-2,4'-piperidine]-4-one as a potential inhibitor of fatty acid synthesis.
Collapse
Affiliation(s)
- Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Dan Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jin-Hong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Bin-Xin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jie Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Pei-Yi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
24
|
Shao L, Zhao S, Yang S, Zhou X, Li Y, Li C, Chen D, Li Z, Ouyang G, Wang Z. Design, Synthesis, Antibacterial Evaluation, Three-Dimensional Quantitative Structure-Activity Relationship, and Mechanism of Novel Quinazolinone Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3939-3949. [PMID: 36807581 DOI: 10.1021/acs.jafc.2c07264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plant bacterial illnesses are common and cause dramatic damage to agricultural goods all over the world, yet there are few efficient bactericides to alleviate them at present. To discover novel antibacterial agents, two series of quinazolinone derivatives with novel structures were synthesized and their bioactivity against plant bacteria was tested. Combining CoMFA model search and the antibacterial bioactivity assay, D32 was identified as a potent antibacterial inhibitor against Xanthomonas oryzae pv. Oryzae (Xoo), with an EC50 value of 1.5 μg/mL, much better in inhibitory capacity compared to bismerthiazol (BT) and thiodiazole copper (TC) (31.9 and 74.2 μg/mL). The activities of compound D32 against rice bacterial leaf blight in vivo were 46.7% (protective activities) and 43.9% (curative activities), better than commercial drug thiodiazole copper (29.3% protective activities and 30.6% curative activities). Flow cytometry, proteomics, reactive oxygen species, and key defense enzymes were used to further investigate the relevant mechanisms of action of D32. The identification of D32 as an antibacterial inhibitor and revelation of its recognition mechanism not only open the possibility of developing new therapeutic strategies for treatment of Xoo but also provide clues for elucidation of the acting mechanism of quinazolinone derivative D32, which is a possible clinical candidate worth in-depth study.
Collapse
Affiliation(s)
- Lihui Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Su Zhao
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yan Li
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Danping Chen
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Zhuirui Li
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Guiping Ouyang
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
25
|
Liu H, Yang S, Li T, Ma S, Wang P, Wang G, Su S, Ding Y, Yang L, Zhou X, Yang S. Design, Synthesis and Bioactivity Evaluation of Novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles Containing an Imidazole Fragment as Antibacterial Agents. Molecules 2023; 28:2442. [PMID: 36985415 PMCID: PMC10058659 DOI: 10.3390/molecules28062442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Imidazole alkaloids, a common class of five-membered aromatic heterocyclic compounds, exist widely in plants, animals and marine organisms. Because of imidazole's extensive and excellent biological and pharmacological activities, it has always been a topic of major interest for researchers and has been widely used as an active moiety in search of bioactive molecules. To find more efficient antibacterial compounds, a series of novel imidazole-fragment-decorated 2-(pyrazol-4-yl)-1,3,4-oxadiazoles were designed and synthesized based on our previous works via the active substructure splicing principle, and their bioactivities were systematically evaluated both in vitro and in vivo. The bioassays showed that some of the target compounds displayed excellent in vitro antibacterial activity toward three virulent phytopathogenic bacteria, including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Pseudomonas syringae pv. actinidiae (Psa), affording the lowest EC50 values of 7.40 (7c), 5.44 (9a) and 12.85 (9a) μg/mL, respectively. Meanwhile, compound 7c possessed good in vivo protective and curative activities to manage rice bacterial leaf blight at 200 μg/mL, with control efficacies of 47.34% and 41.18%, respectively. Furthermore, compound 9a showed commendable in vivo protective and curative activities to manage kiwifruit bacterial canker at 200 μg/mL, with control efficacies of 46.05% and 32.89%, respectively, which were much better than those of the commercial bactericide TC (31.58% and 17.11%, respectively). In addition, the antibacterial mechanism suggested that these new types of title compounds could negatively impact the cell membranes of phytopathogenic bacteria cells and cause the leakage of the intracellular component, thereby leading to the killing of bacteria. All these findings confirm that novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles containing an imidazole fragment are promising lead compounds for discovering new bactericidal agents.
