1
|
Pfannenstiel LJ, Scott JG, Buchon N. Piperonyl butoxide elicits a robust transcriptional response in adult Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106102. [PMID: 39277424 PMCID: PMC11403202 DOI: 10.1016/j.pestbp.2024.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
While much attention has been devoted to understanding the transcriptional changes underlying resistance to insecticides, comparatively little is known about the transcriptional response of naive insects to agrochemicals. In this study, we analyze the transcriptomic response of an insecticide susceptible strain of Drosophila melanogaster to nine agrochemicals using a robust method that goes beyond classical replication standards. Our findings demonstrate that exposure to piperonyl butoxide (PBO), but not to eight other compounds, elicits a robust transcriptional response in a wild-type strain of Drosophila melanogaster. PBO exposure leads to the upregulation of a subset of Cyps, GSTs, UGTs and EcKls. This response is both time and concentration-dependent, suggesting that the degree of inhibition of P450 activity correlates with the magnitude of the transcriptional response. Furthermore, the upregulation of these enzymes is excluded from reproductive organs. Additionally, different sets of genes are regulated in the digestive/secretory tract and the carcass. Our results suggest that P450s play a role in metabolizing yet unidentified endogenous compounds and are involved in an as-yet-unknown physiological regulatory feedback loop.
Collapse
Affiliation(s)
- Luke J Pfannenstiel
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA
| | - Nicolas Buchon
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
2
|
Wang J, Lu Z, Hu L, Zhong R, Xu C, Yang Y, Zeng R, Song Y, Sun Z. High nitrogen application in maize enhances insecticide tolerance of the polyphagous herbivore Spodoptera litura by induction of detoxification enzymes and intensification of cuticle. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106002. [PMID: 39084798 DOI: 10.1016/j.pestbp.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Nitrogen (N) is one of the most intensively used fertilizers in cropping system and could exert a variety of bottom-up effects on the ecological fitness of herbivores. However, the effects of increased N inputs on insect pesticide tolerance have not been comprehensively understood. Bioassays showed that high N (HN) applied to maize plants significantly increased larval tolerance of Spodoptera litura to multiple insecticides. Activities of detoxification enzymes were significantly higher in the larvae fed on maize plants supplied with HN. RNA-seq analysis showed that numerous GST and cuticle-related genes were induced in the larvae fed on HN maize. RT-qPCR analysis further confirmed four GST genes and larval-specific cuticle gene LCP167. Furthermore, when injected with dsRNA specific to GSTe1, GSTs5, and LCP167, the mortality of larvae treated with methomyl was about 3-fold higher than that of dsGFP-injected larvae. Electron microscope observation showed that cuticle of the larvae fed on HN maize was thicker than the medium level of N. These findings suggest that increased application of N fertilizer enhances insecticide tolerance of lepidopteran pests via induction of detoxification enzymes and intensification of cuticle. Thus, overuse of N fertilizer may increase pest insecticide tolerance and usage of chemical insecticides.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Lu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Hu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Runbin Zhong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yurui Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
3
|
Mao G, Lu W, Xu Y, Liu H, Xu H, Zeng J. Bruceine D inhibits the growth of Spodoptera litura by inducing cell apoptosis in the midgut via an oxidative burst. PEST MANAGEMENT SCIENCE 2024; 80:3126-3139. [PMID: 38344938 DOI: 10.1002/ps.8017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Spodoptera litura is one of the most harmful lepidoptera pests in China, and is difficult to control due to its strong resistance to the current frequently used insecticide species. The requirement to develop pesticides with novel toxicology mechanisms to control S. litura is urgent. The quassinoid of bruceine D display outstanding systemic properties and strong insecticidal activity against S. litura, which possess notable application potential for integrative management of S. litura, but the mechanism of toxicity remains unclear. RESULTS In this study, we found that bruceine D exerts potent growth inhibitory activity against S. litura, disrupting the ecdysone and juvenile hormone titers, and causing long-term adverse effects. Association analysis between transcriptomics and metabolomics suggested that bruceine D affected the digestion and absorption capacity of S. litura larvae by inducing a strong oxidative stress response and cell apoptosis in the intestine. Further analysis demonstrated that bruceine D can inhibit the activities of digestive and antioxidant enzymes and induce malondialdehyde (MDA) and reactive oxygen species (ROS) overaccumulation in the midgut. Moreover, the protein level of Bax, cleavage caspase 3, and cytochrome c expressed in cytoplasm (cyto) were up-regulated by bruceine D, while Bcl-2 and cytochrome c expressed in mitochondria (mito) were down-regulated. In addition, there was a noticeable increase in caspase-3 protease activity. Histopathological observations revealed that bruceine D damages the structure of midgut epithelial cells and activates lysosomes, which subsequently disrupts the midgut tissue. CONCLUSION Overall, our findings suggested that bruceine D induced excessive ROS accumulation in midgut epithelial cells. The resulting cell apoptosis disrupted midgut tissue, leading ultimately to reduced nutrient digestion and absorption in the midgut and the inhibition of larval growth. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Genlin Mao
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Wei Lu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Yuhui Xu
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| |
Collapse
|
4
|
Xin Y, Liang J, Ren C, Song W, Huang B, Liu Y, Zhang S. Physiological and transcriptomic responses of silkworms to graphene oxide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116434. [PMID: 38728944 DOI: 10.1016/j.ecoenv.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.
