1
|
Bai RF, Wang YW, Yang SS, Zhang YH, Zhou BH, Zhou CW, Zhou L. Design, Synthesis and Bioactivity of Benzyl Propiolates with Broad-Spectrum Inhibition Activity on Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27053-27061. [PMID: 39601668 DOI: 10.1021/acs.jafc.4c06770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As part of our continuing research on propiolic acid derivatives, a series of benzyl propiolate derivatives and analogues were designed, synthesized, and investigated for inhibition activity in vitro and in vivo on phytopathogenic fungi, structure-activity relationship (SAR) and action mechanism. The results showed that most of the compounds had potent and broad-spectrum antifungal activity in vitro at 50 μg/mL. Among the compounds, 2-bromobenzyl propiolate (3h) displayed the highest comprehensive activity with total activity index (TAI) of 4.57 against all the eight test fungi followed by 3-fluorobenzyl propiolate (3c) (TAI = 4.53), superior to positive fungicides thiabendazole (TAI < 4.12) and/or azoxystrobin (TAI < 2.90). Relative to the other fungi, Fusarium solani and Fusarium graminearum revealed higher total susceptibility indexes (TSI) of 11.1 and 8.98, respectively, for all compounds. 3h and 3g (4-chlorobenzyl propiolate) gave the smallest EC50 values of 0.86 and 0.67 μg/mL against F. solani and F. graminearum, respectively, superior or comparable with thiabendazole and azoxystrobin. As a representative, 3h at 200 μg/mL displayed 100% protection on F. solani infections on potatoes over 7 days and high safety for plant growth. In antifungal mechanism, 3h was able to change mycelial morphology, destroy the structures of both hypha and cell membrane, increase the intracellular ROS level, decrease the intracellular mitochondrial membrane potential level, and change the permeability of the cell membrane. The SAR showed that ethynyl is a key group for the activity, and the presence of halogen atoms at the 2-site of the benzene ring can significantly improve the activity in most cases. Thus, benzyl propiolate can be considered a novel antifungal lead compound, while 3h can be considered a promising fungicide candidate to develop new agricultural fungicides.
Collapse
Affiliation(s)
- Ruo-Fei Bai
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi China
| | - Yi-Wei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi China
| | - Shan-Shan Yang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi China
- Taizhou Polytechnic College, 8 Tianxing Road, Taizhou 225300, Jiangsu China
| | - Yu-Hao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi China
| | - Bo-Hang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi People's Republic of China
| | - Cong-Wei Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi China
| |
Collapse
|
2
|
Dai P, Ma Z, Dang Y, Huang J, Xue H, Sun Y, Gu YC, Xia Q, Zhang W. Design and synthesis of camphor-thiazole derivatives as potent antifungal agents: structure-activity relationship and preliminary mechanistic study. PEST MANAGEMENT SCIENCE 2024. [PMID: 39588719 DOI: 10.1002/ps.8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Plant pathogenic fungi pose a severe threat to crop yield and food security. This study aims to investigate the potential antifungal activity and mechanism of action of camphor-thiazole derivatives against six plant pathogenic fungi. A novel series of camphor-thiazole derivatives were designed, synthesized and evaluated for their antifungal effects against Rhizoctonia solani, Fusarium graminearum, Valsa mali, Alternaria solani, Colletotrichum orbiculare and Botryitis cinerea. RESULTS Most of the synthesized camphor-thiazole derivatives exhibited notable antifungal activity. Amongst them, compounds C5, C10 and C17 showed significant activity against R. solani with median effective concentrations (EC50) values in the range 3-4 μg mL-1, demonstrating superior antifungal efficacy to the control drug boscalid (EC50 = 1.23 μg mL-1). Structure-activity relationship and density functional theory analysis emphasized the critical role of substituent selection in optimizing the biological activity of these compounds. Moreover, preliminary mechanistic studies revealed that compound C5 induced abnormal mycelial and cellular morphology in R. solani as observed using scanning and transmission electron microscopy, and triggered the production and accumulation of reactive oxygen species. Additionally, the increased concentration of C5 resulted in enhanced cell membrane permeability. CONCLUSION In this study, the designed and optimized compound C5 emerged as a promising candidate for potent antifungal agents. The results demonstrate that synthesized camphor-thiazole derivatives possess potent antifungal activity and can serve as lead compounds for further optimization in antifungal agent development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuncong Dang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiaxuan Huang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huizhen Xue
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yafang Sun
- College of Economics and Management, Huaibei Institute of Technology, Anhui, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, UK
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Dai P, Ma Z, Yi G, Li Y, Xie K, Sun Y, Xia Q, Liu Z, Zhang W. Rational design and discovery of novel hydrazide derivatives as potent succinate dehydrogenase inhibitors inspired by natural d/l-camphor. PEST MANAGEMENT SCIENCE 2024. [PMID: 39424965 DOI: 10.1002/ps.