1
|
Xiao Y, Wang H, Gao C, Ye X, Lai Y, Chen M, Ren X. Fluorescence sensing techniques for quality evaluation of traditional Chinese medicines: a review. J Mater Chem B 2024; 12:12412-12436. [PMID: 39530288 DOI: 10.1039/d4tb01886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Traditional Chinese medicines (TCMs) are highly valued and widely used worldwide. However, their complex compositions and various preparation processes have brought considerable challenges to the quality evaluation of Chinese medicines. The traditional methods for TCM quality evaluation suffer from the problems of cumbersome sample preparation, a long detection time, low sensitivity, etc. A more efficient and accurate evaluation method is urgently needed to ensure the stability and reliability of the quality of TCMs. As an emerging analytical technology, a fluorescent probe has the advantages of high sensitivity, high selectivity, easy operation, etc. It is capable of generating a specific fluorescent signal response to specific components in traditional Chinese medicines, realizing rapid and accurate detection of target components, which effectively solves the many difficulties of traditional methods. The purpose of this paper is to discuss the application of fluorescent probes in the quality evaluation of traditional Chinese medicines and the challenges they face. By introducing the principles, advantages and specific application cases of fluorescent probe technology in the quality evaluation of traditional Chinese medicines, we hope to provide new and efficient analytical ideas for the quality evaluation of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yanyu Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chenxia Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xinyi Ye
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuting Lai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meiling Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Li Y, Cheng Y, Huang Y, Zhao P, Fei J, Xie Y. Bimetallic PdCu anchored to 3D flower-like carbon material for portable and efficient detection of glyphosate. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135786. [PMID: 39278031 DOI: 10.1016/j.jhazmat.2024.135786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Glyphosate (Gly), as a widely used broad-spectrum herbicide, may lead to soil and water pollution due to its persistence in the environment. Herein, the co-reduction method was employed to anchor bimetallic PdCu onto the Ni and nitrogen-doped 3D Flower-like Carbon Materials (Ni@NC), creating a composite material (PdCu/Ni@NC) with high specific surface area and good catalytic performance. This composite was used to modify screen-printed electrodes (SPE) to develop a portable and efficient Gly detection platform. In the presence of Cl⁻, the copper active sites convert to CuCl, achieving signal amplification. Upon the addition of Gly, a competitive reaction between Cu and Gly converts CuCl into a Cu-Gly complex, resulting in a sharp decrease in the electrochemical signal. This signal drop is used to detect Gly. The bimetallic PdCu nanoparticles (NPs) endowed the sensing platform with better stability and electrochemical performance due to their synergistic effect, and their stability was simply verified by Density functional theory (DFT). The sensor demonstrates a linear detection range spanning from 1 × 10⁻¹ ³ to 1 × 10⁻⁵ M, with a limit of detection (LOD) of 3.72 × 10⁻¹ ⁴ M. The sensor demonstrated a recovery rate of 95.9 % to 104.5 % in actual samples such as water and soil, indicating its potential for practical application.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
3
|
Du Y, Liu Z, He F. Fabrication of a novel bifunctional magnetic nanocomposite for colorimetric detection and removal of glyphosate. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136772. [PMID: 39647337 DOI: 10.1016/j.jhazmat.2024.136772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Overuse of glyphosate, the most widespread herbicide used in agricultural areas around the world, causes it to accumulate in soil and water, posing a serious threat to the agricultural environment, crop growth and food safety. It is of vital significance to develop effective strategies to achieve rapid monitoring and management of glyphosate. However, previously documented methods have rarely been applied to simultaneously detect and remove glyphosate in water environments. Here, we have created a novel magnetic nanocomposite Iron-oxide/polydopamine/graphene-oxide/copper-oxide (Fe3O4/PDA/GO/CuO) that integrated the dual functions of detection and removal, enabling the colorimetric detection and adsorption of glyphosate. As a colorimetric probe, Fe3O4/PDA/GO/CuO exhibited excellent sensing performance with broad detection range (0.05-1 mg/L and 5-110 mg/L), low detection limit (0.028 mg/L), and good selectivity. Simultaneously, it realized a rapid and sensitive visual analysis of glyphosate on the test strips by RGB color. As an adsorbent, Fe3O4/PDA/GO/CuO obtained effective adsorption and rapid separation of glyphosate in water solution. Moreover, as an attempt, we explored the potential of Fe3O4/PDA/GO/CuO for crop remediation by removing glyphosate-contaminated water. This work opens up a new idea for the integrated strategy of glyphosate detection and removal in water environments and also demonstrates its enormous potential for rapid monitoring and management of herbicide.
Collapse
Affiliation(s)
- Yuanchun Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zekai Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
Huang Y, Wang J, Qu H, Li W, Ren J, Zhong H. Selective dual-mode detection of glyphosate facilitated by iron organic frameworks nanozymes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124561. [PMID: 38833884 DOI: 10.1016/j.saa.2024.124561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
To satisfy the public's urgent demand for food safety and protect the ecological environment, sensitive detection of glyphosate holds paramount importance. Here, we discovered that glyphosate can engage in specific interactions with iron organic frameworks (Fe-MOFs) nanozymes, enabling a selective detection of glyphosate. Based on this principle, an innovative colorimetric and fluorescent dual-mode detection approach was devised. Specifically, Fe-MOFs were synthesized at room temperature, exhibiting remarkable peroxidase-mimic activity. These nanozymes catalyze the conversion of colorless and fluorescent 3,3',5,5'-Tetramethylbenzidine (TMB) into blue oxidized and nonfluorescent TMB (oxTMB) in the presence of H2O2. However, the introduction of glyphosate disrupts this process by interacting with Fe-MOFs, significantly inhibiting the catalytic activity of Fe-MOFs through both physical (electrostatic and hydrogen bonding) and chemical interactions. This suppression further hindered the conversion of TMB to oxTMB, resulting in a reduction in absorbance and a corresponding enhancement in fluorescence. The method offers a colorimetric and fluorescence dual-mode detection capability with enhanced applicability. Notably, our approach avoids complex material modifications and is more stable and cost-effective than the traditional enzyme inhibition methods. This innovative detection technique holds immense potential for practical applications and provides a fresh perspective for the detection of pesticide residues.