Collapse
Affiliation(s)
- Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jiawen Liang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjiu Ren
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Song
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Bokai Huang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
5
|
Deng M, Xiao T, Xu X, Wang W, Yang Z, Lu K. Nicotinamide deficiency promotes imidacloprid resistance via activation of ROS/CncC signaling pathway-mediated UGT detoxification in Nilaparvata lugens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172035. [PMID: 38565349 DOI: 10.1016/j.scitotenv.2024.172035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Metabolic alternation is a typical characteristic of insecticide resistance in insects. However, mechanisms underlying metabolic alternation and how altered metabolism in turn affects insecticide resistance are largely unknown. Here, we report that nicotinamide levels are decreased in the imidacloprid-resistant strain of Nilaparvata lugens, may due to reduced abundance of the symbiotic bacteria Arsenophonus. Importantly, the low levels of nicotinamide promote imidacloprid resistance via metabolic detoxification alternation, including elevations in UDP-glycosyltransferase enzymatic activity and enhancements in UGT386B2-mediated metabolism capability. Mechanistically, nicotinamide suppresses transcriptional regulatory activities of cap 'n' collar isoform C (CncC) and its partner small muscle aponeurosis fibromatosis isoform K (MafK) by scavenging the reactive oxygen species (ROS) and blocking the DNA binding domain of MafK. In imidacloprid-resistant N. lugens, nicotinamide deficiency re-activates the ROS/CncC signaling pathway to provoke UGT386B2 overexpression, thereby promoting imidacloprid detoxification. Thus, nicotinamide metabolism represents a promising target to counteract imidacloprid resistance in N. lugens.
Collapse
Affiliation(s)
- Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiyue Xu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Yang Z, Wang W, Deng M, Xiao T, Ma W, Huang X, Lu K. Characterization of Neuropeptides from Spodoptera litura and Functional Analysis of NPF in Diet Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10304-10313. [PMID: 38657164 DOI: 10.1021/acs.jafc.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenling Ma
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Yang Z, Deng M, Wang W, Xiao T, Peng H, Huang Z, Lu K. Characterization and functional analysis of UDP-glycosyltransferases reveal their contribution to phytochemical flavone tolerance in Spodoptera litura. Int J Biol Macromol 2024; 261:129745. [PMID: 38286378 DOI: 10.1016/j.ijbiomac.2024.129745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Efficient detoxification is the key factor for phytophagous insect to adapt to phytochemicals. However, the role of uridine diphosphate (UDP)-glycosyltransferases (UGTs) in insect anti-defense to phytochemical flavone is largely unknown. In this study, 52 UGT genes were identified in Spodoptera litura and they presented evident gene duplication. UGT played a crucial part in larval tolerance to flavone because the enzyme activity and transcriptional level of 77 % UGT members were remarkably upregulated by flavone administration and suppression of UGT enzyme activity and gene expressions significantly increased larval susceptibility to flavone. Bacteria coexpressing UGTs had high survival rates under flavone treatment and flavone was dramatically metabolized by UGT recombinant cells, which indicated the involvement of UGTs in flavone detoxification. What's more, ecdysone pathway was activated by flavone. Topical application of 20-hydroxyecdysone highly upregulated UGT enzyme activity and more than half of UGT expressions. The effects were opposite when ecdysone receptor (EcR) and ultraspiracle (USP)-mediated ecdysone signaling pathway was inhibited. Furtherly, promoter reporter assays of 5 UGT genes showed that their transcription activities were notably increased by cotransfection with EcR and USP. In consequence, this study suggested that UGTs were involved in flavone detoxification and their transcriptional expressions were regulated by ecdysone pathway.