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) have rapidly become one of the fastest-growing categories of fungicides used against plant pathogenic fungi. Recent research advancements have emphasized that structural modifications of SDHIs using naturally sourced scaffolds represent an innovative strategy for developing new, highly effective, broad-spectrum fungicides. A novel series of d/l-camphorhydrazide derivatives potentially targeting fungal succinate dehydrogenase (SDH) were designed, synthesized and evaluated for their antifungal effects against Rhizoctonia solani, Fusarium graminearum, Valsa mali and Botrytis cinerea. RESULTS Amongst them, compounds A1-7 (d-camphor) and A2-7 (l-camphor) displayed excellent in vitro activity against R. solani with median effective concentration (EC50) values of 0.38 and 0.48 μg mL-1, which were obviously superior to that of boscalid (0.87 μg mL-1). A2-5 (l-camphor, EC50 = 3.27 μg mL-1) exhibited good activity against V. mali. A2-7 (2.13 μg mL-1), A2-21 (5.2 μg mL-1) and A1-5 (5.15 μg mL-1) showed good antifungal activity against F. graminearum with EC50 values below that of boscalid (5.85 μg mL-1). Preliminary mechanistic studies, using scanning and transmission electron microscopy, indicated that compound A1-7 induced disordered entanglement of hyphae, shrinkage of hyphal surfaces, and vacuole swelling and rupture, which disrupted normal hyphal growth. Additionally, compound A1-7 induced the production and accumulation of reactive oxygen species, disrupted mitochondrial membrane potential, and effectively inhibited the germination and formation of sclerotia in R. solani. Moreover, the molecular docking results and SDH enzyme assays yielded promising outcomes. CONCLUSION In this study, the designed and optimized compounds A1-7 and A2-7 emerged as promising candidates for SDH-targeting fungicides, demonstrating strong antifungal activity. These compounds hold potential as new antifungal agents for further research. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guangfu Yi
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kaili Xie
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yafang Sun
- College of Economics and Management, Huaibei Institute of Technology, Huaibei, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Zhi XY, Liu Y, Liang J, Yuan X, Shi HC, Duan JQ, He MT, Wang Y, Cao H, Yang C. Novel Pesticide Candidates Inspired by Natural Neolignan: Preparation and Insecticidal Investigation of Honokiol Analogs Containing 2-Aminobenzoxazole-Fused Core Scaffold. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20805-20815. [PMID: 39263791 DOI: 10.1021/acs.jafc.4c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As a continuation of our efforts to develop new agrochemicals with typical architecture and efficient bioactivity from plant natural products, natural neolignan honokiol was used as a lead compound to prepare novel analogs bearing the core 2-aminobenzoxazole scaffold. Their insecticidal potency against two representative agricultural pests, Plutella xylostella Linnaeus and Mythimna separata (Walker), were evaluated in vivo. The pesticide bioassay results revealed that compounds 7″a, 9, 10d, and 10j exhibited prominent larvicidal activity against the larvae of P. xylostella (LC50 = 7.95, 11.85, 15.51, and 12.06 μg/mL, respectively), superior to the precursor honokiol (LC50 = 43.35 μg/mL) and two botanical insecticides, toosendanin (LC50 = 26.20 μg/mL) and rotenone (LC50 = 23.65 μg/mL). Compounds 7d, 10d, and 10j displayed a more pronounced nonchoice antifeedant effect (AFC50 = 9.48, 9.14, and 12.41 μg/mL, respectively) than honokiol (AFC50 = 54.81 μg/mL) on P. xylostella. Moreover, compounds 7b, 7″a, 9, 10d, 10f, and 10j showed better growth inhibitory activity against M. separata (LC50 = 0.36, 0.34, 0.28, 0.16, 0.26, and 0.11 mg/mL, respectively) than honokiol, toosendanin, and rotenone (LC50 = 1.48, 0.53, and 0.46 mg/mL, respectively). A potted plant assay under greenhouse conditions illustrated that compounds 10d and 10j continued to provide good control efficacy against P. xylostella and an apparent protective effect on plants. Further cytotoxicity assay revealed that the aforementioned potent compounds showed relatively moderate toxicity and a good safety profile for non-target mammalian cells. Overall, the current work provides valuable insight into the agrochemical innovation of honokiol-derived analogs for use as natural-inspired pesticides in agricultural pest management.
Collapse
Affiliation(s)
- Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Jing Liang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Xin Yuan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Hong-Cheng Shi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Jin-Qiu Duan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Ming-Tao He
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Yi Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| | - Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801 Shanxi Province, P. R. China
| |
Collapse
|
5
|
Zhou B, Fu J, Zhang Y, Bai R, Wang Y, Yang Y, Li Y, Zhou L. Design, Bioactivity, and Action Mechanism of Pyridinecarbaldehyde Phenylhydrazone Derivatives with Broad-Spectrum Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20850-20861. [PMID: 39287063 DOI: 10.1021/acs.jafc.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Replacing old pesticides with new pesticide varieties has been the main means to solve pesticide resistance. Therefore, it is necessary to research and develop new antifungal agents for plant protection. In this study, a series of pyridinecarbaldehyde phenylhydrazone derivatives were designed and evaluated for their inhibition activity on plant pathogenic fungi to search for novel fungicide candidates. Picolinaldehyde phenylhydrazone (1) and nicotinaldehyde phenylhydrazone (2) were identified as promising antifungal lead scaffolds. The 4-fluorophenylhydrazone derivatives (1a and 2a) of 1 and 2 showed highly effective and broad-spectrum inhibition activity in vitro on 11 phytopathogenic fungi with EC50 values of 0.870-3.26 μg/mL, superior to the positive control carbendazim in most cases. The presence of the 4-fluorine atom on the phenyl showed a remarkable activity enhancement effect. Compound 1a at 300 μg/mL provided almost complete protection against infection of Alternaria solani on tomatoes over the post-treatment 9 days and high safety to germination of plant seeds. Furthermore, 1a showed strong inhibition activity with an IC50 value of 0.506 μg/mL on succinate dehydrogenase in A. solani. Molecular docking showed that both 1a and 2a can well bind to the ubiquinone-binding region of SDH by the conventional hydrogen bond, carbon-hydrogen bond, π-π or π-amide interaction, π-alkyl interaction, X---F (X = N, C, or H) interaction, and van der Waal forces. Meanwhile, scanning and transmission electron analysis displayed that 1a destroyed the morphology of mycelium and the structure of the cell membrane of A. solani. Fluorescent staining analysis revealed that 1a changed the mitochondrial membrane potential and cell membrane permeability. Thus, pyridinecarbaldehyde phenylhydrazone compounds emerged as novel antifungal lead scaffolds, and 1a and 2a can be considered promising candidates for the development of new agricultural fungicides.