Collapse
Affiliation(s)
| | | | | | | | - Peiyi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | | | | | | | | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
26
|
He JJ, Li T, Liu HW, Yang LL, Yang YH, Tao QQ, Zhou X, Wang PY, Yang S. Ion exchange pattern-based 18β-glycyrrhetinic acid containing pyridinium salts derivatives as novel antibacterial agents with low toxicity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
27
|
Qi P, Wang N, Zhang T, Feng Y, Zhou X, Zeng D, Meng J, Liu L, Jin L, Yang S. Anti-Virulence Strategy of Novel Dehydroabietic Acid Derivatives: Design, Synthesis, and Antibacterial Evaluation. Int J Mol Sci 2023; 24:2897. [PMID: 36769220 PMCID: PMC9917773 DOI: 10.3390/ijms24032897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Anti-virulence strategies are attractive and interesting strategies for controlling bacterial diseases because virulence factors are fundamental to the infection process of numerous serious phytopathogenics. To extend the novel anti-virulence agents, a series of dehydroabietic acid (DAA) derivatives decorated with amino alcohol unit were semi-synthesized based on structural modification of the renewable natural DAA and evaluated for their antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Compound 2b showed the most promising antibacterial activity against Xoo with an EC50 of 2.7 μg mL-1. Furthermore, compound 2b demonstrated remarkable control effectiveness against bacterial leaf blight (BLB) in rice, with values of 48.6% and 61.4% for curative and protective activities. In addition, antibacterial behavior suggested that compound 2b could suppress various virulence factors, including EPS, biofilm, swimming motility, and flagella. Therefore, the current study provided promising lead compounds for novel bactericides discovery by inhibiting bacterial virulence factors.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | | | | | | | | | |
Collapse
|
28
|
The Discovery of Novel Ferulic Acid Derivatives Incorporating Substituted Isopropanolamine Moieties as Potential Tobacco Mosaic Virus Helicase Inhibitors. Int J Mol Sci 2022; 23:ijms232213991. [PMID: 36430473 PMCID: PMC9698358 DOI: 10.3390/ijms232213991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Target-based drug design, a high-efficiency strategy used to guide the development of novel pesticide candidates, has attracted widespread attention. Herein, various natural-derived ferulic acid derivatives incorporating substituted isopropanolamine moieties were designed to target the tobacco mosaic virus (TMV) helicase. Bioassays demonstrating the optimized A19, A20, A29, and A31 displayed excellent in vivo antiviral curative abilities, affording corresponding EC50 values of 251.1, 336.2, 347.1, and 385.5 μg/mL, which visibly surpassed those of commercial ribavirin (655.0 μg/mL). Moreover, configurational analysis shows that the R-forms of target compounds were more beneficial to aggrandize antiviral profiles. Mechanism studies indicate that R-A19 had a strong affinity (Kd = 5.4 μM) to the TMV helicase and inhibited its ability to hydrolyze ATP (50.61% at 200 μM). Meanwhile, A19 could down-regulate the expression of the TMV helicase gene in the host to attenuate viral replication. These results illustrate the excellent inhibitory activity of A19 towards the TMV helicase. Additionally, docking simulations uncovered that R-A19 formed more hydrogen bonds with the TMV helicase in the binding pocket. Recent studies have unambiguously manifested that these designed derivatives could be considered as promising potential helicase-based inhibitors for plant disease control.
Collapse
|
29
|
Ding M, Wu N, Lin Q, Yan Y, Yang Y, Tian G, An L, Bao X. Discovery of Novel Quinazoline-2-Aminothiazole Hybrids Containing a 4-Piperidinylamide Linker as Potential Fungicides against the Phytopathogenic Fungus Rhizoctonia solani. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10100-10110. [PMID: 35960511 DOI: 10.1021/acs.jafc.1c07706] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A total of 29 novel quinazoline-2-aminothiazole hybrids containing a 4-piperidinylamide linker were designed, synthesized, and evaluated for their anti-microbial properties against phytopathogenic fungi and bacteria of agricultural importance. The anti-fungal assays indicated that some of the target compounds exhibited excellent inhibitory effects in vitro against Rhizoctonia solani. For example, 11 compounds within this series (including 4a, 4g, 4h, 4j, 4o, 4s, 4t, 4u, 4v, 4y, and 4b') were found to possess EC50 values (effective concentration for 50% activity) ranging from 0.42 to 2.05 μg/mL against this pathogen. In particular, compound 4y with a 2-chloro-6-fluorophenyl substituent displayed a potent anti-R. solani efficacy with EC50 = 0.42 μg/mL, nearly threefold more effective than the commercialized fungicide Chlorothalonil (EC50 = 1.20 μg/mL) and also slightly superior to the other fungicide Carbendazim (EC50 = 0.53 μg/mL). Moreover, compound 4y could efficiently inhibit the growth of R. solani in vivo on the potted rice plants, displaying an impressive protection efficacy of 82.3% at 200 μg/mL, better than those of the fungicides Carbendazim (69.8%) and Chlorothalonil (48.9%). Finally, the mechanistic studies showed that compound 4y exerted its anti-fungal effects by altering the mycelial morphology, increasing the cell membrane permeability, and destroying the cell membrane integrity. On the other hand, some compounds demonstrated good anti-bacterial effects in vitro against Xanthomonas oryzae pv. oryzae (Xoo). Overall, the presented results implied that 4-piperidinylamide-bridged quinazoline-2-aminothiazole hybrids held the promise of acting as lead compounds for developing more efficient fungicides to control R. solani.