Collapse
Affiliation(s)
- Ying Huang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, PR China; National Engineering Research Center for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Jiulin Wang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, PR China; Hunan Renzhi Testing Technology Co., Ltd., Changsha 410300, PR China
| | - Hao Qu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, PR China; National Engineering Research Center for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, PR China; National Engineering Research Center for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, PR China; National Engineering Research Center for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Haiyan Zhong
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, PR China; National Engineering Research Center for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
5
|
Ranolia A, Kiran, Priyanka, Kumar Dhaka R, Sindhu J. Real time monitoring of nerve agent mimics: Novel solid state emitter for enhanced precision and reliability. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135508. [PMID: 39182297 DOI: 10.1016/j.jhazmat.2024.135508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Chemical nerve agents are hazardous compounds that terrorists can exploit to pose a significant threat to public safety and national security. The nucleophilic behaviour of these agents enables their interaction with acetyl cholinesterase in the body, leading to paralysis and potentially fatal consequences. Therefore, developing robust and efficient detection methods for these agents is crucial for preventing their misuse. In this manuscript, (E)-12-(1-hydrazineylideneethyl)benzo[f]pyrido[1,2-a]indole-6,11-dione (HBID) is developed as a novel colorimetric and fluorometric probe for the detection of specific chemical nerve agent simulants in both liquid and vapor phase. HBID reacts rapidly with diethyl chlorophosphate (DCP), a common nerve agent simulant, leading to a significant increase in the fluorescence intensity. Under optimized conditions, HBID exhibits high sensitivity, good recyclability, fast response and low limit of detection (0.092 µM). NMR and mass spectral studies suggest that the reaction involves the nucleophilic addition of HBID to DCP, forming a phosphate ester. Additionally, the developed sensor demonstrates viscosity-sensitive AIE phenomena thus greatly expanding its potential applications in biological systems. This sensitivity enables precise detection and visualization of viscosity changes within cellular environments, making the sensor an invaluable tool for studying complex biological processes. The developed probe also detects pH within biologically relevant range (4-6). In practical applications, the probe-treated strips efficiently detected DCP vapor in real time, showing a noticeable fluorescence response. Further, the probe has a strong potential to detect the presence of DCP in the soil samples.
Collapse
Affiliation(s)
- Anju Ranolia
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | - Priyanka
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | | | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India.
| |
Collapse
|
6
|
Zhang J, Suo Z, Liang R, Wei M, Ren W, Xu Y, He B, Jin H, Zhao R. Label-free ratiometric fluorescence detection of Pb 2+via structure-specific fluorescent dyes and dual signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6229-6240. [PMID: 39206535 DOI: 10.1039/d4ay01369g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lead ions (Pb2+) are a widely distributed and highly toxic heavy metal pollutant, which seriously threatens the environment, economy and human safety. Here, a label-free ratiometric fluorescent biosensor was constructed for Pb2+ detection using DNAzyme-driven target cycling and exonuclease III (Exo III)-mediated DNA cycling as a dual signal amplification strategy. The SYBR Green I (SGI) and N-methyl mesoporphyrin IX (NMM) used in this study are characterized by low cost, storage resistance, and short preparation time compared with conventional signaling probes labeled with fluorescent groups. Unlike the single-emission fluorescence strategy, monitoring the fluorescence intensity ratio of SGI and NMM can effectively reduce external interference to achieve accurate detection of Pb2+. DNAzyme structures on the surface of magnetic beads (MBs) can recognize Pb2+ and activate the target circulatory system to cleave single-stranded DNA (ssDNA). The ssDNA further initiated the Exo III-assisted DNA circulatory system to digest double-stranded DNA (dsDNA) and release guanine-rich G1. Finally, the fluorescence signals of SGI and NMM were weakened and enhanced, respectively. The sensing strategy achieved a wide linear range from 0.5 to 500 nM and a low limit of detection (LOD) of 26.4 pM. Furthermore, its anti-interference ability and potential applicability for Pb2+ detection in actual samples were verified. This work ingeniously combines the dual signal amplification strategy with the ratiometric sensing strategy constructed by structure-specific fluorescent dyes, which provides a promising method for constructing sensitive and accurate fluorescent biosensors.
Collapse
Affiliation(s)
- Jinmin Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Ruirui Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Wenjie Ren
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Yiwei Xu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Renyong Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Che S, Zhuge Y, Peng X, Fan X, Fan Y, Chen X, Fu H, She Y. An ion synergism fluorescence probe via Cu 2+ triggered competition interaction to detect glyphosate. Food Chem 2024; 448:139021. [PMID: 38574711 DOI: 10.1016/j.foodchem.2024.139021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
The widespread use of glyphosate (Gly) poses significant risks to environmental and human health, underscoring the urgent need for its sensitive and rapid detection. In this work, we innovated by developing a novel material, ionic liquids, which formed the ionic probe "[P66614]2[2,3-DHN]-Cu2+ (PDHN-Cu2+)" through coordination with Cu2+. This probe capitalized on the distinctive fluorescence quenching properties of ionic liquids in the presence of Cu2+, driven by synergistic interactions between anions and cations. Glyphosate disrupted the PDHN-Cu2+ coordination structure due to its stronger affinity for Cu2+, triggering a "turn-on" fluorescence response. Impressively, PDHN-Cu2+ enabled the sensitive detection of glyphosate within just one minute, achieving a detection limit as low as 71.4 nM and excellent recovery rates of 97-103% in diverse samples. This groundbreaking approach, utilizing ionic probes, lays a robust foundation for the accurate and real-time monitoring of pesticides, employing a strategy based on synergism and competitive coordination.