Collapse
Affiliation(s)
- Bohang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Juan Fu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yuhao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Ruofei Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yiwei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yiwei Yang
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Yingmei Li
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Ding YY, Jin YR, Luo XF, Zhang SY, Dai TL, Ma L, Zhang ZJ, Wu ZR, Jin CX, Liu YQ. Design, Synthesis, and Antimicrobial Activity Evaluation of Novel Isocryptolepine Derivatives against Phytopathogenic Fungi and Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20831-20841. [PMID: 39284582 DOI: 10.1021/acs.jafc.4c03976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This research adopted the Fischer indole synthesis method to continue constructing a novel drug-like chemical entity based on the guidance of isocryptolepine and obtained four series of derivatives: Y, Da, Db, and Dc. The antimicrobial activity of these derivatives against plant pathogens was further evaluated. The results showed that Dc-2 had the best antifungal effect against Botrytis cinerea, and its EC50 value was up to 1.29 μg/mL. In addition, an in vivo activity test showed that the protective effect of Dc-2 on apples was 82.2% at 200 μg/mL, which was better than that of Pyrimethanil (45.4%). Meanwhile, it was found by scanning electron microscopy and transmission electron microscopy that the compound Dc-2 affected the morphology of mycelia. The compound Dc-2 was found to damage the cell membrane by PI and ROS staining. Through experiments such as leakage of cell contents, it was found that the compound Dc-2 changed the permeability of the cell membrane and caused the leakage of substances in the cell. According to the above studies, compound Dc-2 can be used as a candidate lead compound for further structural optimization and development.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Tian-Li Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Cheng-Xin Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Zhang T, Liu Y, Xin H, Tian J, Deng T, Meng K, An Y, Xue W. Synthesis and Antifungal Activity of Chalcone Derivatives Containing 1,3,4-Thiadiazole. Chem Biodivers 2024; 21:e202401031. [PMID: 38769733 DOI: 10.1002/cbdv.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
24 chalcone derivatives containing 1,3,4-thiadiazole were synthesized. The results of bioactivity tests indicated that some of the target compounds exhibited superior antifungal activities in vitro. Notably, the EC50 value of D4 was 14.4 μg/mL against Phomopsis sp, which was significantly better than that of azoxystrobin (32.2 μg/mL) and fluopyram (54.2 μg/mL). The in vivo protective activity of D4 against Phomopsis sp on kiwifruit (71.2 %) was significantly superior to azoxystrobin (62.8 %) at 200 μg/mL. The in vivo protective activities of D4 were 74.4 and 57.6 % against Rhizoctonia solani on rice leaf sheaths and rice leaves, respectively, which were slightly better than those of azoxystrobin (72.1 and 49.2 %) at 200 μg/mL. Scanning electron microscopy (SEM) results showed that the mycelial surface collapsed, contracted and grew abnormally after D4 treatment. Finally, the results were further verified by in vivo antifungal assay, fluorescence microscopy (FM) observation, determination of relative conductivity, membrane lipid peroxidation degree assay, and determination of cytoplasmic content leakage. Molecular docking results suggested that D4 could be a potential SDHI.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yi Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hui Xin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jiao Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tianyu Deng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kaini Meng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Youshan An
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Jian JY, Fan YM, Jin J, He XY, Yi P, Yuan CM, Gu W, Hu ZX, Huang LJ, Hao XJ. Isolating Antipathogenic Fungal Coumarins from Coriaria nepalensis and Determining Their Primary Mechanism In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6711-6722. [PMID: 38491973 DOI: 10.1021/acs.jafc.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Through bioassay-guided isolation, eight undescribed coumarins (1-8), along with six reported coumarins (9-14), were obtained from Coriaria nepalensis. The new structures were determined by using IR, UV, NMR, HRESIMS, and ECD calculations. The results of the biological activity assays showed that compound 9 exhibited broad spectrum antifungal activities against all tested fungi in vitro and a significant inhibitory effect on Phytophthora nicotianae with an EC50 value of 3.00 μg/mL. Notably, compound 9 demonstrated greater curative and protective effects against tobacco balack shank than those of osthol in vivo. Thus, 9 was structurally modified to obtain new promising antifungal agents, and the novel derivatives (17b, 17j, and 17k) exhibited better effects on Sclerotinia sclerotiorum than did lead compound 9. Preliminary mechanistic exploration illustrated that 9 could enhance cell membrane permeability, destroy the morphology and ultrastructure of cells, and reduce the exopolysaccharide content of P. nicotianae mycelia. Furthermore, the cytotoxicity results revealed that compound 9 exhibited relatively low cytotoxicity against HEK293 cell lines with an inhibition rate of 33.54% at 30 μg/mL. This research is promising for the discovery of new fungicides from natural coumarins with satisfactory ecological compatibility.
Collapse
Affiliation(s)
- Jun-You Jian
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guiyang 550025, PR China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Yi-Min Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Jun Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Xi-Yue He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Lie-Jun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang 550002, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, PR China
| |
Collapse
|
9
|
Wang X, Liu Y, Peng N, Yu H, Ma Y, Zhang M, Wang Y, Wang Y, Gao W. Allelopathy and Identification of Volatile Components from the Roots and Aerial Parts of Astragalus mongholicus Bunge. PLANTS (BASEL, SWITZERLAND) 2024; 13:317. [PMID: 38276773 PMCID: PMC10819805 DOI: 10.3390/plants13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The volatile compounds produced by plants play an important role in plant growth, plant communication, and resistance to biological and abiotic stresses. Astragalus membranaceus var. mongholicus (AM) is a perennial herbaceous plant (Leguminosae) that is widely cultivated in northwest China. The bioactive compounds in its root have shown various pharmacological activities. Root rot disease caused by Fusarium spp. often occurs in AM planting with increasing severity in continuous monoculture. It is currently still unclear what are the effects of the volatile compounds produced by fresh AM on itself, other crops cultivated on the same field after AM, pathogen, and rhizobia. In this study, we found that seed germination and seedling growth of AM, lettuce (Lactuca sativa L.), and wheat (Triticum aestivum L.) could be affected if they were in an enclosed space with fresh AM tissue. Additionally, 90 volatile compounds were identified by SPME-GC-MS from whole AM plant during the vegetative growth, 36 of which were specific to aerial parts of AM (stems and leaves, AMA), 17 to roots (AMR), and 37 were found in both AMA and AMR. To further identify the allelopathic effects of these volatile compounds, five compounds (1-hexanol, (E)-2-hexenal, (E,E)-2,4-decadienal, hexanal, and eugenol) with relatively high content in AM were tested on three receptor plants and two microorganisms. We found that (E,E)-2,4-decadienal and (E)-2-hexenal showed significant inhibitory effects on the growth of AM and lettuce. One-hexanol and hexanal suppressed the growth of wheat, while eugenol showed a similar effect on all three plant species. Moreover, the activities of these compounds were dose dependent. Notably, we discovered that (E)-2-hexenal and eugenol also inhibited the growth of the pathogen Fusarium solani by as high as 100%. Meanwhile, all five compounds tested suppressed the rhizobia Sinorhizobium fredii. In summary, this study furthered our understanding of the comprehensive allelopathic effects of the main volatile components of AM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (X.W.); (Y.L.); (N.P.); (H.Y.); (Y.M.); (M.Z.); (Y.W.); (Y.W.)
