1
|
Zeng H, Zeng J, Meng B, Peng J, Rao L. Identification and Characterization of a Fungal Monoterpene Synthase Responsible for the Biosynthesis of Geraniol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24530-24538. [PMID: 39449585 DOI: 10.1021/acs.jafc.4c06818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Geraniol, an acyclic monoterpenoid of substantial value extracted from the essential oils of various aromatic plants, holds significant commercial and industrial importance in the realms of food, cosmetics, medicine, and bioenergy. Geraniol synthase, which is responsible for geraniol production, has been identified in only several plant species to date. Here, we present the first cloning and characterization of a geraniol synthase (PgfTPS) from Penicillium griseofulvum. This enzyme demonstrates pronounced specificity in catalyzing the conversion of geranyl diphosphate into geraniol. Moreover, through protein modeling and site-directed mutagenesis, we have identified key active-site residues crucial for the catalytic function of PgfTPS. Finally, we utilized engineered Saccharomyces cerevisiae as a host for PgfTPS expression to facilitate geraniol production. Our findings not only advance the development of efficient biocatalysts for geraniol generation but also establish a fundamental basis for further exploration into fungal monoterpene biosynthesis.
Collapse
Affiliation(s)
- Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jiatong Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Beilin Meng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jianmei Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| |
Collapse
|
2
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
3
|
Zhou R, Liu X, Hui T, Ye J, Chen G, Lei P, Li J, Feng J, Gao Y. Discovery of Novel Cyclobutyl Oxime Ester Derivatives Containing an α,β-Unsaturated Carbonyl Moiety as Potential Mitochondrial Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22054-22062. [PMID: 39320050 DOI: 10.1021/acs.jafc.4c05066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
As part of continuous work to explore novel and efficient fungicides originating from natural products, a series of cyclobutyl oxime ester derivatives containing an α,β-unsaturated carbonyl moiety were designed and synthesized. In line with the primary evaluation of the inhibitory effect on common pathogenic fungi causing crop failure, a systematic study on the antifungal activity of target compounds against Rhizoctonia solani was carried out. Most target compounds exhibited satisfactory antifungal activity, and 10 of them were superior to the positive control trifloxystrobin. The most notable median effective concentration (EC50) of compound 6b was 1.70 μg/mL, which was considerable for an intensive study. The control efficacy of compound 6b on potted rice against R. solani was superior to trifloxystrobin at identical concentration. The mycelial morphology and cell membrane permeability of the treated fungi were disrupted, and the meaningful enzyme activities of SDH and POD were also restrained. The reactive oxygen species, nuclear morphology, and mitochondrial membrane potential of the treated hypha reflected an apparent difference compared with the normal morphology, which represented mitochondrial function damage. In addition, chemical features essential for the activity and docking mode within the compound and cytochrome bc1 complex were accessed by computer-aided technology. This study provided insights into the development of new green and efficient fungicides targeting the mitochondria.
Collapse
Affiliation(s)
- Rui Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tuoping Hui
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiuhui Ye
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangyou Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Lei
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juntao Feng
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanqing Gao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Xu Q, Gao Y, Sun Z, Shi JR, Tang JY, Wang Y, Liu Y, Sun XW, Li HR, Lonhienne TG, Niu CW, Li YH, Guddat LW, Wang JG. Chemical Synthesis, Herbicidal Activity, Crop Safety, and Molecular Basis of ortho-Fluoroalkoxy Substituted Sulfonylureas as Novel Acetohydroxyacid Synthase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39374109 DOI: 10.1021/acs.jafc.4c05201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In the face of increasing resistance to the currently used commercial herbicides and the lack of success in identifying new herbicide targets, alternative herbicides need to be developed to control unwanted monocotyledon grasses in food crops. Here, a panel of 29 novel sulfonylurea-based compounds with ortho-fluoroalkoxy substitutions at the phenyl ring were designed and synthesized. Pot assays demonstrated that two of these compounds, 6d and 6u, have strong herbicidal activities against Echinochloa crus-galli, Eleusine indica, Alopecurus aequalis, and Alopecurus japonicus Steudel at a dosage of 15 g ha-1. Furthermore, these two compounds exhibited <5% inhibition against wheat at a dosage of 30 g ha-1 under post-emergence conditions. 6u also exhibited <5% inhibition against rice at a dosage of 30 g ha-1 under both post-emergence and pre-emergence conditions. A kinetics study demonstrated that 6d and 6u are potent inhibitors of Arabidopsis thaliana acetohydroxyacid synthase (AHAS; EC 2.2.1.6) with potent Ki values of 18 ± 1.1 and 11.9 ± 4.0 nM, respectively. The crystal structure of 6u in complex with A. thaliana (At)AHAS has also been determined at 2.7 Å resolution. These new compounds represent new alternative herbicide choices to protect wheat or rice from invading grasses.