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Shu B, Lin Y, Huang Y, Liu L, Cai X, Lin J, Zhang J. Characterization and transcriptomic analyses of the toxicity induced by toosendanin in Spodoptera frugipreda. Gene 2024; 893:147928. [PMID: 37898452 DOI: 10.1016/j.gene.2023.147928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a destructive agricultural pest that seriously threatens global food security. Insecticide resistance of this pest has gradually formed in recent years due to improper usage, and alternative methods are badly needed. Toosendanin (TSN) is a botanical compound with broad-spectrum insecticidal activities against many pests. However, the effects of TSN on S. frugiperda are still unclear. In this study, the growth inhibition phenomenon, including weight loss and prolonged developmental duration, in the larvae with TSN exposure was clearly observed. Compared to the control group, a total of 450 and 3314 differentially expressed genes (DEGs) were identified by RNA-Seq in the larvae groups treated with 10 and 20 mg/kg TSN, respectively. Furthermore, the DEGs involved in the juvenile hormone and ecdysone signal pathways and downstream processes, including detoxifying enzyme genes, chitin synthesis and metabolism genes, and cuticular protein genes, were found. Our findings suggest that TSN regulates the expression of key genes in juvenile hormone and ecdysone signal pathways and a series of downstream processes to alter the hormone balance and cuticle formation and eventually inhibit larval growth, which laid the foundation for the molecular toxicological mechanism research of TSN on S. frugiperda larvae.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Jingjing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Shaoguan University.
| |
Collapse
|
9
|
Xiao T, Yang Z, Wang W, Deng M, Peng H, Huang Z, Liu J, Lu K. Role of the epsilon glutathione S-transferases in xanthotoxin tolerance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105592. [PMID: 37945225 DOI: 10.1016/j.pestbp.2023.105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 11/12/2023]
Abstract
Spodoptera litura, a polyphagous lepidopteran pest, demonstrates a remarkable capacity to adapt to varying host plants by efficiently detoxifying phytochemicals. However, the underlying mechanism for this adaptation is not well understood. Herein, twenty eplison glutathione S-transferase genes (GSTes) were characterized and their roles in phytochemical tolerance were analyzed in S. litura. Most of the GSTe genes were mainly expressed in the larval midgut and fat body. Exposure to the phytochemicals, especially xanthotoxin, induced the expression of most GSTe genes. Molecular docking analysis revealed that xanthotoxin could form stable bonds with six xanthotoxin-responsive GSTes, with binding free energies ranging from -36.44 to -68.83 kcal mol-1. Knockdown of these six GSTe genes increased the larval susceptibility to xanthotoxin. Furthermore, xanthotoxin exposure significantly upregulated the expression of two transcription factor genes CncC and MafK. Silencing of either CncC or MafK reduced the expression of GSTe16, which exhibited the largest change in response to xanthotoxin. Additionally, analysis of the promoter sequence of GSTe16 revealed the presence of seven CncC/Maf binding sites. Luciferase reporter assays showed that CncC and MafK enhanced the expression of GSTe16, leading to the increased xanthotoxin tolerance in S. litura. These findings provide insight into the functions and transcriptional regulatory mechanisms of GSTes, thereby enhancing our understanding of the role of GSTs in the adaptation of lepidopteran pests to phytochemicals.
Collapse
Affiliation(s)
- Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Xiao T, Wang W, Deng M, Yang Z, Peng H, Huang Z, Sun Z, Lu K. CYP321A Subfamily P450s Contribute to the Detoxification of Phytochemicals and Pyrethroids in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14989-15002. [PMID: 37792742 DOI: 10.1021/acs.jafc.3c05423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Although the induction of cytochrome P450 monooxygenases involved in insect detoxification has been well documented, the underlying regulatory mechanisms remain obscure. In Spodoptera litura, CYP321A subfamily members were effectively induced by exposure to flavone, xanthotoxin, curcumin, and λ-cyhalothrin, while knockdown of the CYP321A genes increased larval susceptibility to these xenobiotics. Homology modeling and molecular docking analyses showed that these four xenobiotics could stably bind to the CYP321A enzymes. Furthermore, two transcription factor genes, CncC and MafK, were significantly induced by the xenobiotics. Knockdown of CncC or MafK reduced the expression of four CYP321A genes and increased larval susceptibility to the xenobiotics. Dual-luciferase reporter assays showed that cotransfection of reporter plasmids carrying the CYP321A promoter with CncC and/or MafK-expressing constructs significantly magnified the promoter activity. These results indicate that the induction of CYP321A subfamily members conferring larval detoxification capability to xenobiotics is mediated by the activation of CncC and MafK.