| |
Collapse
|
10
|
Han X, Xu R, Gu S, Kong Y, Lou Y, Gao Y, Shang S, Song Z, Song J, Li J. Synthesis of Acrylopimaric Acid Triazole Derivatives and Their Antioomycete Activity against Phytophthora capsici. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:973-982. [PMID: 38166361 DOI: 10.1021/acs.jafc.3c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
To develop new antioomycete agents against plant pathogens, two series of acrylopimaric acid triazole derivatives from rosin were synthesized. The in vitro antioomycete activity of these derivatives was evaluated and screened against Pseudoperonospora cubensisi, Plasmopara viticola, Phytophthora sojae, Phytophthora infestans, and Phytophthora capsici. Compound 5m showed the highest antioomycete activity against P. capsici, with a half-maximal effective concentration (EC50) value that was lower than that of the positive control metalaxyl (1.391 and 1.815 mg/L, respectively). Compound 5m demonstrated satisfactory protective and curative efficacy against P. capsici in pepper in in vivo antioomycete activity studies. Physiological and biochemical testing showed that the action mechanism of compound 5m on P. capsici involved altering the morphology and ultrastructure of the mycelium, increasing cell membrane permeability, inducing dysfunction of the nucleus and mitochondria, and ultimately causing cell necrosis. In addition, the analysis of three-dimensional quantitative structure-activity relationship (3D-QSAR) revealed the significance of the molecular structure and charge distribution in the interaction between compound 5m and its target. Collectively, these findings indicate that compound 5m has the potential as an antioomycete candidate.
Collapse
Affiliation(s)
- Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yue Kong
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
11
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
12
|
Pu MX, Guo HY, Quan ZS, Li X, Shen QK. Application of the Mannich reaction in the structural modification of natural products. J Enzyme Inhib Med Chem 2023; 38:2235095. [PMID: 37449337 DOI: 10.1080/14756366.2023.2235095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The Mannich reaction is commonly used to introduce N atoms into compound molecules and is thus widely applied in drug synthesis. The Mannich reaction accounts for a certain proportion of structural modifications of natural products. The introduction of Mannich bases can significantly improve the activity, hydrophilicity, and medicinal properties of compounds; therefore, the Mannich reaction is widely used for the structural modification of natural products. In this paper, the application of the Mannich reaction to the structural modification of natural products is reviewed, providing a method for the structural modification of natural products.
Collapse
Affiliation(s)
- Miao-Xia Pu
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
13
|
He HW, Xu D, Wu KH, Lu ZY, Liu X, Xu G. Discovery of novel salicylaldehyde derivatives incorporating an α-methylene-γ-butyrolactone moiety as fungicidal agents. PEST MANAGEMENT SCIENCE 2023; 79:5015-5028. [PMID: 37544900 DOI: 10.1002/ps.7703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Plant diseases caused by phytopathogenic fungi and oomycetes pose a serious threat to ensuring crop yield and quality. Finding novel fungicidal candidates based on natural products is one of the critical methods for developing effective and environmentally friendly pesticides. In this study, a series of salicylaldehyde derivatives containing an α-methylene-γ-butyrolactone moiety were designed, synthesized, and their fungicidal activities were evaluated. RESULTS The bioassay studies indicated that compound C3 displayed an excellent in vitro activity against Rhizoctonia solani with a half-maximal effective concentration (EC50 ) value of 0.65 μg/mL, higher than that of pyraclostrobin (EC50 = 1.44 μg/mL) and comparable to that of carbendazim (EC50 = 0.33 μg/mL). For Valsa mali and Phytophthora capsici, compound C3 also showed good fungicidal activities with EC50 values of 0.91 and 1.33 μg/mL, respectively. In addition, compound C3 exhibited promising protective in vivo activity against R. solani (84.1%) at 100 μg/mL, which was better than that of pyraclostrobin (78.4%). The pot experiment displayed that compound C3 had 74.8% protective efficacy against R. solani at 200 μg/mL, which was comparable to that of validamycin (78.2%). The antifungal mode of action research indicated that compound C3 could change the mycelial morphology and ultrastructure, increase cell membrane permeability, affect respiratory metabolism by binding to complex III, and inhibit the germination and formation of sclerotia, thereby effectively controlling the disease. CONCLUSION The present study provides support for the application of these salicylaldehyde derivatives as promising potential pesticides with remarkable and broad-spectrum fungicidal activities against phytopathogenic fungi and oomycetes in crop protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Wei He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Ke-Huan Wu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zheng-Yi Lu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| |
Collapse
|
14
|
