1
|
Xu L, Liu H, Li B, Li G, Liu R, Li D. SlCarE054 in Spodoptera litura (Lepidoptera: Noctuidae) showed direct metabolic activity to β-cypermethrin with stereoselectivity. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:482-490. [PMID: 38708572 DOI: 10.1017/s0007485324000282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Carboxylesterases (CarEs) is an important detoxification enzyme system in phase Ⅰ participating in insecticides resistance. In our previous study, SlCarE054, a CarEs gene from lepidoptera class, was screened out to be upregulated in a pyrethroids and organophosphates resistant population. Its overexpression was verified in two field-collected populations of Spodoptera litura (Lepidoptera: Noctuidae) resistant to pyrethroids and organophosphates by qRT-PCR. Spatiotemporal expression results showed that SlCarE054 was highly expressed in the pupae stage and the digestive tissue midgut. To further explore its role in pyrethroids and organophosphates resistance, its metabolism activity to insecticides was determined by UPLC. Its recombinant protein showed significant metabolism activity to cyhalothrin and fenvalerate, but not to phoxim or chlorpyrifos. The metabolic activity of SlCarE054 to β-cypermethrin showed stereoselectivity, with higher metabolic activity to θ-cypermethrin than the enantiomer α-cypermethrin. The metabolite of β-cypermethrin was identified as 3-phenoxybenzaldehyde. Further modelling and docking analysis indicated that β-cypermethrin, cyhalothrin and fenvalerate could bind with the catalytic triad of the 3D structure of SlCarE054. The interaction of β-cypermethrin with SlCarE054 also showed the lowest binding energy. Our work provides evidence that SlCarE054 play roles in β-cypermethrin resistance in S. litura.
Collapse
Affiliation(s)
- Li Xu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hongyu Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Guangling Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongzhi Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
2
|
Shao B, Yu S, Wang S, Li S, Ding L, Li M, Cheng L, Pan Q, Cong L, Ran C. A UDP-glycosyltransferase gene PcUGT202A9 was associated with abamectin resistance in Panonychus citri (McGregor). Int J Biol Macromol 2024; 270:132228. [PMID: 38734355 DOI: 10.1016/j.ijbiomac.2024.132228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Panonychus citri (McGregor) strains have developed a high level of resistance to abamectin, but the underlying molecular mechanism is unknown. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are critical for the removal of a variety of exogenous and endogenous substances. In this study, an enzyme activity assay revealed that UGTs potentially contribute to P. citri abamectin resistance. Spatiotemporal expression profiles showed that only PcUGT202A9 was significantly overexpressed in the abamectin-resistant strain (AbR) at all developmental stages. Moreover, UGT activity decreased significantly, whereas abamectin susceptibility increased significantly, in AbR after PcUGT202A9 was silenced. Three-dimensional modeling and molecular docking analyses revealed that PcUGT202A9 can bind stably to abamectin. Recombinant PcUGT202A9 activity was detected when α-naphthol was used, but the enzymatic activity was inhibited by abamectin (50 % inhibitory concentration: 803.3 ± 14.20 μmol/L). High-performance liquid chromatography and mass spectrometry analyses indicated that recombinant PcUGT202A9 can effectively degrade abamectin and catalyze the conjugation of UDP-glucose to abamectin. These results imply PcUGT202A9 contributes to P. citri abamectin resistance.
Collapse
Affiliation(s)
- Binbin Shao
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Shijiang Yu
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Shuqi Wang
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Sichen Li
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Lili Ding
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Mingyue Li
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Luyan Cheng
- Chongqing Institute for Food and Drug Control, Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China
| | - Qi Pan
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China.
| | - Chun Ran
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China.