Collapse
Affiliation(s)
- Siying Che
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiwan Zhuge
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiutan Peng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingxing Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yao Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haiyan Fu
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Yan T, Wang X, Liu C, Cai X, Wang Y, Liu X, Rong X, Wang K, Li W, Sheng W, Zhu B. A Carbamoyl Oxime-Based Highly Specific Fluorescent Chemodosimeter for Monitoring Labile Fe 2+ in Food and Living Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13341-13347. [PMID: 38830118 DOI: 10.1021/acs.jafc.4c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Iron is an essential element in the composition of living organisms and plays a crucial role in a wide range of biological activities. The human body primarily obtains essential iron through the consumption of food. Therefore, it is vital for the health of human body to maintain iron homeostasis. The reducing character of the cellular microenvironment enables Fe2+ to occupy a dominant position within the cell. Hence, there is an urgent need for a simple and sensitive tool that can detect a large amount of Fe2+ in organisms. In this work, a highly specific fluorescent chemodosimeter NPCO ("NP" represents the naphthalimide fluorophore, and "CO" represents the carbamoyl oxime structure) for the detection of Fe2+ with excellent sensitivity (LOD = 82 nM) was constructed by incorporating a novel carbamoyl oxime structure as the recognition group. NPCO can be effectively employed for the detection of Fe2+ in food samples, living cells, and zebrafish. Furthermore, by using soybean sprouts as a model plant, the application of NPCO was expanded to detect Fe2+ in plants. Therefore, NPCO could be used as an excellent assay tool for detecting Fe2+ in organisms and is expected to be an important aid in exploring the mechanism of iron regulation.
Collapse
Affiliation(s)
- Tingyi Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xinyu Cai
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xueting Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
9
|
Xiao W, Zhang Q, You DH, Li NB, Zhou GM, Luo HQ. Construction of a novel flavonol fluorescent probe for copper (II) ion detection and its application in actual samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124175. [PMID: 38565051 DOI: 10.1016/j.saa.2024.124175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Copper is an essential trace element in the human body, and its level is directly related to many diseases. While the source of copper in human body is mainly intake from food, then the detection of copper ions (Cu2+) in food becomes crucial. Here, we synthesized a novel probe (E)-3-hydroxy-2-styryl-4H-benzo[h]chromen-4-one (NSHF) and explored the binding ability of NSHF for Cu2+ using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), high-resolution mass spectrometry (HRMS), Job's plot method and density functional theory (DFT). NSHF shows the advantages of fast response time, good selectivity and high sensitivity for Cu2+. The fluorescence intensity ratio (F/F0) of NSHF shows a good linear relationship with the concentration of Cu2+ and the detection limit is 0.061 μM. NSHF was successfully applied to the detection of Cu2+ in real samples. In addition, a simple and convenient Cu2+ detection platform was constructed by combining NSHF with a smartphone and a UV lamp, which can realize the rapid detection of Cu2+. This work provides an effective tool for the real-time detection of Cu2+.
Collapse
Affiliation(s)
- Wei Xiao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Hui You
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Guang Ming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
10
|
Tao X, Mao Y, Alam S, Wang A, Qi X, Zheng S, Jiang C, Chen SY, Lu H. Sensitive fluorescence detection of glyphosate and glufosinate ammonium pesticides by purine-hydrazone-Cu 2+ complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124226. [PMID: 38560950 DOI: 10.1016/j.saa.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Organophosphorus pesticides play an important role as broad-spectrum inactivating herbicides in agriculture. Developing a method for rapid and efficient organophosphorus pesticides detection is still urgent due to the increasing concern on food safety. An organo-probe (ZDA), synthesized by purine hydrazone derivative and 2,2'-dipyridylamine derivative, was applied in sensitive recognition of Cu2+ with detection limit of 300 nM. Mechanism study via density functional theory (DFT) and job's plot experiment revealed that ZDA and Cu2+ ions form a 1:2 complex quenching the fluorescence emission. Moreover, this fluorescent complex ZDA-Cu2+ was applicable for detecting glyphosate and glufosinate ammonium following fluorescence enhancement mechanism, with detection limits of 11.26 nM and 11.5 nM, respectively. Meanwhile, ZDA-Cu2+ was effective and sensitive when it is used for pesticide detection, reaching the maximum value and stabilizing in 1 min. Finally, the ZDA-Cu2+ probe could also be tolerated in cell assay environment, implying potential bio-application.
Collapse
Affiliation(s)
- Xuanzuo Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Yanxia Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Said Alam
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Anguan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Xinyu Qi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Shu-Yang Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| |
Collapse
|
11
|
Lin X, Chen T, Hu J, Mao X, Liu M, Zeng R, Zhong Q, Chen W. Construction of a novel fluorescent probe for sensitive determination of glyphosate in food and imaging living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3364-3371. [PMID: 38742948 DOI: 10.1039/d4ay00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Glyphosate is a widely used broad-spectrum herbicide in agriculture and horticulture to control a variety of weeds and undesirable plants. However, the excessive use of glyphosate has raised a number of environmental and human health concerns. It is urgent to develop tools to detect glyphosate. Herein, a novel dual-signal probe CCU-Cu2+ was designed and synthesized on the basis of CCU. CCU exhibited excellent selectivity and great sensitivity for Cu2+ which were based on both fluorescence "turn-off" reaction and comparative color visualisation methods. Due to the strong chelating ability of glyphosate on Cu2+, the CCU-Cu2+ complex was applied to glyphosate detection in practical samples. The experimental results in vitro showed that the CCU-Cu2+ complex was highly selective and rapid, with a low detection limit (1.6 μM), and could be recognised by the naked eye in the detection of glyphosate. Based on the excellent properties of the CCU-Cu2+ complex, we also constructed a smartphone-assisted detection sensing system for glyphosate detection, which has the advantages of precision, sensitivity, and high interference immunity. Moreover, the CCU-Cu2+ complex was also successfully employed for exogenous glyphosate imaging in living cells. These characteristics demonstrated that CCU-Cu2+ holds significant potential for detection and imaging of glyphosate in bio-systems.