Liu Y, Esser L, Bai H, Fu B, Xia D, Zhou Y, Hong S, Yang S, Xiao Y, Qin Z. Synthesis and Antiphytopathogenic Activity of Novel Oxazolidine-2,4-diones Bearing Phenoxypyridine Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14199-14210. [PMID: 37728976 DOI: 10.1021/acs.jafc.3c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In the present study, we conducted optimization of pyramoxadone and synthesized a series of novel oxazolidinediones. Antifungal assays showed that these compounds exhibited moderate to excellent antifungal activity against various pathogens. Further SAR analysis revealed that the introduction of substituents to the benzene ring of the phenoxy group or the inclusion of bulky groups, such as tert-butyl, on the aniline moiety, had a detrimental effect on the activity. However, the inclusion of fluorine atoms in the aniline moiety significantly enhanced the antifungal efficacy. Notably, compound 2-4 displayed significantly higher activity compared to both pyramoxadone and famoxadone against R. solani, B. cinerea, S. sclerotiorum, and P. oryzae, where it demonstrated EC50 values of 1.78, 2.47, 2.33, and 2.23 μg/mL, respectively. Furthermore, compound 2-4 exhibited potent protective and curative effects against the tomato gray mold in vivo. A mechanistic investigation revealed that compound 2-4 significantly impacted the mycelial morphology, inhibited spore germination, and impeded mycelial respiration, ultimately leading to the inhibition of pathogenic fungus growth. These findings indicate that compound 2-4 has the potential to serve as a cyt bc1 inhibitor and should be further investigated for development.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lothar Esser
- Structural Biology Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Hui Bai
- College of Science, China Agricultural University, Beijing 100193, China
| | - Bin Fu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Di Xia
- Structural Biology Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Yihui Zhou
- College of Science, China Agricultural University, Beijing 100193, China
| | - Sai Hong
- College of Science, China Agricultural University, Beijing 100193, China
| | - Sihan Yang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Li Z, Yang B, Ding Y, Meng J, Hu J, Zhou X, Liu L, Wu Z, Yang S. Insights into a class of natural eugenol and its optimized derivatives as potential tobacco mosaic virus helicase inhibitors by structure-based virtual screening. Int J Biol Macromol 2023; 248:125892. [PMID: 37473893 DOI: 10.1016/j.ijbiomac.2023.125892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Plant diseases caused by malignant and refractory phytopathogenic viruses have considerably restricted crop yields and quality. To date, drug design targeting functional proteins or enzymes of viruses is an efficient and viable strategy to guide the development of new pesticides. Herein, a series of novel eugenol derivatives targeting the tobacco mosaic virus (TMV) helicase have been designed using structure-based virtual screening (SBVS). Structure-activity relationship indicated that 2 t displayed the most powerful bonding capability (Kd = 0.2 μM) along with brilliant TMV helicase ATPase inhibitory potency (IC50 = 141.9 μM) and applausive anti-TMV capability (EC50 = 315.7 μg/mL), ostentatiously outperforming that of commercial Acyclovir (Kd = 23.0 μM, IC50 = 183.7 μM) and Ribavirin (EC50 = 624.3 μg/mL). Molecular dynamics simulations and docking suggested ligand 2 t was stable and bound in the active pocket of the TMV helicase by multiple interactions. Given these superior properties, eugenol-based derivatives could be considered as the novel potential plant viral helicase inhibitors. Furthermore, this effective and feasible SBVS strategy established a valuable screening platform for helicase-targeted drug development.
Collapse
Affiliation(s)
- Zhenxing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Binxin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinhong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
16
|
Zhi XY, Zhang Y, Li YF, Liu Y, Niu WP, Li Y, Zhang CR, Cao H, Hao XJ, Yang C. Discovery of Natural Sesquiterpene Lactone 1- O-Acetylbritannilactone Analogues Bearing Oxadiazole, Triazole, or Imidazole Scaffolds for the Development of New Fungicidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463456 DOI: 10.1021/acs.jafc.3c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In recent decades, natural products have been considered important resources for developing of new agrochemicals because of their novel architectures and multibioactivities. Consequently, herein, 1-O-acetylbritannilactone (ABL), a natural sesquiterpene lactone from Inula britannica L., was used as a lead for further modification to discover fungicidal candidates. Six series of ABL-based derivatives containing an oxadiazole, triazole, or imidazole moiety were designed and synthesized, and their antifungal activities were also evaluated in vitro and in vivo. Bioassay results revealed that compounds 8d, 8h, and 8j (EC50 = 61.4, 30.9, and 12.4 μg/mL, respectively) exhibited more pronounced inhibitory activity against Fusarium oxysporum than their precursor ABL (EC50 > 500 μg/mL) and positive control hymexazol (EC50 = 77.2 μg/mL). Derivatives 8d and 11j (EC50 = 19.6 and 41.5 μg/mL, respectively) exhibited more potent antifungal activity toward Cytospora mandshurica than ABL (EC50 = 68.3 μg/mL). Compound 10 exhibited excellent and broad-spectrum antifungal activity against seven phytopathogenic fungal mycelia. Particularly, the inhibitory activity of compound 10 against the mycelium of Botrytis cinerea was more than 10.8- and 2.3-fold those of ABL and hymexazol, respectively. Meanwhile, derivative 10 (IC50 = 47.7 μg/mL) displayed more pronounced inhibitory activity against the spore of B. cinerea than ABL (IC50 > 500 μg/mL) and difenoconazole (IC50 = 80.8 μg/mL). Additionally, the in vivo control efficacy of compound 10 against B. cinerea was further studied using infected tomatoes (protective effect = 58.4%; therapeutic effect = 48.7%). The preliminary structure-activity relationship analysis suggested that the introduction of the 1,3,4-oxadiazole moiety (especially the 1,3,4-oxadiazole heterocycle containing the 4-chlorophenyl, 2-furyl, or 2-pyridinyl group) on the skeleton of ABL was more likely to produce potential antifungal compounds. These findings pave the way for further design and development of ABL-based derivatives as potential antifungal agents.