Collapse
Affiliation(s)
- Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Amezian D, Fricaux T, de Sousa G, Maiwald F, Huditz HI, Nauen R, Le Goff G. Investigating the role of the ROS/CncC signaling pathway in the response to xenobiotics in Spodoptera frugiperda using Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105563. [PMID: 37666619 DOI: 10.1016/j.pestbp.2023.105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023]
Abstract
Spodoptera frugiperda (fall armyworm, FAW) is an invasive polyphagous lepidopteran pest that has developed sophisticated resistance mechanisms involving detoxification enzymes to eliminate toxic compounds it encounters in its diet including insecticides. Although its inventory of detoxification enzymes is known, the mechanisms that enable an adapted response depending on the toxic compound remain largely unexplored. Sf9 cells were used to investigate the role of the transcription factors, Cap n' collar isoform C (CncC) and musculoaponeurotic fibrosarcoma (Maf) in the regulation of the detoxification response. We overexpressed CncC, Maf or both genes, and knocked out (KO) CncC or its repressor Kelch-like ECH associated protein 1 (Keap1). Joint overexpression of CncC and Maf is required to confer increased tolerance to indole 3-carbinol (I3C), a plant secondary metabolite, and to methoprene, an insecticide. Both molecules induce reactive oxygen species (ROS) pulses in the different cell lines. The use of an antioxidant reversed ROS pulses and restored the tolerance to I3C and methoprene. The activity of detoxification enzymes varied according to the cell line. Suppression of Keap1 significantly increased the activity of cytochrome P450s, carboxylesterases and glutathione S-transferases. RNAseq experiments showed that CncC mainly regulates the expression of detoxification genes but is also at the crossroads of several signaling pathways (reproduction and immunity) maintaining homeostasis. We present new data in Sf9 cell lines suggesting that the CncC:Maf pathway plays a central role in FAW response to natural and synthetic xenobiotics. This knowledge helps to better understand detoxification gene expression and may help to design next-generation pest insect control measures.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Thierry Fricaux
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Georges de Sousa
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | | | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France.
| |
Collapse
|
12
|
Huang K, He H, Wang S, Zhang M, Chen X, Deng Z, Ni X, Li X. Sequential and Simultaneous Interactions of Plant Allelochemical Flavone, Bt Toxin Vip3A, and Insecticide Emamectin Benzoate in Spodoptera frugiperda. INSECTS 2023; 14:736. [PMID: 37754704 PMCID: PMC10532070 DOI: 10.3390/insects14090736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Target pests of genetically engineered crops producing both defensive allelochemicals and Bacillus thuringiensis (Bt) toxins often sequentially or simultaneously uptake allelochemicals, Bt toxins, and/or insecticides. How the three types of toxins interact to kill pests remains underexplored. Here we investigated the interactions of Bt toxin Vip3A, plant allelochemical flavone, and insecticide emamectin benzoate in Spodoptera frugiperda. Simultaneous administration of flavone LC25 + Vip3A LC25, emamectin benzoate LC25 + Vip3A LC25, and flavone LC15 + emamectin benzoate LC15 + Vip3A LC15 but not flavone LC25 + emamectin LC25 yielded a mortality significantly higher than their expected additive mortality (EAM). One-day pre-exposure to one toxin at LC5 followed by six-day exposure to the same toxin at LC5 plus another toxin at LC50 showed that the mortality of flavone LC5 + Vip3A LC50, emamectin benzoate LC5 + Vip3A LC50, and Vip3A LC5 + emamectin benzoate LC50 were significantly higher than their EAM, while that of flavone LC5 + emamectin benzoate LC50 was significantly lower than their EAM. No significant difference existed among the mortalities of Vip3A LC5 + flavone LC50, emamectin benzoate LC5 + flavone LC50, and their EAMs. The results suggest that the interactions of the three toxins are largely synergistic (inductive) or additive, depending on their combinations and doses.