Collapse
Affiliation(s)
- Xiaoping Lin
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Taiyi Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Jiayun Hu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Xiaoqiong Mao
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Mengqing Liu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Rongying Zeng
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Qingmei Zhong
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Wen Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| |
Collapse
|
12
|
Sun YH, Yang L, Ji XX, Wang YZ, Liu YL, Fu Y, Ye F. Efficient detection of flusilazole by an electrochemical sensor derived from MOF MIL-53(Fe) for food safety. Food Chem 2024; 440:138244. [PMID: 38142554 DOI: 10.1016/j.foodchem.2023.138244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Flusilazole is a triazole fungicide with residues that are potentially toxic to humans. It enters the human body mainly through food, although its bactericidal activity is substantial. In this study, an electrochemical sensor Fe/Fe2O3@C with a core-shell structure was constructed to efficiently detect flusilazole by annealing MIL-53(Fe) which was prepared by a simple solvothermal method. Transmission electron microscopy and scanning electron microscopy were used to characterize the apparent morphology of MIL-53(Fe) and Fe/Fe2O3@C, and their structures were further characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, powder X-ray diffraction, and the mapping of elements by energy dispersive spectroscopy. The electrochemical behavior of Fe/Fe2O3@C in the detection of flusilazole was evaluated by differential pulse voltammetry under optimal conditions. The results of the study indicate that the Fe/Fe2O3@C electrochemical sensor displayed excellent detection capabilities for flusilazole, where the sensor exhibited a wide detection range from 1.00 × 10-4 to 1.00 × 10-12 mol/L with an incredibly low LOD of 593 fM, making it highly sensitive to trace amounts of flusilazole. Moreover, Fe/Fe2O3@C demonstrated superior reproducibility, stability, and resistance to interference, highlighting its reliability in practical applications. The sensor was also successfully utilized to quantitatively detect flusilazole in various real samples, which suggests that Fe/Fe2O3@C has broad-spectrum environmental resistance and can effectively and rapidly detect flusilazole residues in different types of food items and environmental matrices. The study also delved into the mechanism of Fe/Fe2O3@C for the detection of flusilazole, providing a deeper understanding of the functionality of this sensor. Overall, these findings emphasize the practical significance of Fe/Fe2O3@C as an electrochemical sensor, showcasing its potential for real-world applications in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yu-Han Sun
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural, University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural, University, Harbin 150030, People's Republic of China
| | - Xian-Xian Ji
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural, University, Harbin 150030, People's Republic of China
| | - Yuan-Zhen Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural, University, Harbin 150030, People's Republic of China
| | - Yu-Long Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural, University, Harbin 150030, People's Republic of China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural, University, Harbin 150030, People's Republic of China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural, University, Harbin 150030, People's Republic of China.
| |
Collapse
|
13
|
Yuan X, Qu N, Xu M, Liu L, Lin Y, Xie L, Chai X, Xu K, Du G, Zhang L. Chitosan-based fluorescent probe for the detection of Fe 3+ in real water and food samples. Int J Biol Macromol 2024; 265:131111. [PMID: 38522700 DOI: 10.1016/j.ijbiomac.2024.131111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Iron ions play a crucial role in the environment and the human body. Therefore, developing an effective detection method is crucial. In this paper, we report CNS2, a chitosan-based fluorescent probe utilizing naphthalimide as a fluorophore. CNS2 is designed to "quench" its own yellow fluorescence through the specific binding of compounds containing enol structures to Fe3+. Studying the fluorescence lifetime of CNS2 in the presence or absence of Fe3+ reveals that the quenching mechanism is static. The presence of multiple recognition sites on the chitosan chain bound to Fe3+ gave CNS2 rapid recognition (1 min) and high sensitivity, with a detection limit as low as 0.211 μM. Moreover, the recognition of Fe3+ by CNS2 had a good specificity and was not affected by interferences. More importantly, in this study, CNS2 was successfully utilised to prepare fluorescent composite membranes and to detect Fe3+ in real water samples and a variety of food samples. The results show that the complex sample environment still does not affect the recognition of Fe3+ by CNS2. All the above experiments obtained more satisfactory results, which provide strong support for the detection of Fe3+ by the probe CNS2 in practical applications.
Collapse
Affiliation(s)
- Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Na Qu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Mengying Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Linkun Xie
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xijuan Chai
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
14
|
Wang XY, Wang LD, Liu QH, Sun F, Yang L, Ye F. A naked-eye visible aluminium (III)-based complex fluorescence sensor for sensitive detection of mesotrione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123706. [PMID: 38043295 DOI: 10.1016/j.saa.2023.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Mesotrione, which is a kind of herbicide to control broad-leaved weeds, has been increasingly used due to its excellent selectivity, rapid process and low toxicity. However, the excessive application of mesotrione have led to widespread contamination. Herein, a turn-on competitive coordination-based fluorescent probe, 2-hydroxy-1-(9-purin)-methylidenehydrazinenaphthalene (HPM), has been successfully synthesized. HPM could effectively detect Al3+ in CH3OH/HEPES (1/9, v/v) with low limit of detection (LOD) being 0.2 µM via coordination. HPM also exhibited excellent imaging capabilities for Al3+ in living cells with low cytotoxicity. On the basis of the competitive coordination of HPM with Al3+, the [HPM-Al3+] complex could also serve as a potential fluorescence sensor for detecting mesotrione with the LOD of 0.2 µM. Furthermore, [HPM-Al3+] complex was applied for the detection of mesotrione in real samples and test paper. Finally, the mechanism of [HPM-Al3+] for sensing mesotrione was investigated deeply as well. This work designed a new convenient method for on-site detection of mesotrione without the large-scale equipment or complicated pre-treatment.
Collapse
Affiliation(s)
- Xue-Ying Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Lu-Di Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qiu-Huan Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fang Sun
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
15
|
Zhao S, Shi L, Zhang X, Sun X, Zhu W, Yu L. An on-off-on fluorescent probe for the detection of glyphosate based on a Cu 2+-assisted squaraine dye sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1341-1346. [PMID: 38334227 DOI: 10.1039/d3ay02128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The herbicide glyphosate, N-(phosphonomethyl)glycine, has been widely used in the past 40 years, and has had many adverse effects on human health. Here, we constructed a convenient "on-off-on" fluorescent platform for detection of glyphosate via Cu2+ modulated squaraine dye fluorescence quenching. The squaraine dye F-0 exhibited strong fluorescence, which could be quenched by the addition of Cu2+. However, the addition of glyphosate restored the fluorescence intensity of F-0 due to the formation of a Cu2+-glyphosate complex. F-0 was utilized as a fluorescent probe for the quantitative detection of glyphosate, with the lowest detection limit of 13.16 nmol L-1. Furthermore, this method demonstrated high selectivity and anti-interference capabilities. The successful monitoring of glyphosate in real samples was achieved using this detection strategy.