Collapse
Affiliation(s)
- Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Nan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qiao Lin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ya Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yehui Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Guangmin Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Lian An
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
30
|
Wang F, Liu HW, Zhang L, Liu ST, Zhang JR, Zhou X, Wang PY, Yang S. Discovery of novel rost-4-ene derivatives as potential plant activators for preventing phytopathogenic bacterial infection: Design, synthesis and biological studies. PEST MANAGEMENT SCIENCE 2022; 78:3404-3415. [PMID: 35527698 DOI: 10.1002/ps.6981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Gradually aggravated disease caused by phytopathogenic bacteria severely restricts food security and crop yield, and few pesticides can relieve this severe situation. Thus, development and excavation of new agrochemicals with high bioactivity and novel action mechanism may be a feasible strategy to control intractable bacterial diseases. As a privileged molecular framework, steroid molecules exhibit diversiform bioactivities. Herein, a series of novel androst-4-ene derivatives were designed, synthesised and investigated for their antibacterial behaviour to excavate novel agrochemicals on the base of steroid molecules. RESULTS Bioassay results indicated that target compounds displayed high bioactivities toward three destructive phytopathogenic bacteria, including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Pseudomonas syringae pv. actinidiae (Psa). Compound III19 displayed excellent in vitro antibacterial profiling (EC50 = 2.37 mg L-1 towards Xoo, EC50 = 2.10 mg L-1 towards Xac, EC50 = 9.50 mg L-1 towards Psa). Furthermore, compound III19 showed outstanding in vivo protective activities, with values of 81.81% and 58.75% towards kiwifruit bacterial canker and rice bacterial leaf blight, respectively. Analysis of the antibacterial mechanism disclosed that compound III19 enhanced host defence enzyme activities superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and catalase (CAT) and increased the salicylate synthase content to induce host resistance. In addition, compound III19 increased the membrane permeability, destroyed the cell membrane and killed the bacteria. CONCLUSION Given these profiles of target compounds, we highlight a new strategy for controlling intractable plant bacterial diseases by inducing plant resistance and targeting the bacterial cell membrane. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ling Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shi-Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
31
|
Ji J, Shao WB, Chu PL, Xiang HM, Qi PY, Zhou X, Wang PY, Yang S. 1,3,4-Oxadiazole Derivatives as Plant Activators for Controlling Plant Viral Diseases: Preparation and Assessment of the Effect of Auxiliaries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7929-7940. [PMID: 35731909 DOI: 10.1021/acs.jafc.2c01988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viral diseases cause the loss of millions of dollars to agriculture around the world annually. Therefore, the development of highly efficient, ultra-low-dosage agrochemicals is desirable for protecting the health of crops and ensuring food security. Herein, a series of 1,3,4-oxadiazole derivatives bearing an isopropanol amine moiety was prepared, and the inhibitory activity against tobacco mosaic virus (TMV) was assessed. Notably, compound A14 exhibited excellent anti-TMV protective activity with an EC50 value of 137.7 mg L-1, which was superior to that of ribavirin (590.0 mg L-1) and ningnanmycin (248.2 mg L-1). Moreover, the anti-TMV activity of some compounds could be further enhanced (by up to 5-30%) through supplementation with 0.1% auxiliaries. Biochemical assays suggested that compound A14 could suppress the biosynthesis of TMV and induce the plant's defense response. Given these merits, designed compounds had outstanding bioactivities and unusual action mechanisms and were promising candidates for controlling plant viral diseases.