Collapse
Affiliation(s)
- Kaiyuan Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
| | - Haibo He
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
| | - Shan Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuewei Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, GA 31793, USA;
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
13
|
Yang Z, Xiao T, Deng M, Wang W, Peng H, Lu K. Nuclear receptors potentially regulate phytochemical detoxification in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105417. [PMID: 37105640 DOI: 10.1016/j.pestbp.2023.105417] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Phytochemicals are a class of potential pesticides for pest control. Our previous studies have demonstrated that the development of Spodoptera litura is suppressed by two phytochemicals, flavone and xanthotoxin. Generally, phytochemical is metabolized by insect detoxification enzyme systems. Nuclear receptor (NR) is the ligand-activated transcription factor that involved in the regulation of detoxification gene expressions. To explore how NR responds to phytochemical to mediate detoxification gene expression, in the present study, 19 NRs were firstly identified in S. litura genome. The transcriptional levels of most NRs were significantly induced in the midgut of S. litura larvae after exposure to flavone and xanthotoxin. RNAi-mediated knockdown of FTZF1, EcR, Dsf, and HR3 remarkably reduced the larval tolerance to flavone or xanthotoxin. In addition, many crucial detoxification genes were downregulated by dsNR administrations, which might be responsible for the high sensitivity of S. litura to phytochemicals. Molecular docking indicated that phytochemicals as the potential ligands had high affinity to bind to NRs. This study suggested that NR potentially regulated the transcriptional expression of detoxification genes in response to phytochemical stresses, which partially elucidated the mechanism of extensive host adaptation in S. litura and provided the theoretical evidences for the development of NR-targeted insecticides.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Zhang C, Wang X, Tai S, Qi L, Yu X, Dai W. Transcription factor CncC potentially regulates cytochrome P450 CYP321A1-mediated flavone tolerance in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105360. [PMID: 36963951 DOI: 10.1016/j.pestbp.2023.105360] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Insect P450s play crucial roles in metabolizing insecticides and toxic plant allelochemicals. In this study, our results demonstrate that Helicoverpa armigera can adapt to a lower concentration of flavone (a flavonoid phytochemical), and P450 activities and CYP321A1 transcript levels significantly increase after exposure to flavone. RNAi-mediated knockdown of CYP321A1 significantly reduced the tolerance of H. armigera larvae to flavone. In addition, the regulatory mechanisms driving CYP321A1 induction following exposure to flavone were investigated. Flavone exposure significantly increased H2O2 generation in the larval midgut. The mRNA levels of HaCncC and HaMaf-s significantly increased in the midgut of H. armigera after exposure to flavone. Knockdown of HaCncC significantly inhibited expression of flavone-induced CYP321A1 and resulted in a decrease in flavone induction of CYP321A1. HaCncC knockdown significantly reduced the tolerance of H. armigera larvae to flavone. Taken together, these results indicate that HaCncC regulates expression of the CYP321A1 gene responsible for flavone tolerance in H. armigera.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinxiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shulei Tai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijun Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Zhang C, Zhou T, Li Y, Dai W, Du S. Activation of the CncC pathway is involved in the regulation of P450 genes responsible for clothianidin resistance in Bradysia odoriphaga. PEST MANAGEMENT SCIENCE 2023. [PMID: 36974603 DOI: 10.1002/ps.7482] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Insect cytochrome P450 monooxygenases (P450s) play a key role in the detoxification metabolism of insecticides and their overexpression is often associated with insecticide resistance. Our previous research showed that the overexpression of four P450 genes is responsible for clothianidin resistance in B. odoriphaga. In this study, we characterized another P450 gene, CYP6FV21, associated with clothianidin resistance. However, the molecular basis for the overexpression of P450 genes in clothianidin-resistant strain remains obscure in B. odoriphaga. RESULTS In this study, the CYP6FV21 gene was significantly overexpressed in the clothianidin-resistant (CL-R) strain. Clothianidin exposure significantly increased the expression level of CYP6FV21. Knockdown of CYP6FV21 significantly increased the susceptibility of B. odoriphaga larvae to clothianidin. The transcription factor Cap 'n' Collar isoform-C (CncC) was highly expressed in the midgut of larvae in B. odoriphaga. The