Collapse
Affiliation(s)
- Shuhua Zhao
- North China University of Science and Technology, Tangshan, 063210, China
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| | - Lei Shi
- North China University of Science and Technology, Tangshan, 063210, China
| | - Xiufeng Zhang
- North China University of Science and Technology, Tangshan, 063210, China
| | - Xiaoran Sun
- North China University of Science and Technology, Tangshan, 063210, China
| | - Wenxuan Zhu
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
- University of South China, Hengyang, 421001, China.
| | - Lijia Yu
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| |
Collapse
|
16
|
Chen X, Mao Y, Wang A, Lu L, Shao Q, Jiang C, Lu H. Synthesis and application of purine-based fluorescence probe for continuous recognition of Cu 2+ and glyphosate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123291. [PMID: 37639808 DOI: 10.1016/j.saa.2023.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
In this study, a novel fluorescent sensor, N,N-dimethyl-4-((2-(8-m-ethyl-9-(naphthalen-1-yl)-9H-purin-6-yl)hydrazineylidene)methyl)aniline(PHA), which was constructed via Schiff base reaction of purine derivatives and dimethylaminobenzaldehyde. This probe showed significant selective fluorescence quenching of Cu2+, and accompanying with an increase in Cu2+ concentration and a change in solution color from colorless to yellow. The outstanding features of PHA include low detection limit (0.429 μM), strong anti-interference ability and fast response time. We further investigated the chelation mechanism of PHA and Cu2+ by Job's plot experiment, density generalization theory (DFT), and the probe PHA can form a 1:2 complex with Cu2+ ions, leading to a fluorescence quenching process, thus realizing the rapid detection of Cu2+. In addition, this new fluorescent sensor [PHA-Cu2+] can be used to detect pesticide residues in solution. When the [PHA-Cu2+] system was mixed with glyphosate solution, that a fluorescence recovering was observed. This may be because glyphosate chelates more strongly with Cu2+ ions, making the copper ions dissociated from the [PHA-Cu2+] system. The detection limit of the fluorescent sensor [PHA-Cu2+] for glyphosate was 18.77 nM. Finally, the sensor system has been successfully applied in fluorescence imaging of glyphosate in living cells.
Collapse
Affiliation(s)
- Xu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yanxia Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Anguan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Linchuan Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Qi Shao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
17
|
Zavala-Robles KG, Ramos-Ibarra JR, Franco Rodriguez NE, Zamudio-Ojeda A, Cavazos-Garduño A, Serrano-Niño JC. Assessment of chitosan-based adsorbents for glyphosate removal. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:62-71. [PMID: 38099739 DOI: 10.1080/03601234.2023.2291980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Exposure to glyphosate produces various toxic effects, due to this, different methods have been evaluated for its elimination. The objective of this work was to formulate chitosan-based adsorbents and evaluate their efficiency in the removal of glyphosate in vitro. Four films were made by varying the weight ratio of silica/chitosan particles, and four sponges were made by varying the chitosan/chitosan ratio in a reticulated manner. Both adsorbents were characterized based on their porosity, water absorption, glyphosate removal, and reusability. It was found that increasing the porosity in both films and sponges resulted in an increase in the adsorption efficiency of glyphosate. The adsorption process exhibited a better fit in both adsorbents to the pseudo-second-order model. The adsorption of glyphosate to the films fit better with the Langmuir model, demonstrating that the process occurs in the form of a monolayer. In the case of sponges, the adsorption of glyphosate fit better with the Freundlich model, indicating that the process takes place in a multilayer form. Finally, when the reusability was evaluated, the adsorbents showed a loss of effectiveness. However, they still proved to be an efficient alternative for the removal of glyphosate in water, providing a cost-effective and environmentally friendly solution.
Collapse
Affiliation(s)
- K G Zavala-Robles
- Maestría en Ciencias en Inocuidad Alimentaria, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J R Ramos-Ibarra
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - N E Franco Rodriguez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - A Zamudio-Ojeda
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - A Cavazos-Garduño
- Maestría en Ciencias en Inocuidad Alimentaria, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J C Serrano-Niño
- Maestría en Ciencias en Inocuidad Alimentaria, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
18
|
Su X, Zheng K, Tian X, Zhou X, Zou X, Xu X, Sun Z, Zhang W. An advanced ratiometric molecularly imprinted sensor based on metal ion reoxidation for indirect and ultrasensitive glyphosate detection in fruit. Food Chem 2023; 429:136927. [PMID: 37481984 DOI: 10.1016/j.foodchem.2023.136927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
An indirect and ultrasensitive ratiometric molecularly imprinted (MIP) sensor, based on metal ion reoxidation, is introduced for glyphosate (GLY) determination in fruit. As high-performance signal amplification substrates, carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) are conveniently modified on GCE. The artificial antibody-MIP membrane, presents typical three-dimensional structure to GLY template. Built-in reference methylene blue (MB) is directly electropolymerized on MWCNTs-Au/GCE. Particularly, Cu2+ and GLY interestingly form chelate complex, and the Cu2+ (ICu) in Cu(Ⅱ)-GLY-complex can be reoxidized, and indirectly quantizes GLY. The reference signal (IMB) presents noteworthy stability with different GLY levels, and the ratiometric readout (ICu/IMB) is recognized as a more trustworthy indicator to quantize GLY. Proposed sensor presents broad range as 1.73 ∼ 400 ng/mL, and limit of detection is well found as 0.24 ng/mL (S/N = 3). Finally, as-fabricated method is verified with standard HPLC in real-fruit-sample, and the errors and recovery rates are calculated as 3.4% ∼ 6.7% and 94.4% ∼ 104.6%, respectively.