Collapse
Affiliation(s)
- Jin Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pan-Long Chu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Mei Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
32
|
Evaluation of the Abilities of Three Kinds of Copper-Based Nanoparticles to Control Kiwifruit Bacterial Canker. Antibiotics (Basel) 2022; 11:antibiotics11070891. [PMID: 35884145 PMCID: PMC9312301 DOI: 10.3390/antibiotics11070891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae reduces kiwifruit crop yield and quality, leading to economic losses. Unfortunately, few agents for its control are available. We prepared three kinds of copper-based nanoparticles and applied them to control kiwifruit bacterial canker. The successful synthesis of Cu(OH)2 nanowires, Cu3(PO4)2 nanosheets, and Cu4(OH)6Cl2 nanoparticles were confirmed by transmission and scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The minimum bactericidal concentrations (MBCs) of the three nanoparticles were 1.56 μg/mL, which exceeded that of the commercial agent thiodiazole copper (MBC > 100 μg/mL). The imaging results indicate that the nanoparticles could interact with bacterial surfaces and kill bacteria by inducing reactive oxygen species’ accumulation and disrupting cell walls. The protective activities of Cu(OH)2 nanowires and Cu3(PO4)2 nanosheets were 59.8% and 63.2%, respectively, similar to thiodiazole copper (64.4%) and better than the Cu4(OH)6Cl2 nanoparticles (40.2%). The therapeutic activity of Cu4(OH)6Cl2 nanoparticles (67.1%) bested that of Cu(OH)2 nanowires (43.9%), Cu3(PO4)2 nanosheets (56.1%), and thiodiazole copper (53.7%). Their therapeutic and protective activities for control of kiwifruit bacterial canker differed in vivo, which was related to their sizes and morphologies. This study suggests these copper-based nanoparticles as alternatives to conventional bactericides for controlling kiwifruit diseases.
Collapse
|
33
|
Ji QT, Hu DK, Mu XF, Tian XX, Zhou L, Yao S, Wang XH, Xiang SZ, Ye HJ, Fan LJ, Wang PY. Cucurbit[7]uril-Mediated Supramolecular Bactericidal Nanoparticles: Their Assembly Process, Controlled Release, and Safe Treatment of Intractable Plant Bacterial Diseases. NANO LETTERS 2022; 22:4839-4847. [PMID: 35667033 DOI: 10.1021/acs.nanolett.2c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A safe, biocompatible, and stimuli-responsive cucurbit[7]uril-mediated supramolecular bactericidal nanoparticle was fabricated by encapsulating a highly bioactive carbazole-decorated imidazolium salt (A1, EC50 = 0.647 μg/mL against phytopathogen Xanthomonas oryzae pv oryzae) into the host cucurbit[7]uril (CB[7]), thereby leading to self-assembled topographies from microsheets (A1) to nanospheroidal architectures (A1@CB[7]). The assembly behaviors were elucidated by acquired single-crystal structures, 1H NMR, ITC, and X-ray powder diffraction experiments. Complex A1@CB[7] displayed lower phytotoxicity and could efficiently switch on its potent antibacterial ability via introducing a simple competitor 1-adamantanamine hydrochloride (AD). In vivo antibacterial trials against rice bacterial blight revealed that A1@CB[7] could relieve the disease symptoms after being triggered by AD and provide a workable control efficiency of 42.6% at 100 μg/mL, which was superior to bismerthiazol (33.4%). These materials can provide a viable platform for fabricating diverse stimuli-responsive supramolecular bactericides for managing bacterial infections with improved safety.
Collapse
Affiliation(s)
- Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - De-Kun Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xian-Fu Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Xue Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Si Yao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Hui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao-Jie Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Jun Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
34
|
Qi PY, Zhang TH, Feng YM, Wang MW, Shao WB, Zeng D, Jin LH, Wang PY, Zhou X, Yang S. Exploring an Innovative Strategy for Suppressing Bacterial Plant Disease: Excavated Novel Isopropanolamine-Tailored Pterostilbene Derivatives as Potential Antibiofilm Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4899-4911. [PMID: 35437986 DOI: 10.1021/acs.jafc.2c00590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms are the root cause of persistent and chronic phytopathogenic bacterial infections. Therefore, developing novel agrochemicals that target the biofilm of phytopathogenic bacteria has been regarded as an innovative tactic to suppress their invasive infection or decrease bacterial drug resistance. In this study, a series of natural pterostilbene (PTE) derivatives were designed, and their antibacterial potency and antibiofilm ability were assessed. Notably, compound C1 displayed excellent antibacterial potency in vitro, affording an EC50 value of 0.88 μg mL-1 against Xoo (Xanthomonas oryzae pv. oryzae). C1 could significantly reduce biofilm formation and extracellular polysaccharides (EPS). Furthermore, C1 also possessed remarkable inhibitory activity against bacterial extracellular enzymes, pathogenicity, and other virulence factors. Subsequently, pathogenicity experiments were further conducted to verify the above primary outcomes. More importantly, C1 with pesticide additives displayed excellent control efficiency. Given these promising profiles, these pterostilbene derivatives can serve as novel antibiofilm agents to suppress plant pathogenic bacteria.