expression level of CncC was higher in the CL-R strain compared with the susceptible (SS) strain. Clothianidin exposure caused reactive oxygen species (ROS) accumulation and significantly increased the expression level of CncC. Knockdown of CncC caused a significant decrease in the expression of CYP3828A1 and CYP6FV21, and P450 enzyme activity, and led to a significant increase in mortality after exposure to lethal concentration at 30% (LC30 ) of clothianidin. After treatment with CncC agonist curcumin, the P450 activity and the expression levels of CYP3828A1 and CYP6FV21 significantly increased, and larval sensitivity to clothianidin decreased. The ROS scavenger N-acetylcysteine (NAC) treatment significantly inhibited the expression levels of CncC, CYP3828A1 and CYP6FV21 in response to clothianidin exposure and increased larval sensitivity to clothianidin. CONCLUSION Taken together, these results indicate that activation of the CncC pathway by the ROS burst plays a critical role in clothianidin resistance by regulating the expression of CYP3828A1 and CYP6FV21 genes in B. odoriphaga. This study provides more insight into the mechanisms underlying B. odoriphaga larval resistance to clothianidin. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Taoling Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shaokai Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Yang Z, Xiao T, Lu K. Contribution of UDP-glycosyltransferases to chlorpyrifos resistance in Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105321. [PMID: 36740334 DOI: 10.1016/j.pestbp.2022.105321] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
As a multigene superfamily of Phase II detoxification enzymes, uridine diphosphate (UDP)-glycosyltransferases (UGTs) play important roles in the metabolism of xenobiotics including insecticides. In this study, 5-nitrouracil, an inhibitor of UGT enzyme activity, effectively increased the toxicity of chlorpyrifos to the chlorpyrifos-resistant strain of Nilaparvata lugens, one of the most resistant rice pests. The enzyme content of UGT in the resistant strain was significantly higher than that in the susceptible strain. Among 20 identified UGT genes, UGT386H2, UGT386J2, UGT386N2 and UGT386P1 were found significantly overexpressed in the resistant strain and can be effectively induced by chlorpyrifos. These four UGT genes were most highly expressed in the midgut and/or fat body, two main insect detoxification tissues. Amino acid sequence alignments revealed that these four UGTs contained a variable N-terminal substrate-binding domain and a conserved C-terminal sugar donor-binding domain. Furthermore, homology modeling and molecular docking analyses showed that these UGTs could stably bind to chlorpyrifos and chlorpyrifos oxon, with the binding free energies from -19.4 to -110.62 kcal mol-1. Knockdown of UGT386H2 or UGT386P1 by RNA interference dramatically increased the susceptibility of the resistant strain to chlorpyrifos. These findings suggest that overexpression of these two UGT genes contributes to chlorpyrifos resistance in N. lugens.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
17
|
Identification and Functional Characterization of the Transcription Factors AhR/ARNT in Dendroctonus armandi. Cells 2022; 11:cells11233856. [PMID: 36497113 PMCID: PMC9736963 DOI: 10.3390/cells11233856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) belong to the bHLH-PAS (basic Helix-Loop-Helix-Period/ARNT/Single-minded) family of transcription factors, which participate in the sensing and transmitting stimuli of exogenous and endogenous chemical substances, and subsequently activates genes transcription involved in various detoxification and physiological functions. However, they have not been identified in Dendroctonus armandi, and their roles in the detoxification metabolism are unclear. In the present study, AhR and ARNT of D. armandi were characterized. Spatiotemporal expression profiling indicated that DaAhR and DaARNT were highly expressed in the adult and larval stages of D. armandi and mainly expressed in the midgut and Malpighian tubules of adults. Additionally, the expression of DaAhR and DaARNT significantly increased after exposure to (-)-𝛽-pinene, (+)-3-carene, and (±)-limonene. Silencing DaAhR and DaARNT increased the susceptibility of D. armandi to (-)-𝛽-pinene, (+)-3-carene, and (±)-limonene, and the activities of detoxification enzyme were also remarkably reduced. Moreover, DaCYP6DF1 and DaGSTs2 were significantly down-regulated after injections of dsAhR and dsARNT in the male and female adults, with the expression of DaCYP6DF1 decreasing by higher than 70%. The present study revealed that the transcription factors AhR and ARNT of D. armandi were induced by terpenoids and participated in the regulation of DaCYP6DF1 expression, which was associated with D. armandi's susceptibility to (-)-𝛽-pinene and (±)-limonene. These results may provide a theoretical basis for the integrated control of D. armandi and improve our comprehension of insect toxicology.