Collapse
Affiliation(s)
- Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. China
| | - Yuan Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Yang-Fan Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Wen-Peng Niu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Yang Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Cheng-Ran Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Xiao-Juan Hao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. China
| |
Collapse
|
17
|
Yang C, Li Y, Zhang Y, Hu Q, Liu Y, Li YF, Shi HC, Song LL, Cao H, Hao XJ, Zhi XY. Natural Sesquiterpene Lactone as Source of Discovery of Novel Fungicidal Candidates: Structural Modification and Antifungal Activity Evaluation of Xanthatin Derived from Xanthium strumarium L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37449982 DOI: 10.1021/acs.jafc.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As part of our ongoing efforts to discover novel agricultural fungicidal candidates from natural sesquiterpene lactones, in the present work, sixty-three xanthatin-based derivatives containing a arylpyrazole, arylimine, thio-acylamino, oxime, oxime ether, or oxime ester moiety were synthesized. Their structures were well characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry, while the absolute configurations of compounds 5' and 6a were further determined by single-crystal X-ray diffraction. Meanwhile, the antifungal activities of the prepared compounds against several phytopathogenic fungi were investigated using the spore germination method and the mycelium growth rate method in vitro. The bioassay results illustrated that compounds 5, 5', and 15 exhibited excellent inhibitory activity against the tested fungal spores and displayed remarkable inhibitory effects on fungal mycelia. Compounds 5 and 5' exhibited more potent inhibitory activity (IC50 = 1.1 and 24.8 μg/mL, respectively) against the spore of Botrytis cinerea than their precursor xanthatin (IC50 = 37.6 μg/mL), wherein the antifungal activity of compound 5 was 34-fold higher than that of xanthatin and 71-fold higher than that of the positive control, difenoconazole (IC50 = 78.5 μg/mL). Notably, compound 6'a also demonstrated broad-spectrum inhibitory activity against the four tested fungal spores. Meanwhile, compounds 2, 5, 8, and 15 showed prominent inhibitory activity against the mycelia of Cytospora mandshurica with the EC50 values of 2.3, 11.7, 11.1, and 3.0 μg/mL, respectively, whereas the EC50 value of xanthatin was 14.8 μg/mL. Additionally, compounds 5' and 15 exhibited good in vivo therapeutic and protective effects against B. cinerea with values of 55.4 and 62.8%, respectively. The preliminary structure-activity relationship analysis revealed that the introduction of oxime, oxime ether, or oxime ester structural fragment at the C-4 position of xanthatin or the introduction of a chlorine atom at the C-3 position of xanthatin might be significantly beneficial to antifungal activity. In conclusion, the comprehensive investigation indicated that partial xanthatin-based derivatives from this study could be considered for further exploration as potential lead structures toward developing novel fungicidal candidates for crop protection.
Collapse
Affiliation(s)
- Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yang Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yuan Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Qiang Hu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yang-Fan Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Hong-Cheng Shi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Li-Li Song
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Xiao-Juan Hao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| |
Collapse
|
18
|
Wang T, Wang Q, Zhou Y, Shi Y, Gao H. The Effect of Terbinafine and Its Ionic Salts on Certain Fungal Plant Pathogens. Molecules 2023; 28:4722. [PMID: 37375277 DOI: 10.3390/molecules28124722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Terbinafine, an inhibitor of squalene epoxidase in ergosterol biosynthesis, is chiefly utilized as an antifungal medication with potential uses in pesticide applications. This study explores the fungicidal efficacy of terbinafine against prevalent plant pathogens and confirms its effectiveness. To augment its water solubility, five ionic salts of terbinafine were synthesized by pairing them with organic acids. Among these salts, TIS 5 delivered the most impressive results, amplifying the water solubility of terbinafine by three orders of magnitude and lessening its surface tension to facilitate better dispersion during spraying. The in vivo experiments on cherry tomatoes showed that TIS 5 had a superior therapeutic activity compared to its parent compound and two commonly used broad-spectrum fungicides, pyraclostrobin and carbendazim. The results highlight the potential of terbinafine and its ionic salts, particularly TIS 5, for use as fungicides in agriculture due to their synergistic effects with furan-2-carboxylate.
Collapse
Affiliation(s)
- Tao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qiuxiao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifei Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yaolin Shi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixiang Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Pang X, Mao L, Ye D, Wang W, Yang H, Fan X, Yang Y, Su Z, Ma T, Sun M, Liu Y. Synthesis, anti-aging and mechanism of magnolol derivatives. Front Chem 2023; 11:1180375. [PMID: 37288076 PMCID: PMC10242077 DOI: 10.3389/fchem.2023.1180375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Magnolol (M), a hydroquinone containing an allyl side chain, is one of the major active components of Houpoea officinalis for antioxidation and anti-aging. To enhance the antioxidant activity of magnolol, the different sites of magnolol were structurally modified in this experiment, and a total of 12 magnolol derivatives were obtained. Based on the preliminary exploration of the anti-aging effect of magnolol derivatives in a Caenorhabditis elegans (C. elegans) model. Our results indicate that the active groups of magnolol exerting anti-aging effects were allyl groups and hydroxyl on the phenyl. Meanwhile, the anti-aging effect of the novel magnolol derivative M27 was found to be significantly superior to that of magnolol. To investigate the effect of M27 on senescence and the potential mechanism of action, we investigated the effect of M27 on senescence in C. elegans. In this study, we investigated the effect of M27 on C. elegans physiology by examining body length, body curvature and pharyngeal pumping frequency. The effect of M27 on stress resistance in C. elegans was explored by acute stress experiments. The mechanism of M27 anti-aging was investigated by measuring ROS content, DAF-16 nuclear translocation, sod-3 expression, and lifespan of transgenic nematodes. Our results indicate that M27 prolonged the lifespan of C. elegans. Meanwhile, M27 improved the healthy lifespan of C. elegans by improving pharyngeal pumping ability and reducing lipofuscin accumulation in C. elegans. M27 increased resistance to high temperature and oxidative stress in C. elegans by reducing ROS. M27 induced DAF-16 translocation from cytoplasm to nucleus in transgenic TJ356 nematodes and upregulated the expression of sod-3 (a gene downstream of DAF-16) in CF1553 nematodes. Furthermore, M27 did not extend the lifespan of daf-16, age-1, daf-2, and hsp-16.2 mutants. This work suggests that M27 may ameliorate aging and extend lifespan in C. elegans through the IIS pathway.
Collapse
Affiliation(s)
- Xinxin Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li Mao
- Beijing Tide Pharmaceutical Co, Ltd., Beijing Econnomi Technological Development Area (BDA), Beijing, China
| | - Danyang Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijun Su
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqian Sun
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Liu R, Li Z, Liu S, Zheng J, Zhu P, Cheng B, Yu R, Geng H. Synthesis, Structure-Activity Relationship, and Mechanism of a Series of Diarylhydrazide Compounds as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6803-6817. [PMID: 37104678 DOI: 10.1021/acs.jafc.2c08027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A series of simple diarylhydrazide derivatives (45 examples) were well-designed, prepared, and screened for their antifungal activities both in vitro and in vivo. Bioassay results suggested that all designed compounds had significant activity against Alternaria brassicae (EC50 = 0.30-8.35 μg/mL). Among of them, 2c, as the highest activity compound, could effectively inhibit the growth of plant pathogens Pyricularia oryza, Fusarium solani, Alternaria solani, Alternaria brassicae, and Alternaria alternate and was more potent than carbendazim and thiabendazole. 2c showed almost 100% protection at 200 μg/mL in vivo activity against A. solani in tomato. Moreover, 2c did not affect the germination of cowpea seed and the growth of normal human hepatocytes. The preliminary mechanistic exploration documented that 2c could result in the abnormal morphology and irregular structure of the cell membrane, destroy the function of mitochondria, increase the reactive oxygen species, and inhibit the proliferation of hypha cell. The above results manifested that target compound 2c could be a potential fungicidal candidate against phytopathogenic diseases for its excellent fungicidal activities.