Collapse
Affiliation(s)
- Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Hong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
35
|
Ji QT, Mu XF, Hu DK, Fan LJ, Xiang SZ, Ye HJ, Gao XH, Wang PY. Fabrication of Host-Guest Complexes between Adamantane-Functionalized 1,3,4-Oxadiazoles and β-Cyclodextrin with Improved Control Efficiency against Intractable Plant Bacterial Diseases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2564-2577. [PMID: 34981928 DOI: 10.1021/acsami.1c19758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular chemistry provides huge potentials and opportunities in agricultural pest management. In an attempt to develop highly bioactive, eco-friendly, and biocompatible supramolecular complexes for managing intractable plant bacterial diseases, herein, a type of interesting adamantane-functionalized 1,3,4-oxadiazole was rationally prepared to facilitate the formation of supramolecular complexes via β-cyclodextrin-adamantane host-guest interactions. Initial antibacterial screening revealed that most of these adamantane-decorated 1,3,4-oxadiazoles were obviously bioactive against three typically destructive phytopathogens. The lowest EC50 values could reach 0.936 (III18), 0.889 (III18), and 2.10 (III19) μg/mL against the corresponding Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Next, the representative supramolecular binary complex III18@β-CD (binding mode 1:1) was successfully fabricated and characterized by 1H nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), high-resolution mass spectrometry (HRMS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Eventually, correlative water solubility and foliar surface wettability were significantly improved after the formation of host-guest assemblies. In vivo antibacterial evaluation found that the achieved supramolecular complex could distinctly alleviate the disease symptoms and promote the control efficiencies against rice bacterial blight (from 34.6-35.7% (III18) to 40.3-43.6% (III18@β-CD)) and kiwi canker diseases (from 41.0-42.3% (III18) to 53.9-68.0% (III18@β-CD)) at 200 μg/mL (active ingredient). The current study can provide a feasible platform and insight for constructing biocompatible supramolecular assemblies for managing destructive bacterial infections in agriculture.
Collapse
Affiliation(s)
- Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xian-Fu Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - De-Kun Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Li-Jun Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hao-Jie Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xiu-Hui Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
36
|
Yang R, Han M, Fan J, Cheng W, Ma N, Yan X, Guo Y. Development of Novel (+)-Nootkatone Thioethers Containing 1,3,4-Oxadiazole/Thiadiazole Moieties as Insecticide Candidates against Three Species of Insect Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15544-15553. [PMID: 34919380 DOI: 10.1021/acs.jafc.1c05853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To improve the insecticidal activity of (+)-nootkatone, a series of 42 (+)-nootkatone thioethers containing 1,3,4-oxadiazole/thiadiazole moieties were prepared to evaluate their insecticidal activities against Mythimna separata Walker, Myzus persicae Sulzer, and Plutella xylostella Linnaeus. Insecticidal evaluation revealed that most of the title derivatives exhibited more potent insecticidal activities than the precursor (+)-nootkatone after the introduction of 1,3,4-oxadiazole/thiadiazole on (+)-nootkatone. Among all of the (+)-nootkatone derivatives, compound 8c (1 mg/mL) exhibited the best growth inhibitory (GI) activity against M. separata with a final corrected mortality rate (CMR) of 71.4%, which was 1.54- and 1.43-fold that of (+)-nootkatone and toosendanin, respectively; 8c also displayed the most potent aphicidal activity against M. persicae with an LD50 value of 0.030 μg/larvae, which was closer to that of the commercial insecticidal etoxazole (0.026 μg/larvae); and 8s showed the best larvicidal activity against P. xylostella with an LC50 value of 0.27 mg/mL, which was 3.37-fold that of toosendanin and slightly higher than that of etoxazole (0.28 mg/mL). Furthermore, the control efficacy of 8s against P. xylostella in the pot experiments under greenhouse conditions was better than that of etoxazole. Structure-activity relationships (SARs) revealed that in most cases, the introduction of 1,3,4-oxadiazole/thiadiazole containing halophenyl groups at the C-13 position of (+)-nootkatone could obtain more active derivatives against M. separata, M. persicae, and P. xylostella than those containing other groups. In addition, toxicity assays indicated that these (+)-nootkatone derivatives had good selectivity to insects over nontarget organisms (normal mammalian NRK-52E cells and C. idella and N. denticulata fries) with relatively low toxicity. Therefore, the above results indicate that these (+)-nootkatone derivatives could be further explored as new lead compounds for the development of potential eco-friendly pesticides.