Collapse
Affiliation(s)
- Qing Xu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanhua Gao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Zhongjie Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Rui Shi
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Yin Tang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yun Liu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Wen Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Thierry G Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Haas RA, Crișan I, Vârban D, Vârban R. Aerobiology of the Family Lamiaceae: Novel Perspectives with Special Reference to Volatiles Emission. PLANTS (BASEL, SWITZERLAND) 2024; 13:1687. [PMID: 38931119 PMCID: PMC11207455 DOI: 10.3390/plants13121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view on the aerobiology of species from the family Lamiaceae, with an emphasis on novelties and emerging applications. From the aerobiology point of view, the greatest interest in this botanical family is related to the volatile organic compounds emitted by the plants and, to a much lesser extent, their pollen. Research has shown that the major volatile organic compounds emitted by the plants from this botanical family are monoterpenes and sesquiterpenes. The most important monoterpenes reported across studies include α-pinene, β-pinene, 1,8-cineole, menthol, limonene, and γ-terpinene. Most reports tend to cover species from the subfamily Nepetoideae. Volatile oils are produced by glandular trichomes found on aerial organs. Based on general morphology, two main types are found in the family Lamiaceae, namely peltate and capitate trichomes. As a result of pollinator-mediated transfer of pollen, Lamiaceae species present a reduced number of stamens and quantity of pollen. This might explain the low probability of pollen presence in the air from these species. A preliminary synopsis of the experimental evidence presented in this work suggests that the interplay of the organic particles and molecules released by these plants and their environment could be leveraged for beneficial outcomes in agriculture and landscaping. Emerging reports propose their use for intercropping to ensure the success of fructification, increased yield of entomophilous crops, as well as in sensory gardens due to the therapeutic effect of volatiles.
Collapse
Affiliation(s)
| | - Ioana Crișan
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania; (R.A.H.); (D.V.); (R.V.)
| | | | | |
Collapse
|
6
|
Kudumela RG, Ramadwa TE, Mametja NM, Masebe TM. Corchorus tridens L.: A Review of Its Botany, Phytochemistry, Nutritional Content and Pharmacological Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:1096. [PMID: 38674505 PMCID: PMC11054996 DOI: 10.3390/plants13081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Phytotherapy is a cost-effective alternative that continues to evolve. This has sparked significant research interest in naturally occurring compounds found in edible plants that possess antibacterial, antioxidant, and anticancer properties. Corchorus tridens L. is a wild edible plant widely recognised for its edible leaves, which are used for vegetable and animal feed. The plant is widely distributed across the African continent and is utilised in numerous countries for treating fever, pain, inflammation, and sexually transmitted diseases. Extracts from various parts of this plant exhibit antimicrobial, antioxidant, and pesticidal properties. This plant is a rich source of amino acids, vitamins, essential fatty acids, proteins, and minerals, as well as secondary metabolites such as alkaloids, flavonoids, quinines, steroids, terpenoids, phenols, and tannins. Additional studies are still needed to determine other biological activities, such as anti-inflammatory activity, involvement in the treatment of measles, prevention of anaemia, and pain-relieving properties. The current review aims to provide information on the characteristics, distribution, nutritional content, bioactive compounds, traditional uses, and biological activities of the edible plant species C. tridens L. to stimulate further research interest to address the existing literature gaps concerning this plant.