Collapse
Affiliation(s)
- Ruiyuan Liu
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Zhuangzhuang Li
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Sifan Liu
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Jinshuo Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - PanPan Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Bin Cheng
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Liang X, Bai G, Niu CH, Wei Z, Lei ZG, Chen K, Guo X. High inhabitation activity of CMCS/Phytic acid/Zn 2+ nanoparticles via flash nanoprecipitation (FNP) for bacterial and fungal infections. Int J Biol Macromol 2023; 242:124747. [PMID: 37150368 DOI: 10.1016/j.ijbiomac.2023.124747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Plant diseases prompted by fungi and bacteria are one of the most serious threats to global crop production and food security. The destruction of these infections posed a major challenge to plant protection by chemical control. Herein, we develop CMCS/PA/Zn2+ nanoparticles (NPs) using carboxymethyl chitosan (CMCS), phytic acid (PA) and metal ions (Zn2+) via flash nanoprecipitation (FNP) strategy. Metal complexes of PA with specified antibacterial and antifungal activities are expected to hold the potential and play a significant role in antimicrobial treatment. The size and size distribution of NPs was confirmed through Dynamic and Static Light Scatterer (DSLS). In acidic-infection microenvironment, the CMCS/PA/Zn2+ NPs can disintegrate and release Zn2+ in situ thus stimulated the corresponding antimicrobial activity. These CMCS/PA/Zn2+ NPs showed outstanding antibacterial efficacy (98 %) against S. aureus and E. coli bacteria in vitro, as well as an impressive antifungal efficacy of 98 % and 81 % against R. solani and B. cinerea at 50 μg/mL respectively. This study contributes a prospective idea to the development of organic-inorganic hybrid NPs as environmentally-friendly and safe agricultural antimicrobials.
Collapse
Affiliation(s)
- Xuexue Liang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Ge Bai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Chun Hua Niu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhi Gang Lei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China; School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Olea AF, Rubio J, Sedan C, Carvajal D, Nuñez M, Espinoza L, Llovera L, Nuñez G, Taborga L, Carrasco H. Antifungal Activity of 2-Allylphenol Derivatives on the Botrytis cinerea Strain: Assessment of Possible Action Mechanism. Int J Mol Sci 2023; 24:ijms24076530. [PMID: 37047503 PMCID: PMC10095406 DOI: 10.3390/ijms24076530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus that causes serious damage to the agricultural industry by infecting various important crops. 2-allylphenol has been used in China as a fungicide for more than a decade, and it has been shown that is a respiration inhibitor. A series of derivatives of 2-allylphenol were synthesized and their activity against B. cinerea was evaluated by measuring mycelial growth inhibition. Results indicate that small changes in the chemical structure or the addition of substituent groups in the aromatic ring induce important variations in activity. For example, changing the hydroxyl group by methoxy or acetyl groups produces dramatic increases in mycelial growth inhibition, i.e., the IC50 value of 2-allylphenol decreases from 68 to 2 and 1 μg mL−1. In addition, it was found that the most active derivatives induce the inhibition of Bcaox expression in the early stages of B. cinerea conidia germination. This gene is associated with the activation of the alternative oxidase enzyme (AOX), which allows fungus respiration to continue in the presence of respiratory inhibitors. Thus, it seems that 2-allylphenol derivatives can inhibit the normal and alternative respiratory pathway of B. cinerea. Therefore, we believe that these compounds are a very attractive platform for the development of antifungal agents against B. cinerea.
Collapse
|
23
|
Yin F, Liu X, Xu Y, Fu B, Zhang X, Xiao Y, Li J, Qin Z. Triphenylphosphonium-Driven Targeting of Pyrimorph Fragment Derivatives Greatly Improved Its Action on Phytopathogen Mitochondria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2842-2852. [PMID: 36722627 DOI: 10.1021/acs.jafc.2c07902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pyrimorph is a carboxylic acid amide (CAA) fungicide, which shows excellent activity against oomycetes such as pepper phytophthora blight, tomato late blight, and downy mildew of cucumber. It works mainly by inhibiting the biosynthesis of cell wall of oomycetes. However, pyrimorph also shows weak activity of inhibiting mitochondrial complex III, which is the first CAA fungicide found to act on mitochondria. To improve this effect on mitochondria and develop fungicides that may have a novel mechanism of action, in this paper, by disassembling pyrimorph and conjugating the fragments with the mitochondrial-targeted delivery system (triphenylphosphonium), three series of mitochondrial-targeting analogues of pyrimorph were designed and synthesized. The results show that the pyridine-containing 1,1-diaryl is the core module of inhibition mitochondrial function of pyrimorph. Among these conjugates, compound 3b with a short linker showed the highest and broad-spectrum fungicidal activity, strong respiratory inhibition activity, and adenosine 5'-triphosphate synthesis inhibition activity, suggesting its potential as a fungicide candidate. 3b exhibited greatly improved action on mitochondria, such as by destroying the mitochondrial function of pathogens, causing mitochondrial swelling, weakening its influence on cell wall morphology, and so on. More importantly, this study provides a method to strengthen the drugs or pesticides with weak mitochondrial action, which is of special significance for developing mitochondrial bioactive molecules with the novel action mechanism.