Collapse
Affiliation(s)
- Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Meiyue Han
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Jiangping Fan
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Nannan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Xiaoting Yan
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, 450001 Henan Province, P. R. China
| |
Collapse
|
37
|
Shao WB, Wang PY, Fang ZM, Wang JJ, Guo DX, Ji J, Zhou X, Qi PY, Liu LW, Yang S. Synthesis and Biological Evaluation of 1,2,4-Triazole Thioethers as Both Potential Virulence Factor Inhibitors against Plant Bacterial Diseases and Agricultural Antiviral Agents against Tobacco Mosaic Virus Infections. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15108-15122. [PMID: 34905356 DOI: 10.1021/acs.jafc.1c05202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Targeting the virulence factors of phytopathogenic bacteria is an innovative strategy for alleviating or eliminating the pathogenicity and rapid outbreak of plant microbial diseases. Therefore, several types of 1,2,4-triazole thioethers bearing an amide linkage were prepared and screened to develop virulence factor inhibitors. Besides, the 1,2,4-triazole scaffold was exchanged by a versatile 1,3,4-oxadiazole core to expand molecular diversity. Bioassay results revealed that a 1,2,4-triazole thioether A10 bearing a privileged N-(3-nitrophenyl)acetamide fragment was extremely bioactive against Xanthomonas oryzae pv. oryzae (Xoo) with an EC50 value of 5.01 μg/mL. Label-free quantitative proteomics found that compound A10 could significantly downregulate the expression of Xoo's type III secretion system (T3SS) and transcription activator-like effector (TALE) correlative proteins. Meanwhile, qRT-PCR detection revealed that the corresponding gene transcription levels of these virulence factor-associated proteins were substantially inhibited after being triggered by compound A10. As a result, the hypersensitive response and pathogenicity were strongly depressed, indicating that a novel virulence factor inhibitor (A10) was probably discovered. In vivo anti-Xoo trials displayed that compound A10 yielded practicable control efficiency (54.2-59.6%), which was superior to thiadiazole-copper and bismerthiazol (38.1-44.9%). Additionally, compound A10 showed an appreciable antiviral activity toward tobacco mosaic virus (TMV) with the curative and protective activities of 54.6 and 76.4%, respectively, which were comparable to ningnanmycin (55.2 and 60.9%). This effect was further validated and visualized by the inoculation test using GFP-labeled TMV, thereby leading to the reduced biosynthesis of green-fluorescent TMV on Nicotiana benthamiana. Given the outstanding features of compound A10, it should be deeply developed as a versatile agricultural chemical.
Collapse
Affiliation(s)
- Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zi-Mian Fang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jin-Jing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deng-Xuan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jin Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
38
|
Zhang JY, He J, Li ZH, Feng T, Liu JK. Zopfiellasins A-D, Two Pairs of Epimeric Cytochalasins from Kiwi-Associated Fungus Zopfiella sp. and Their Antibacterial Assessment. Molecules 2021; 26:5611. [PMID: 34577082 PMCID: PMC8468491 DOI: 10.3390/molecules26185611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
In our continuous search for antibacterial agents against Pseudomonas syringae pv. actinidiae (Psa) from kiwi-associated fungi, two pairs of epimeric cytochalasins, zopfiellasins A-D (1-4), were characterized from the fungus Zopfiella sp. The structures were established on the basis of spectroscopic data analysis, while the absolute configurations were determined by single-crystal X-ray diffraction. Compounds 1 and 3 exhibited antibacterial activity against Psa with MIC values of 25 and 50 μg/mL, respectively. This is the first report of anti-Psa activity of cytochalasin derivatives.
Collapse
Affiliation(s)
- Jie-Yu Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.-Y.Z.); (J.H.); (Z.-H.L.)
| | - Juan He
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.-Y.Z.); (J.H.); (Z.-H.L.)
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.-Y.Z.); (J.H.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.-Y.Z.); (J.H.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.-Y.Z.); (J.H.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|