Collapse
Affiliation(s)
| | | | | | - Tracy Madimabi Masebe
- Department of Life and Consumer Science, College of Agriculture and Environmental Sciences, Florida Science Campus, University of South Africa, 28 Pioneer Ave, Florida Park, Johannesburg 1709, South Africa; (R.G.K.); (T.E.R.); (N.M.M.)
| |
Collapse
|
7
|
Soonwera M, Moungthipmalai T, Puwanard C, Sittichok S, Sinthusiri J, Passara H. Adulticidal synergy of two plant essential oils and their major constituents against the housefly Musca domestica and bioassay on non-target species. Heliyon 2024; 10:e26910. [PMID: 38463861 PMCID: PMC10920383 DOI: 10.1016/j.heliyon.2024.e26910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Single and mixture formulations of lemongrass (Cymbopogon citratus (DC.) Stapf.) and star anise (Illicium verum (J. Presl.)) essential oils (EOs) and their major constituents were assayed for their adulticidal activities against housefly, Musca domestica L., and two non-target species, stingless bee (Tetragonula pegdeni Schwarz) and guppy (Poecilia reticulata Peters). The efficacies of the mixture formulations were compared against those of the single formulations and 1.0% α-cypermethrin, a common synthetic insecticide. GC-MS analysis found that the major constituent of lemongrass EO was geranial (45.23%), and that of star anise EO was trans-anethole (93.23%). Almost all mixture formulations were more effective in adulticidal activity against housefly adults than single formulations and 1.0% α-cypermethrin. A mixture of 1.0% lemongrass EO + 1.0% trans-anethole exhibited the strongest synergistic insecticidal activity with a 100% mortality rate (KT50 of 3.2 min and LT50 of 0.07 h). The relative percentage increase in mortality rate over single formulations was between 1.6 and 91.9%. In addition, it was three times more effective than 1.0% α-cypermethrin. To find the mechanism of adulticidal action, scanning electron microscopy (SEM) was done to find morphological aberrations, such as antennal and mouthpart aberrations, after the houseflies were treated with 1.0% lemongrass EO + 1.0% trans-anethole. The aberrations included deformed and abnormal shape of arista and flagellum, change in labellum pigmentation, and damage to pseudotracheae. Regarding toxicity against non-target species, all single and mixture formulations were not toxic to the two non-target species, while 1.0% α-cypermethrin was highly toxic. To conclude, a mixture of 1.0% lemongrass EO + 1.0% trans-anethole can be an excellent, natural, sustainable housefly adulticidal agent.
Collapse
Affiliation(s)
- Mayura Soonwera
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Tanapoom Moungthipmalai
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Cheepchanok Puwanard
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Sirawut Sittichok
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Jirisuda Sinthusiri
- Community Public Health Program, Faculty of Public and Environmental Health, Huachiew Chalermprakiet University, Samut Prakan 10540, Thailand
| | - Hataichanok Passara
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
- Office of Administrative Interdisciplinary Program on Agricultural Technology (OAIPAT), School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
8
|
Chen J, Zhou X, Jiang Z, Jiang D. Design, Synthesis, and Biological Evaluation of Pyrido [1,2-α] Pyrimidinone Mesoionic Derivatives Bearing Propenylbenzene as the Vector Control Insecticide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:999-1006. [PMID: 38175165 DOI: 10.1021/acs.jafc.3c04767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A series of novel pyrido [1,2-α] pyrimidinone mesoionic derivatives bearing a propenylbenzene group at the 1-position were synthesized on the basis of the structure of mesoionic insecticides triflumezopyrim and dicloromezotiaz via a rationally conceived pharmacophore model and evaluated for their insecticidal activities against three insect vectors. The bioassay results showed that some compounds exerted remarkable insecticidal activities against M. domestica, Ae. albopictus, and B. germanica. Particularly, compound 26l displayed outstanding insecticidal activity against Ae. Albopictus, with an LC50 value of 0.45 μg/mL, far superior to that of imidacloprid (LC50 = 1.82 μg/mL) and equivalent to that of triflumezopyrim (0.35 μg/mL). Meanwhile, compound 34l presented a broad insecticidal spectrum, with LC50 values of 1.51 μg/g sugar, 0.52 μg/mL and 0.14 μg/adult, which were about 2.88, 3.50, and 1.50 times better than that of imidacloprid (LC50 = 4.35 μg/g sugar, 1.82 μg/mL and 0.21 μg/adult against M. domestica, Ae. albopictus, and B. germanica, respectively) and equivalent to that of triflumezopyrim against M. domestica (1.13 μg/g sugar) and Ae. albopictus (0.35 μg/mL) but lower than the potency against B. germanica (0.06 μg/g sugar). The molecular docking study by energy minimizations revealed that introducing propenylbenzene at the 1-position of compounds 26l and 34l could embed into the binding pocket of nicotinic acetylcholine receptors and form pi-alkyl interaction with LEU306. These results demonstrated that compounds 26l and 34l could be promising candidates for vector control insecticides, which deserved further investigation.