Collapse
|
18
|
Lu Z, Sun Z, Li Y, Hao R, Chen Y, Chen B, Qin X, Tao X, Gui F. Effects of Elevated CO 2 Concentration on Host Adaptability and Chlorantraniliprole Susceptibility in Spodoptera frugiperda. INSECTS 2022; 13:1029. [PMID: 36354853 PMCID: PMC9699368 DOI: 10.3390/insects13111029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Elevated atmospheric carbon dioxide concentrations (eCO2) can affect both herbivorous insects and their host plants. The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous agricultural pest that may attack more than 350 host plant species and has developed resistance to both conventional and novel-action insecticides. However, the effects of eCO2 on host adaptability and insecticide resistance of FAW are unclear. We hypothesized that eCO2 might affect insecticide resistance of FAW by affecting its host plants. To test this hypothesis, we investigated the effect of eCO2 on (1) FAW's susceptibility to chlorantraniliprole after feeding on wheat, (2) FAW's population performance traits (including the growth and reproduction), and (3) changes in gene expression in the FAW by transcriptome sequencing. The toxicity of chlorantraniliprole against the FAW under eCO2 (800 µL/L) stress showed that the LC50 values were 2.40, 2.06, and 1.46 times the values at the ambient CO2 concentration (400 µL/L, aCO2) for the three generations, respectively. Under eCO2, the life span of pupae and adults and the total number of generations were significantly shorter than the FAW under aCO2. Compared to the aCO2 treatment, the weights of the 3rd and 4th instar larvae and pupae of FAW under eCO2 were significantly heavier. Transcriptome sequencing results showed that more than 79 detoxification enzyme genes in FAW were upregulated under eCO2 treatment, including 40 P450, 5 CarE, 17 ABC, and 7 UGT genes. Our results showed that eCO2 increased the population performance of FAW on wheat and reduced its susceptibility to chlorantraniliprole by inducing the expression of detoxification enzyme genes. This study has important implications for assessing the damage of FAW in the future under the environment of increasing atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Zhihui Lu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Ruoshi Hao
- Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming 650201, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoping Qin
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xuan Tao
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
19
|
Xiao T, Lu K. Functional characterization of CYP6AE subfamily P450s associated with pyrethroid detoxification in Spodoptera litura. Int J Biol Macromol 2022; 219:452-462. [DOI: 10.1016/j.ijbiomac.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
|
20
|
Xi X, Wang J, Qin Y, You Y, Huang W, Zhan J. The Biphasic Effect of Flavonoids on Oxidative Stress and Cell Proliferation in Breast Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11040622. [PMID: 35453307 PMCID: PMC9032920 DOI: 10.3390/antiox11040622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Flavonoids have been reported to play an essential role in modulating processes of cellular redox homeostasis such as scavenging ROS. Meanwhile, they also induce oxidative stress that exerts potent antitumor bioactivity. However, the contradiction between these two aspects still remains unclear. In this study, four typical flavonoids were selected and studied. The results showed that low-dose flavonoids slightly promoted the proliferation of breast cancer cells under normal growth via gradually reducing accumulated oxidative products and demonstrated a synergistic effect with reductants NAC or VC. Besides, low-dose flavonoids significantly reduced the content of ROS and MDA induced by LPS or Rosup but restored the activity of SOD. However, high-dose flavonoids markedly triggered the cell death via oxidative stress as evidenced by upregulated ROS, MDA and downregulated SOD activity that could be partly rescued by NAC pretreatment, which was also confirmed by antioxidative gene expression levels. The underlying mechanism of such induced cell death was pinpointed as apoptosis, cell cycle arrest, accumulated mitochondrial superoxide, impaired mitochondrial function and decreased ATP synthesis. Transcriptomic analysis of apigenin and quercetin uncovered that high-dose flavonoids activated TNF-α signaling, as verified through detecting inflammatory gene levels in breast cancer cells and RAW 264.7 macrophages. Moreover, we identified that BRCA1 overexpression effectively attenuated such oxidative stress, inflammation and inhibited ATP synthesis induced by LPS or high dose of flavonoids possibly through repairing DNA damage, revealing an indispensable biological function of BRCA1 in resisting oxidative damage and inflammatory stimulation caused by exogenous factors.