Collapse
Affiliation(s)
- Xiaoyu Su
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyu Tian
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuan Zhou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
19
|
Knežević S, Jovanović NT, Vlahović F, Ajdačić V, Costache V, Vidić J, Opsenica I, Stanković D. Direct glyphosate soil monitoring at the triazine-based covalent organic framework with the theoretical study of sensing principle. CHEMOSPHERE 2023; 341:139930. [PMID: 37659506 DOI: 10.1016/j.chemosphere.2023.139930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Covalent organic frameworks (COFs) are emerging as promising sensing materials due to their controllable structure and function properties, as well as excellent physicochemical characteristics. Here, specific interactions between a triazine-based COF and a mass-used herbicide - glyphosate (GLY) have been utilized to design a disposable sensing platform for GLY detection. This herbicide has been extensively used for decades, however, its harmful environmental impact and toxicity to humans have been recently proven, conditioning the necessity for the strict control and monitoring of its use and its presence in soil, water, and food. Glyphosate is an organophosphorus compound, and its detection in complex matrices usually requires laborious pretreatment. Here, we developed a direct, miniaturized, robust, and green approach for disposable electrochemical sensing of glyphosate, utilizing COF's ability to selectively capture and concentrate negatively charged glyphosate molecules inside its nanopores. This process generates the concentration gradient of GLY, accelerating its diffusion towards the electrode surface. Simultaneously, specific COF-glyphosate binding catalyses the oxidative cleavage of the C-P bond and, together with pore nanoconfinement, enables sensitive glyphosate detection. Detailed sensing principles and selectiveness were scrutinized using DFT-based modelling. The proposed electrochemical method has a linear working range from 0.1 μM to 10 μM, a low limit of detection of 96 nM, and a limit of quantification of 320 nM. The elaborated sensing approach is viable for use in real sample matrices and tested for GLY determination in soil and water samples, without pretreatment, preparation, or purification. The results showed the practical usefulness of the sensor in the real sample analysis and suggested its suitability for possible out-of-laboratory sensing.
Collapse
Affiliation(s)
- Sara Knežević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Nataša Terzić Jovanović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia
| | - Filip Vlahović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdačić
- Innovative Centre Ltd., Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy en Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, 78350, Jouy en Josas, France
| | - Jasmina Vidić
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy en Josas, France
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dalibor Stanković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Department of Radioisotopes, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Liu J, Wu H, Liu Y, Wang ZG. Colorimetric Sensor Based on the Oxidase-Mimic Supramolecular Catalyst for Selective and Sensitive Biomolecular Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48945-48951. [PMID: 37823579 DOI: 10.1021/acsami.3c09940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We have engineered a colorimetric sensor capable of selective and sensitive detection of amino acids. This sensor employs a supramolecular copper-dependent oxidase mimic as the probe, stemming from our prior research. The oxidase mimic is constructed through the self-assembly of commercially available guanosine monophosphate (GMP), Fmoc-lysine, and Cu2+. It catalyzes the formation of a red product with a maximum absorbance at 510 nm. The changes in color and absorbance are responsive to both the concentrations and types of amino acids present. This effect is most pronounced in the presence of histidine, with a detection limit (LOD) of 6.4 nM. Furthermore, the catalytic probe can distinguish histidine from histamine and imidazole propionate, as well as 1-methyl-histidine from 3-methyl-histidine, based on their distinct coordination capacities with copper. This underscores the high selectivity of the sensing platform. Both theoretical simulations and experimental results (including UV-vis spectra, fluorescence, and EPR) indicate that the amino acids may engage in copper center coordination, thereby impeding O2 access to copper─a pivotal aspect of the oxidase catalysis. This sensing platform, characteristic of its swift response, simple fabrication, and exceptional sensitivity and selectivity, can also be applied to detect other biological analytes such as nucleotides. It holds potential for use in environmental and biochemical analyses.
Collapse
Affiliation(s)
- Junhong Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Ding C, Gu Y, Chen W, Chen L, Guo L, Huang Y. Ratiometric near-infrared upconversion fluorescence sensor for selectively detecting and imaging of Al 3. Anal Chim Acta 2023; 1263:341297. [PMID: 37225340 DOI: 10.1016/j.aca.2023.341297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
Near-infrared (NIR) fluorescent probes provide extremely sensitive Al3+ detection for human health purposes. This research develops novel Al3+ response molecules (HCMPA) and NIR upconversion fluorescent nanocarriers (UCNPs), which respond to Al3+ through ratio NIR fluorescence. UCNPs improve photobleaching and visible light lack in specific HCMPA probes. Additionally, UCNPs are capable of ratio response, which will further enhance signal accuracy. The NIR ratiometric fluorescence sensing system has been successfully used to detect Al3+ within the range 0.1-1000 nM with an accuracy limit of 0.06 nM. Alternatively, a NIR ratiometric fluorescence sensing system integrated with a specific molecule can image Al3+ within cells. This study demonstrates that a NIR fluorescent probe is an effective and highly stable method of measuring Al3+ in cells.
Collapse
Affiliation(s)
- Caiping Ding
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Yuting Gu
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Weiwei Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Long Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China.
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Youju Huang
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China.
| |
Collapse
|
22
|
Ji XX, Liu YL, Chang XY, Li RL, Ye F, Yang L, Fu Y. An electrochemical sensor derived from Cu-BTB MOF for the efficient detection of diflubenzuron in food and environmental samples. Food Chem 2023; 428:136802. [PMID: 37421661 DOI: 10.1016/j.foodchem.2023.136802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Diflubenzuron is widely used as a benzoylurea insecticide, and its impact on human health should not be underestimated. Therefore, the detection of its residues in food and the environment is crucial. In this paper, octahedral Cu-BTB was fabricated using a simple hydrothermal method. It served as a precursor for synthesizing Cu/Cu2O/CuO@C with a core-shell structure through annealing, creating an electrochemical sensor for the detection of diflubenzuron. The response of Cu/Cu2O/CuO@C/GCE, expressed as ΔI/I0 exhibited a linear correlation with the logarithm of the diflubenzuron concentration ranging from 1.0 × 10-4 to 1.0 × 10-12 mol·L-1. The limit of detection (LOD) was determined to be 130 fM using differential pulse voltammetry (DPV). The electrochemical sensor demonstrated excellent stability, reproducibility, and anti-interference properties. Moreover, Cu/Cu2O/CuO@C/GCE was successfully employed to quantitatively determine diflubenzuron in actual food samples (tomato and cucumber) and environmental samples (Songhua River water, tap water, and local soil) with good recoveries. Finally, the possible mechanism of Cu/Cu2O/CuO@C/GCE for monitoring diflubenzuron was thoroughly investigated.