Collapse
Affiliation(s)
- Jirong Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiangrong Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhiyan Jiang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Dingxin Jiang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Li T, Yuan L, Huang Y, Zhang A, Jiang D, Yan S. Assessment of cytisine as an insecticide candidate for Hyphantria cunea management: Toxicological, biochemical, and control potential insights. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105638. [PMID: 37945268 DOI: 10.1016/j.pestbp.2023.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
In the present study, the toxicological effects of cytisine on the H. cunea larvae were investigated, and the potential of cytisine as a botanical insecticide through field simulation experiments was evaluated. The results showed that cytisine treatment (0.25-2.5%) exerted significant biotoxic effects on the H. cunea larvae, including diminished weight, disruption of both positive (HcCKS1, HcPLK, HcCCNA) and negative (HcGADD and HcCDKN) regulatory genes associated with larval growth, increased mortality, and heightened oxidative damage (H2O2 and MDA). Cytisine treatment significantly reduced glucose content and inhibited the expression of key rate-limiting enzyme genes (HcPFK, HcPK, HcHK1, HcCS, and HcIDH2) within glycolysis and the tricarboxylic acid cycle pathways. Under cytisine treatment, detoxification enzyme activities (CarE and GST) and expression of detoxification genes (HcCarE1, HcCarE2, HcCarE3, HcGST1, and HcGST3) were inhibited in H. cunea larvae. An increased contents of SOD, CAT, ASA and T-AOC, as well as expression of antioxidant enzyme genes HcSOD1 and HcCAT2, was found in cytisine-treated H. cunea larvae. Simultaneously, this is accompanied by a significant reduction in the expression of four antioxidant enzyme genes (e.g., HcPOD1 and HcPOD2). In the field experiment, a cytisine aqueous solution (25 g/L) with pre-sprayed and directly sprayed ways demonstrated potent insecticidal activity against H. cunea larvae, achieving a mortality rate of 53.75% and 100% at 24 h, respectively. Taken together, cytisine has significantly weight inhibition and lethal toxicity on the H. cunea larvae, and can be developed as a botanical insecticide for H. cunea control.
Collapse
Affiliation(s)
- Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yi Huang
- Heilongjiang Forestry Vocational Technical College, Mudanjiang 157011, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
10
|
Patel K, Akbari D, Pandya RV, Trivedi J, Mevada V, Wanale SG, Patel R, Yadav VK, Tank JG, Sahoo DK, Patel A. Larvicidal proficiency of volatile compounds present in Commiphora wightii gum extract against Aedes aegypti (Linnaeus, 1762). FRONTIERS IN PLANT SCIENCE 2023; 14:1220339. [PMID: 37711311 PMCID: PMC10499046 DOI: 10.3389/fpls.2023.1220339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Aedes mosquitoes are the major cause of several vector-borne diseases in tropical and subtropical regions. Synthetic pesticides against these mosquitoes have certain limitations; hence, natural, eco-friendly, and safe larvicides obtained from plant resources are used to overcome these. In the present study, the larvicidal efficiency of Commiphora wightii against the fourth instar stage of the dengue fever mosquito Aedes aegypti (Linnaeus, 1762) was studied. The gum resin of C. wightii was collected using the borehole tapping method, and hexane extracts in different concentrations were prepared. The fourth-instar larvae were exposed to the extracts, and percent mortality, as well as LC20, LC50, and LC90, was calculated. Volatile compounds of the hexane gum extract were analyzed by Headspace GC/MS, and the sequence of the acetylcholine, Gamma-aminobutyric acid (GABA) receptor, and octopamine receptor subunit of A. aegypti was obtained. It was found that the hexane gum extract was toxic and lethal for larvae at different concentrations. Minimum mortality was observed at 164 µg mL-1 (10%/h), while maximum mortality was at 276 µg mL-1 (50%/h). The lethal concentrations LC20, LC50, and LC90 were 197.38 µg mL-1, 294.13 µg mL-1, and 540.15 µg mL-1, respectively. The GC/MS analysis confirmed the presence of diterpenes, monoterpenes, monoterpene alcohol, and sesquiterpenes in the gum samples, which are lethal for larvae due to their inhibitory activity on the acetylcholinesterase enzyme, GABA receptor, and octopamine receptor subunit. The use of commonly occurring plant gum for the control of mosquitoes was explored, and it was found that the gum of C. wightii had larvicidal activities and could be potentially insecticidal.