Collapse
|
21
|
Amezian D, Mehlhorn S, Vacher-Chicane C, Nauen R, Le Goff G. Spodoptera frugiperda Sf9 cells as a model system to investigate the role of detoxification gene expression in response to xenobiotics. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100037. [PMID: 36003261 PMCID: PMC9387494 DOI: 10.1016/j.cris.2022.100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
Spodoptera frugiperda (fall armyworm) is a highly destructive invasive pest that feeds on numerous crops including maize and rice. It has developed sophisticated mechanisms to detoxify xenobiotics such as secondary plant metabolites as well as manmade insecticides. The aim of the study was to explore the detoxification response to plant secondary metabolites and insecticides employing a S. frugiperda Sf9 cell model exposed to indole 3-carbinol (I3C) and methoprene. The cell Inhibitory Concentration 50 (IC50) for these molecules was determined and IC10, IC20 and IC30 doses were used to monitor the induction profiles of detoxification genes. Cytochrome P450 monooxygenases (P450s) of the CYP9A subfamily were the most inducible genes of the seven examined. Our results also showed the induction of the transcription factor Cap'n'collar isoform C (CncC). Transient transformation of Sf9 cells overexpressing CncC and its partner muscle aponeurosis fibromatosis (Maf) induces overexpression of CYP4M14, CYP4M15, CYP321A9 and GSTE1 while CYP9As were not induced. Next, we determined the capacity of recombinantly expressed CYP9A30, CYP9A31 and CYP9A32 to interact with methoprene and I3C. Fluorescence-based biochemical assays revealed an interaction of methoprene with functionally expressed CYP9A30, CYP9A31 and CYP9A32 whereas almost no interaction was detected for I3C, suggesting the ability of CYP9As to metabolize methoprene. Our results showed that Sf9 cells could be a useful model to decipher detoxification pathways of S. frugiperda.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Sonja Mehlhorn
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | | | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| |
Collapse
|
22
|
Lu K, Li Y, Cheng Y, Li W, Zeng B, Gu C, Zeng R, Song Y. Activation of the ROS/CncC and 20-Hydroxyecdysone Signaling Pathways Is Associated with Xanthotoxin-Induced Tolerance to λ-Cyhalothrin in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13425-13435. [PMID: 34748318 DOI: 10.1021/acs.jafc.1c04519] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adaptation to phytochemicals in herbivorous insects can influence tolerance to insecticides. However, it is unclear how insects use phytochemicals as cues to activate their metabolic detoxification systems. In this study, we found that dietary exposure to xanthotoxin enhanced tolerance of Spodoptera litura larvae to λ-cyhalothrin. Xanthotoxin ingestion significantly elevated the mRNA levels of 35 detoxification genes as well as the transcription factors Cap 'n' collar isoform-C (CncC) and its binding factor small muscle aponeurosis fibromatosis isoform-K (MafK). Additionally, xanthotoxin exposure increased the levels of reactive oxygen species (ROS), while ROS inhibitor N-acetylcysteine (NAC) treatment blocked xanthotoxin-induced expression of CncC, MafK, and detoxification genes and also prevented xanthotoxin-enhanced larval tolerance to λ-cyhalothrin. The 20-hydroxyecdysone (20E) signaling pathway was effectively activated by xanthotoxin, while blocking of 20E signaling transduction prevented xanthotoxin-enhanced larval tolerance to λ-cyhalothrin. Application of 20E induced the expression of multiple xanthotoxin-induced detoxification genes and enhanced λ-cyhalothrin tolerance in S. litura. NAC treatment blocked xanthotoxin-induced 20E synthesis, while the CncC agonist curcumin activated the 20E signaling pathway. These results indicate that the ROS/CncC pathway controls the induction of metabolic detoxification upon exposure to xanthotoxin, at least in part, through its regulation of the 20E signaling pathway.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yimin Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibei Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenru Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bixue Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhen Gu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Chen Y, Zhou H, Lai Y, Chen Q, Yu XQ, Wang X. Gut Microbiota Dysbiosis Influences Metabolic Homeostasis in Spodoptera frugiperda. Front Microbiol 2021; 12:727434. [PMID: 34659154 PMCID: PMC8514726 DOI: 10.3389/fmicb.2021.727434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Insect gut microbiota plays important roles in acquiring nutrition, preventing pathogens infection, modulating immune responses, and communicating with environment. Gut microbiota can be affected by external factors such as foods and antibiotics. Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important destructive pest of grain crops worldwide. The function of gut microbiota in S. frugiperda remains to be investigated. In this study, we fed S. frugiperda larvae with artificial diet with antibiotic mixture (penicillin, gentamicin, rifampicin, and streptomycin) to perturb gut microbiota, and then examined the effect of gut microbiota dysbiosis on S. frugiperda gene expression by RNA sequencing. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the most dominant phyla in S. frugiperda. We found that the composition and diversity of gut bacterial community were changed in S. frugiperda after antibiotics treatment. Firmicutes was decreased, and abundance of Enterococcus and Weissella genera was dramatically reduced. Transcriptome analysis showed that 1,394 differentially expressed transcripts (DETs) were found between the control and antibiotics-treated group. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that antibiotics-induced dysbiosis affected many biological processes, such as energy production, metabolism, and the autophagy–lysosome signal pathway. Our results indicated that dysbiosis of gut microbiota by antibiotics exposure affects energy and metabolic homeostasis in S. frugiperda, which help better understand the role of gut microbiota in insects.
Collapse
Affiliation(s)
- Yaqing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| | - Huanchan Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| | - Yushan Lai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| |
Collapse
|
24
|
Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int J Mol Sci 2021; 22:8995. [PMID: 34445697 PMCID: PMC8396434 DOI: 10.3390/ijms22168995] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phytochemical-based applications in both agricultural and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.S.); (K.G.); (K.G.); (J.K.); (F.Y.); (P.Y.)
| |
Collapse
|