Collapse
Affiliation(s)
- Xian-Xian Ji
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu-Long Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xin-Yue Chang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Rui-Long Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
23
|
Qian Y, Yan W, Yang X, Meng H, Wang D. Transforming the fluorescent fluorine anion probe from on-off to ratiometric type by a tiny modification on the triarylborane group. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
24
|
Erdemir S, Oguz M, Malkondu S. Cu 2+-assisted sensing of fungicide Thiram in food, soil, and plant samples and the ratiometric detection of Hg 2+ in living cells by a low cytotoxic and red emissive fluorescent sensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131278. [PMID: 37004440 DOI: 10.1016/j.jhazmat.2023.131278] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Metal ions and pesticides are extensively used in many industries and agriculture. However, they cause significant environmental pollution and various adverse health effects. Therefore, the development of sensitive and selective techniques to detect them is necessary for human health and the ecosystem. In this paper, we report a novel red-emitting fluorescence probe with a large Stokes shift (∼220 nm) based on rhodamine and isophorone units. The probe shows a ratiometric fluorescence response toward Hg2+ ions; however, Cu2+ ions quench the red fluorescence signal. The decomposition of the probe-Cu2+ complex allows detection of Thiram followed by recovery of the red fluorescence signal of the probe. In addition, the probe shows a good linear response to Hg2+, Cu2+, and Thiram, with detection limits of 122.0 nM, 29.0 nM, and 72.0 nM, respectively. The practical applicability of the probe has been successfully tested in real samples. Moreover, smartphone detection and light-responsive capsule fabrication have been established, for easy and quick detection. The probe possesses very low cytotoxicity and allows visualization of Hg2+ and Cu2+ ions in HeLa cells. Therefore, the present probe is expected to be an effective tool assisting in easy, quick, and reliable detection of Thiram, Hg2+, and Cu2+ ions.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250 Konya, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, 42250 Konya, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
25
|
Liu Q, Li S, Wang Y, Yang L, Yue M, Liu Y, Ye F, Fu Y. Sensitive fluorescence assay for the detection of glyphosate with NACCu 2+ complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163548. [PMID: 37080305 DOI: 10.1016/j.scitotenv.2023.163548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Glyphosate is widely used as an herbicide in weed control. However, the excessive use and residue of glyphosate adversely affect the environment. Thus, a rapid and highly sensitive system must be developed for glyphosate detection. Herein, a novel turn-on fluorescent probe was designed and synthesized for glyphosate, that is N-butyl-1,8-naphthalimide-4-hydrazino-6-isopropyl-chromone (NAC). The fluorescence of NAC was quenched by the addition of Cu2+ to form NACCu2+ complex in dimethyl sulfoxide/2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (DMSO/HEPES, 9/1, v/v, pH = 7.0). Upon the addition of glyphosate, the fluorescence of NACCu2+ was recovered through chelation between Cu2+ and glyphosate. The NACCu2+ complex exhibited the desired linearity of glyphosate concentration under optimum conditions in the range of 0-40 μM with a low detection limit of 36 nM. Based on competitive coordination, NACCu2+ exhibited good sensitivity and selectivity for glyphosate. Moreover, NAC was successfully utilized to detect glyphosate in tap water, local water from Songhua River, soil, maize, and soybean with convenient operations, indicating a promising application in pesticide residue detection.
Collapse
Affiliation(s)
- Qiuhuan Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Shijie Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujiong Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Liu Yang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Mingli Yue
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Yulong Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Fei Ye
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Fu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Fluorescence detection of glyphosate based on G-quadruplex and porphyrin metalation. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Yang Y, Tong X, Chen Y, Zhou R, Cai G, Wang T, Zhang S, Shi S, Guo Y. A dual-emission carbon dots-based nonenzymatic fluorescent sensing platform for simultaneous detection of parathion-methyl and glyphosate. Food Chem 2023; 403:134346. [DOI: 10.1016/j.foodchem.2022.134346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
28
|
Silswal A, Weslie P, Koner AL. Bioimaging of labile lysosomal iron through naphthalimide-based fluorescent probe. Talanta 2023; 254:124147. [PMID: 36470016 DOI: 10.1016/j.talanta.2022.124147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Lysosomal labile iron detection is immensely important as it is related to various diseases like Alzheimer's disease, Huntington's disease, Parkinson's disease, and cell apoptosis like ferroptosis. The fluorescent-based detection methods are preferred due to their sensitive, non-invasive, and spatial-temporal detection in biological samples. However, this remains a great challenge due to the lysosomal compartment being acidic alters the photophysical properties of the probe. Herein, we have rationally designed and synthesized multi-component naphthalimide-based fluorescent marker with preferred optical properties and bio-compatibility for selective detection of labile iron present in the lysosomal compartment. The synthesized probe was characterized structurally and optically by NMR, mass spectrometry, UV-visible, and fluorescence spectroscopy. The developed probe with an appropriate linking strategy turns out to be tolerant to fluorescence alternation in lysosomal pH. The probe exhibits great selectivity and high sensitivity for Fe(III) with limit of detection of 0.44 μM and is also able to detect Fenton-type reactions. Further, the probe has been successfully applied for lysosomal imaging and detecting labile Fe(III) present in the lysosomal lumen of the live cells.
Collapse
Affiliation(s)
- Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India
| | - Paersis Weslie
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
29
|
Luo X, Huang G, Bai C, Wang C, Yu Y, Tan Y, Tang C, Kong J, Huang J, Li Z. A versatile platform for colorimetric, fluorescence and photothermal multi-mode glyphosate sensing by carbon dots anchoring ferrocene metal-organic framework nanosheet. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130277. [PMID: 36334570 DOI: 10.1016/j.jhazmat.2022.130277] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Concerns regarding pesticide residues have driven attempts to exploit accurate, prompt and straightforward approaches for food safety pre-warning. Herein, a nanozyme-mediated versatile platform with multiplex signal response (colorimetric, fluorescence and temperature) was proposed for visual, sensitive and portable detection of glyphosate (GLP). The platform was constructed based on a N-CDs/FMOF-Zr nanosensor that prepared by in situ anchoring nitrogen-doped carbon dots onto zirconium-based ferrocene metal-organic framework nanosheets. The N-CDs/FMOF-Zr possessed excellent peroxidase (POD)-like activity and thus could oxide colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) into a blue oxidized TMB (oxTMB) in presence of H2O2. Intriguingly, owing to the blocking effect triggered by multiple interaction between GLP and N-CDs/FMOF-Zr, its POD-like activity of the latter was remarkably suppressed, which can modulate the transformation of TMB into oxTMB, generating tri-signal responses of fluorescence enhancement, absorbance and temperature decrease. More significantly, the temperature mode can be facilely realized by a portable home-made mini-photothermal device and handheld thermometers. The proposed multimodal sensing was capable of providing sensitive results by fluorescence mode and simultaneously realized visual/portable testing by colorimetric and photothermal channels. Consequently, it exhibited more adaptability for practical applications, which can satisfy different testing requirements according to sensitivity and available instruments/meters, presenting a new horizon for exploiting multifunctional sensors.