Collapse
Affiliation(s)
- Krupal Patel
- Marine Biodiversity and Ecology Laboratory, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Divya Akbari
- University Grants Commission-Career Advancement Scheme (UGC-CAS) Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Rohan V. Pandya
- Department of Microbiology, Atmiya University, Rajkot, Gujarat, India
| | - Jigneshkumar Trivedi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Vishal Mevada
- DNA Division, Directorate of Forensic Science, Gandhinagar, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Jigna G. Tank
- University Grants Commission-Career Advancement Scheme (UGC-CAS) Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
11
|
Chen XM, Lu W, Zhang ZH, Wang PP, Zhang XJ, Xiao CJ, Zhang Q, Gao JM, Li CH. Discovery of diversified cassane diterpenoids as potent antibacterial agents from Caesaplinia pulcherrima and their mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:2539-2555. [PMID: 36864521 DOI: 10.1002/ps.7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Natural products play a significant role in the development of novel bactericide candidates. Caesalpinia pulcherrima, a traditional medicine, had anti-inflammatory, antimicrobial, and antifeedant activities, therefore the previous bioassay results of C. pulcherrima implied that its main active ingredients may have potential to be used as botanical bactericides. RESULTS Bio-guided isolation of C. pulcherrima was conducted to obtain 11 novel cassane diterpenoids (capulchemins A-K) and 10 known sesquiterpenes. Their structures were established by extensive spectroscopic methods and single-crystal X-ray diffraction analyses. Capulchemins A-F possess a rare aromatic C ring, while capulchemin K with a 15,16-degradative carbon skeleton represents a rare group of cassane diterpenes. Capulchemin A exhibited remarkable antibacterial activity against four phytopathogenic bacteria, particularly against Pseudomonas syringae pv. actinidae and Bacillus cereus, with minimal inhibitory concentration values of 3.13 μM. Meanwhile, capulchemin A showed significant control effect on kiwifruit canker in vivo. Further investigation of its mechanism of antibacterial activity revealed that compound 1 was closely related to destroy cell membrane to cause cell death. Additionally, some of those cassane diterpenoids showed potential antifeedant against Mythimna separate walker and Plutella xylostella. Consequently, capulchemin A could have the potential to be used as a template for the development for new eco-friendly NP-based bactericides. CONCLUSION These data contribute to a better understanding of the antibacterial activity of cassane diterpenes. Cassane diterpenes have been discovered to be leading to broad application prospects in the development as novel botanical bactericides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Mei Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Wang Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Zi-Han Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Pan-Pan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Xiu-Juan Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Chao-Jiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali, P. R. China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Chun-Huan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
12
|