Collapse
Affiliation(s)
- Fahong Yin
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuelian Liu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Bin Fu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xueqin Zhang
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Yumei Xiao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaohai Qin
- College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Synthesis and Biological Activity of Waltherione F‐derived Diamide Derivatives Containing
4‐Quinolone
Group. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Chen W, Zhang R, Chen Y, Yu P, Lan Y, Xu H, Lei S. Design, synthesis and mechanism study of novel natural-derived isoquinoline derivatives as antifungal agents. Mol Divers 2022:10.1007/s11030-022-10463-z. [PMID: 35661315 DOI: 10.1007/s11030-022-10463-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/14/2022] [Indexed: 11/28/2022]
Abstract
In screening for natural fungicidal leads, two series of novel 3-aryl-isoquinoline derivatives 8 and 9 were designed and synthesized based on sanguinarine, chelerythrine and berberine. Their structures were confirmed by 1D, 2D NMR and HRMS. Most of the title compounds showed medium to excellent antifungal activity in vitro at 50 mg/L, which were much more active than the lead of sanguinarine. Especially, 9f possessed the best effective against Alternaria solani (80.4%), Alternaria alternata (88.2%) and Physalospora piricola (93.8%). Furthermore, the EC50 of 9f (3.651 mg/L) against P. piricola was marginally better than chlorothalonil (3.869 mg/L). In vivo antifungal activity of 9f against P. piricola was studied on apples. The curative and protection results at the dosage of 50 and 100 mg/L showed as 70.45 ~ 81.67% and 64.96 ~ 80.34%, respectively, which were equal to that of chlorothalonil (80.30 ~ 86.67%, 73.08 ~ 76.92%). Molecular electrostatic potential and molecular docking analysis revealed that 9f was fully covered by positive potential contour, which was easier to interact with the negative amino acid resides of succinate dehydrogenase than 8f. 9f could be used as a novel antifungal lead compound for further study. Two series of novel isoquinoline derivatives 8, 9 containing 3-aryl were rational designed and synthesized based on quaternary isoquinoline alkaloids. The bioassay and interaction mechanism studies indicated that 9f should be considered as potential antifungal lead.
Collapse
Affiliation(s)
- Wei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Rui Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Pingbing Yu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuxin Lan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haojian Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Simin Lei
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
26
|
Gao Y, Xu R, Gu S, Chen K, Li J, He X, Shang S, Song Z, Song J. Discovery of Natural Rosin Derivatives Containing Oxime Ester Moieties as Potential Antifungal Agents to Control Tomato Gray Mold Caused by Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5551-5560. [PMID: 35502453 DOI: 10.1021/acs.jafc.2c01532] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by the application of natural products against pathogenic fungi, two series of dehydroabietyl oxime ester derivatives were synthesized using rosin as a raw material. Based on the evaluation and screening of in vitro antifungal activities against Botrytis cinerea (B. cinerea), Sclerotinia sclerotiorum, Valsa mali, Rhizoctonia solani, Fusarium oxysporum, and Alternaria alternata, compound 4f exhibited the best antifungal activity against B. cinerea, and its EC50 was 0.798 mg/L, which was lower than that of the positive control trifloxystrobin (1.112 mg/L). The in vivo antifungal activity results showed that 4f had satisfactory protective and curative effects on tomato. Physiological and biochemical studies showed that the action mechanism of compound 4f against B. cinerea is to change the morphology and the ultrastructure of the mycelium, increase the permeability of the cell membrane, and cause nucleus and mitochondrial dysfunction, thus leading to apoptosis. In addition, qualitative and quantitative structure-activity relationship studies showed that the inductive and conjugative interactions between compound 4f and the target receptor form an electron transfer process, thereby achieving an antifungal effect. These results indicated that compound 4f, which was derived from the natural product rosin, is a novel potential fungicidal candidate against B. cinerea.
Collapse
Affiliation(s)
- Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Renle Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Kun Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| |
Collapse
|
27
|
Wang Y, Mu Y, Hu X, Zhang C, Gao Y, Ma Z, Feng J, Liu X, Lei P. Indole/Tetrahydroquinoline as Renewable Natural Resource-Inspired Scaffolds in the Devising and Preparation of Potential Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4582-4590. [PMID: 35385275 DOI: 10.1021/acs.jafc.1c07879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a continuous effort toward developing novel and highly efficient agrochemicals for integrated management of crop pathogens, two series of oxime ester derivatives from indole and tetrahydroquinoline natural scaffolds were prepared. Guided by the preliminary inhibition rates against ubiquitous and representative fungi, the antifungal profile of the target compounds against Valsa mali was intensively and extensively studied. The tetrahydroquinoline-based derivatives 12a-12r exerted a promising inhibition effect, especially against V. mali. The remarkable compounds 12p (R = 4-OCF3) and 12r (R = 4-OBn) with EC50 values of 0.81 and 0.47 μg/mL, respectively, have a far more prominent activity than commercial fungicide trifloxystrobin. The biochemistry and physiology responses of V. mali after treatment with target compound 12p was examined, and the fruit body production, hyphae morphology, and organelles were profoundly affected. Moreover, the curative effects of compound 12p on apple detached branches and leaves were 57.69 and 64.84% at 100 μg/mL, respectively, which were even superior to that of trifloxystrobin. Meanwhile, the three-dimensional quantitative structure-activity relationship model [comparative molecular field analysis (CoMFA): q2 = 0.823, r2 = 0.924, F = 189.781, and standard error of estimation (SEE) = 0.138 and comparative molecular similarity index analysis (CoMSIA): q2 = 0.795, r2 = 0.904, F = 145.644, and SEE = 0.156] indicated that the antifungal activity of target compounds was facilitated by crucial structural factors, which would render inspiration for further design and discovery of novel fungicidal candidates.
Collapse
Affiliation(s)
- Yujia Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yali Mu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiatong Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caixia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Synthesis and biological activity of amide derivatives derived from natural product Waltherione F. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Li H, Wu Z, Chu QR, Liang HJ, Liu Y, Wu TL, Ma Y. Potential application value of hydroxychalcones based on isoliquiritigenin in agricultural plant diseases. NEW J CHEM 2022. [DOI: 10.1039/d2nj03261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To improve the fungicidal activity of lead compound isoliquiritigenin, 33 hydroxychalcones were designed and prepared. Their in vitro antifungal activity against four pathogenic fungi (Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum,...
Collapse
|