Collapse
Affiliation(s)
- Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gengli Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenxu Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chunyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ying Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Youwen Tan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenyu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Henan 461000, PR China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
30
|
Qin DP, Huang KR, Huang GM, Cui LS. A luminescent sensor based on Cd–MOF for highly detecting tetracycline. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Yan Z, Wang H, Wu S, Peng Z, Lai J, Qiu P. Bovine serum albumin-stabilized gold nanoclusters as fluorescent probe for enzyme-free detection of glyphosate. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
New stilbene-biscarbothioamide based colorimetric chemosensor and turn on fluorescent probe for recognition of Hg2+ cation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Wang H, Rui J, Xiao W, Peng Y, Peng Z, Qiu P. Enzyme-free ratiometric fluorescence and colorimetric dual read-out assay for glyphosate with ultrathin g-C3N4 nanosheets. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Garau A, Picci G, Bencini A, Caltagirone C, Conti L, Lippolis V, Paoli P, Romano GM, Rossi P, Scorciapino MA. Glyphosate sensing in aqueous solutions by fluorescent zinc(II) complexes of [9]aneN 3-based receptors. Dalton Trans 2022; 51:8733-8742. [PMID: 35612268 DOI: 10.1039/d2dt00738j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe the binding abilities of Zn(II) complexes of [12]aneN4- (L1) and [9]aneN3-based receptors (L2, L3) towards the herbicides N-(phosphonomethyl)glycine (glyphosate, H3PMG) and 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid (glufosinate, H2GLU), and also aminomethylphosphonic acid (H2AMPA), the main metabolite of H3PMG, and phosphate. All ligands form stable Zn(II) complexes, whose coordination geometries allow a possible interaction of the metal center with exogenous anionic substrates. Potentiometric studies evidenced the marked coordination ability of the L2/Zn(II) system for the analytes considered, with a preferential binding affinity for H3PMG over the other substrates, in a wide range of pH values. 1H and 31P NMR experiments supported the effective coordination of such substrates by the Zn(II) complex of L2, while fluorescence titrations and a test strip experiment were performed to evaluate whether the H3PMG recognition processes could be detected by fluorescence signaling.
Collapse
Affiliation(s)
- Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Andrea Bencini
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Luca Conti
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Paola Paoli
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Giammarco Maria Romano
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Patrizia Rossi
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Mariano Andrea Scorciapino
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
35
|
Yang L, Liu Y, Yue M, Li P, Liu Y, Ye F, Fu Y. A Multifunctional and Fast-Response Lysosome-Targetable Fluorescent Probe for Monitoring pH and Isoxaflutole. Int J Mol Sci 2022; 23:ijms23116256. [PMID: 35682934 PMCID: PMC9181397 DOI: 10.3390/ijms23116256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
A new chemosensor, namely N-(2-morpholinoethyl)acetamide-4-morpholine-1,8-naphthimide (MMN), was designed and synthesized through an amidation reaction. MMN was fabricated as a multifunctional fluorescent probe for monitoring pH and isoxaflutole. MMN exhibited excellent stability in MeCN/H2O (v/v, 9/1), with an obvious "off-on" fluorescence response toward pH changes due to intramolecular charge transfer (ICT), where the linear response ranges of MMN in the weakly acidic system were from 4.2 to 5.0 and from 5.0 to 6.0 with apparent pKa = 4.62 ± 0.02 and 5.43 ± 0.02. Based on morpholine as the lysosome targetable unit, MMN could selectively locate lysosomes in live cells. MMN also successfully detected the presence of H+ in test papers. Finally, MMN could specifically recognize isoxaflutole at a detection limit of 0.88 μM. A possible sensing mechanism was identified based on density function theory calculations. These results indicate that MMN could be a superior potential chemosensor for detecting pH and isoxaflutole selectively and sensitively and could be used in real sample detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Ye
- Correspondence: (F.Y.); (Y.F.)
| | - Ying Fu
- Correspondence: (F.Y.); (Y.F.)
| |
Collapse
|
36
|
Wu Z, Hu Y, Pan X, Tang Y, Dai Y, Wu Y. A liquid colorimetric chemosensor for ultrasensitive detection of glyphosate residues in vegetables using a metal oxide with intrinsic peroxidase catalytic activity. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:710-723. [PMID: 35104180 DOI: 10.1080/19440049.2021.2020912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/08/2021] [Indexed: 01/05/2023]
Abstract
The control of pesticide residues in food is of increasing importance nowadays due to the over-use and misapplication of herbicides in agricultural production. However, the current colorimetric method for rapid detection of glyphosate still faces many challenges like the low sensitivity and stability. Herein, a simple and ultrasensitive liquid colorimetric chemosensor for glyphosate detection was successfully constructed. Glyphosate pesticide can interact with metallic oxidelike porous Co3O4 nanodisc, and inhibit its inherent peroxidase-mimicking activity, making the colour of the solution change from blue to light blue or even colourless. The colour variation of the colorimetric chemosensor enables us to easily distinguish in less than 20 min even by the naked eye whether glyphosate exceeds the allowable level. The limit of detection (LOD) of the chemosensor for glyphosate was calculated as low as 2.37 μg·L-1, and the chemosensor displays excellent selectivity against other competitive pesticides and metal ions. Further studies have also validated the applicability of the colorimetric chemosensor in actual samples like tomato, cucumber and cabbage, indicating that the proposed strategy may have promising application prospects for detecting glyphosate residues in agricultural products.
Collapse
Affiliation(s)
- Zhen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Yang Hu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Xiaoli Pan
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Yifeng Dai
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, China
| |
Collapse
|
37
|
Dey N. A pyrene-based ratiometric probe for nanomolar level detection of glyphosate in food and environmental samples and its application for live-cell imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj00448h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in situ formed copper(ii)-complex is involved in analyzing glyphosate in real-life samples, such as crops, soil, water and biological fluids.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Secunderabad, Telangana 500078, India
| |
Collapse
|