Shang MH, Sun XW, Wang HL, Li HR, Zhang JS, Wang LZ, Yu SJ, Zhang X, Xiong LX, Li YH, Niu CW, Wang JG. Facile synthesis, crystal structure, quantum calculation, and biological evaluations of novel selenenyl sulfide compounds as potential agrochemicals. PEST MANAGEMENT SCIENCE 2023; 79:1885-1896. [PMID: 36700288 DOI: 10.1002/ps.7382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In order to design compounds with fresh molecular skeleton to break through the limitation of available agrochemicals, a series of 36 novel selenenyl sulfide compounds were chemically synthesized, and their biological activities were fully evaluated against tobacco mosaic virus (TMV), 14 plant pathogenic fungi, three insect species and plant acetohydroxyacid synthase (AHAS). RESULTS All the target compounds were characterized by proton nuclear magnetic resonance (1 H-NMR), carbon-13 (13 C)-NMR, selenium-77 (77 Se)-NMR, and high-resolution mass spectrometry (HRMS). The crystal structure of 10j indicated that the Se-S bond was successfully constructed. Compounds 10d, 10h, 10s, 10u, 10aa, 10ac, 10ae, 10ag, and 10ai exhibited 40%, 43%, 39%, 41%, 47%, 46%, 47%, 42%, and 39% anti-TMV activities at 500 mg L-1 , better than that of ribavirin. The median effective concentration (EC50 ) against Sclerotinia sclerotiorum of 10ac was 6.69 mg L-1 and EC50 values against Physalospora piricola and Pyricularia grisea of 10z were 12.25 mg L-1 and 15.27 mg L-1 , respectively, superior to the corresponding values of chlorothalonil. Compounds 10c and 10v demonstrated 100% larvicidal activity against Culex pipiens pallens at 5 mg L-1 , while 10a displayed 100% insecticidal activity against Mythimna separata at 200 mg L-1 . Compounds 10c, 10j, and 10o showed > 60% inhibitions against plant AHAS at 10 μmol L-1 . From the quantum calculation, highest occupied molecular orbital (HOMO) was considered as a factor that affects the anti-TMV activity. CONCLUSION The preliminary results suggested that more efforts should be devoted to exploring the selenenyl sulfides for the discovery of new leads of antiviral agent, fungicide, insecticide or AHAS inhibitors as potential agrochemicals for crop protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Hao Shang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Xue-Wen Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Hai-Lian Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Jia-Shuang Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Li-Zhong Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Shu-Jing Yu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Xiao Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Li-Xia Xiong
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| |
Collapse
|
13
|
Li J, Ye J, Zhou R, Gui K, Li J, Feng J, Ma Z, Lei P, Gao Y. Systematic Study on Turpentine-Derived Amides from Natural Plant Monoterpenes as Potential Antifungal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5507-5515. [PMID: 36988236 DOI: 10.1021/acs.jafc.3c00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To overcome the high volatility, low aqueous solubility, and few definite action sites of monoterpenoid pesticides and improve their properties and effectiveness in the control of crop pathogenic fungi, herein, a series of natural turpentine-based amide derivatives exhibiting satisfactory antifungal activity were designed and synthesized. A systematic study was conducted on antifungal activity and the physiological and biochemical response of compounds 5o (EC50 = 1.139 μg/mL) and 5j (EC50 = 1.762 μg/mL) against Rhizoctonia solani. The effect of the target compound on the potential target-site succinate dehydrogenase was evaluated. The soluble concentrates of compounds 5o and 5j possessing good performance and control effects were prepared for practical application. To conduct a comprehensive analysis of the relationship between structural descriptors and activity, four representative title compounds were selected for theoretical calculation: 5o, 5j, 5k, and 5j. The binding mode of compound 5o and boscalid with succinate dehydrogenase was analyzed via molecular docking. This study provides a reference for the development of monoterpene pesticides with high efficiency, elucidated target sites, and the appropriate formula.
Collapse
Affiliation(s)
- Jiening Li
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
| | - Jiuhui Ye
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
| | - Rui Zhou
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
| | - Kuo Gui
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, People's Republic of China
| |
Collapse
|
14
|
Pan T, Ye J, Li J, Gui K, Li J, Feng J, Ma Z, Lei P, Gao Y. Discovery of Terpene-Derived Quaternary Ring Compounds Containing an Oxime Moiety as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3164-3172. [PMID: 36748863 DOI: 10.1021/acs.jafc.2c07387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Terpene-derived quaternary ring compounds with an oxime moiety were designed and prepared to create fungicides from natural products. A preliminary assessment of their antifungal activity against seven common pathogenic fungi was conducted, and the median effective concentration (EC50) values against Rhizoctonia solani were obtained. The effects of compound 6a19 (3-bromothiophene-containing), which had an outstanding EC50 value (1.62 μg/mL), on the morphology, ultrastructure, reactive oxygen species production, mitochondrial membrane potential, nuclear morphology, and defense-related and respiration-related enzyme activities of mycelia were evaluated. The test compound was speculated to obstruct the bio-oxidative process, inhibiting mycelial growth. Compound 6a19 exhibited a satisfactory in vivo control effect on leaf sheath-infected rice plants. After treating rice plants with 50, 100, and 200 μg/mL 6a19, the protective and therapeutic efficacy values were 48.3 and 70.3%, 58.6 and 75.7%, and 69.0 and 81.1%, respectively. Moreover, a linear quantitative structure-activity relationship (R2 = 0.932, F = 61.3, and S2 = 0.020) was established using density functional theory calculations. Four chemical descriptors that were crucial to the antifungal activity were analyzed: the number of occupied electronic levels of atoms, the minimum atomic orbital electronic population, maximum net atom charge for a H atom, and minimum net atomic charge. In overall consideration of experimental results, it was speculated that the target compounds satisfactorily inhibited R. solani by interfering with biological oxidation pathways, which provided an insight into the future intensive and systematic action mechanism. This research is promising for the invention of novel fungicides from natural terpenes with multiple potential targets and satisfactory ecological compatibility.
Collapse
Affiliation(s)
- Tingmin Pan
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| | - Jiuhui Ye
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| | - Jiening Li
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| | - Kuo Gui
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, People's Republic of China
| |
Collapse
|
15
|
Ocampo A, Cabinta JGZ, Padilla HVJ, Yu ET, Nellas RB. Specificity of Monoterpene Interactions with Insect Octopamine and Tyramine Receptors: Insights from in Silico Sequence and Structure Comparison. ACS OMEGA 2023; 8:3861-3871. [PMID: 36743026 PMCID: PMC9893255 DOI: 10.1021/acsomega.2c06256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Octopamine and tyramine receptors (OARs/TARs) are interesting targets for new insecticide development due to their unique roles in insects' physiological and cellular response and their specificity to invertebrates. Monoterpene compounds that bear resemblance to the natural ligands have been shown to bind to the OARs/TARs but elicit varied responses in different insect species. Using in silico methods, we attempt to investigate the molecular basis of monoterpene interactions and their specificity in different OARs and TARs of damaging or beneficial insects. Sequence and structure comparison revealed that the OARs/TARs studied generally have more similarities in terms of structure rather than sequence identity. Together with clustering and network analyses, we also revealed that the role of IL3 might be crucial in the identification of OAR and TAR and their unique function. Among the 35 monoterpenes subjected to ensemble docking, carvacrol had the most negative average binding energies with the target insect OARs and TARs. The differences in the key interacting residues of carvacrol with insect OARs and TARs could be the origin of variation in the responses of insect species to this monoterpene. Results suggest that carvacrol may be a potential natural-product-based insecticide, targeting multiple insect pests while being nonharmful to honeybees and Asian swallowtail butterflies. This work could provide insights into the development of effective species-specific natural-product-based insecticides that are more environmentally friendly than conventional insecticides.
Collapse
Affiliation(s)
- Almira
B. Ocampo
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, Quezon City 1101, Philippines
| | - Joseph Gregory Z. Cabinta
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, Quezon City 1101, Philippines
| | - Hyvi Valerie J. Padilla
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, Quezon City 1101, Philippines
| | - Eizadora T. Yu
- Marine
Science Institute, College of Science, University
of the Philippines Diliman, Quezon City 1101, Philippines
| | - Ricky B. Nellas
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
16
|
Li P, Tian Y, Du M, Xie Q, Chen Y, Ma L, Huang Y, Yin Z, Xu H, Wu X. Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:211-222. [PMID: 36538414 DOI: 10.1021/acs.jafc.2c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Mingyi Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Qingrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Lianlian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yudi Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|