| |
Collapse
|
3
|
Liu XY, Li K, Pan D, Dou W, Yuan GR, Wang JJ. Cross-resistance, inheritance and biochemical mechanism of abamectin resistance in a field-derived strain of the citrus red mite, Panonychus citri (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2024; 80:1258-1265. [PMID: 37889506 DOI: 10.1002/ps.7855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The citrus red mite, Panonychus citri (McGregor), a global pest of citrus, has developed different levels of resistance to various acaricides in the field. Abamectin is one of the most important insecticides/acaricides worldwide, targetting a wide number of insect and mite pests. The evolution of abamectin resistance in P. citri is threatening the sustainable use of abamectin for mite control. RESULTS The abamectin resistant strain (NN-Aba), derived from a field strain NN by consistent selection with abamectin, showed 4279-fold resistance to abamectin compared to a relatively susceptible strain (SS) of P. citri. Cross-resistance of NN-Aba was observed between abamectin and emamectin benzoate, pyridaben, fenpropathrin and cyflumetofen. Inheritance analyses indicated that abamectin resistance in the NN-Aba strain was autosomal, incompletely recessive and polygenic. The synergy experiment showed that abamectin toxicity was synergized by piperonyl butoxide (PBO), diethyl maleate (DEM) and tributyl phosphorotrithiotate (TPP) in the NN-Aba strain, and synergy ratios were 2.72-, 2.48- and 2.13-fold, respectively. The glutathione-S-transferases activity in the NN-Aba strain were significantly increased by 2.08-fold compared with the SS strain. CONCLUSION The abamectin resistance was autosomal, incompletely recessive and polygenic in P. citri. The NN-Aba strain showed cross-resistance to various acaricides with different modes of action. Metabolic detoxification mechanism participated in abamectin resistance in NN-Aba strain. These findings provide useful information for resistance management of P. citri in the field. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ke Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Mahalle RM, Sun W, Posos-Parra OA, Jung S, Mota-Sanchez D, Pittendrigh BR, Seong KM. Identification of differentially expressed miRNAs associated with diamide detoxification pathways in Spodoptera frugiperda. Sci Rep 2024; 14:4308. [PMID: 38383681 PMCID: PMC10881993 DOI: 10.1038/s41598-024-54771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a severe economic pest of multiple crops globally. Control of this pest is often achieved using insecticides; however, over time, S. frugiperda has developed resistance to new mode of action compounds, including diamides. Previous studies have indicated diamide resistance is a complex developmental process involving multiple detoxification genes. Still, the mechanism underlying the possible involvement of microRNAs in post-transcriptional regulation of resistance has not yet been elucidated. In this study, a global screen of microRNAs (miRNAs) revealed 109 known and 63 novel miRNAs. Nine miRNAs (four known and five novel) were differentially expressed between insecticide-resistant and -susceptible strains. Gene Ontology analysis predicted putative target transcripts of the differentially expressed miRNAs encoding significant genes belonging to detoxification pathways. Additionally, miRNAs are involved in response to diamide exposure, indicating they are probably associated with the detoxification pathway. Thus, this study provides comprehensive evidence for the link between repressed miRNA expression and induced target transcripts that possibly mediate diamide resistance through post-transcriptional regulation. These findings highlight important clues for further research to unravel the roles and mechanisms of miRNAs in conferring diamide resistance.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Institute of Agricultural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Weilin Sun
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Omar A Posos-Parra
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Sunghoon Jung
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Barry R Pittendrigh
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Keon Mook Seong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Yang XY, Yang W, Zhao H, Wang BJ, Shi Y, Wang MY, Liu SQ, Liao XL, Shi L. Functional analysis of UDP-glycosyltransferase genes conferring indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105589. [PMID: 37945240 DOI: 10.1016/j.pestbp.2023.105589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.
Collapse
Affiliation(s)
- Xi-Yu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
6
|
Elarabi NI, Abdelhadi AA, Nassrallah AA, Mohamed MSM, Abdelhaleem HAR. Biodegradation of isoproturon by Escherichia coli expressing a Pseudomonas putida catechol 1,2-dioxygenase gene. AMB Express 2023; 13:101. [PMID: 37751014 PMCID: PMC10522561 DOI: 10.1186/s13568-023-01609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The phenylurea herbicides are persistent in soil and water, necessitating the creation of methods for removing them from the environment. This study aimed to examine the soil microbial diversity, searching for local bacterial isolates able to efficiently degrade the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1, 1-dimethylurea (IPU). The best isolates able to effectively degrade IPU were selected, characterized, and identified as Pseudomonas putida and Acinetobacter johnsonii. The catechol 1, 2-dioxygenase enzyme's catA gene was amplified, cloned, and expressed in E. coli M15. The Expressed E. coli showed high degradation efficiency (44.80%) as analyzed by HPLC after 15 days of inoculation in comparison to P. putida (21.60%). The expression of the catA gene in P. putida and expressed E. coli was measured using quantitative polymerase chain reaction (qPCR). The results displayed a significant increase in the mRNA levels of the catA gene by increasing the incubation time with IPU. Hydrophilic interaction chromatography (HILIC) mass spectrometry analysis revealed that three intermediate metabolites, 1-(4-isopropylphenyl)-3-methylurea (MDIPU), 4-Isopropylaniline (4-IA) and 1-(4-isopropylphenyl) urea (DDIPU) were generated by both P. putida and expressed E. coli. In addition, IPU-induced catA activity was detected in both P. putida and expressed E. coli. The supernatant of both P. putida and expressed E. coli had a significant influence on weed growth. The study clearly exhibited that P. putida and expressed E. coli were capable of metabolizing IPU influentially and thus could be utilized for bioremediation and biodegradation technology development.
Collapse
Affiliation(s)
- Nagwa I Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Abdelhadi A Abdelhadi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Amr A Nassrallah
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Basic Applied Science institute, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El- Arab City, 21934, Alexandria, Egypt
| | - Mahmoud S M Mohamed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba A R Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6(th) October City, Egypt
| |
Collapse
|
7
|
Zhao M, Tao Z, Wang L, Wang T, Wang C, Li S, Huang S, Wei Y, Jiang T, Li P. Structural modification of (3E)-4,8-dimethyl-1,3,7-nontriene enhances its ability to kill Plutella xylostella insect pests. PEST MANAGEMENT SCIENCE 2023; 79:3280-3289. [PMID: 37085948 DOI: 10.1002/ps.7508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plant secondary metabolites and their modified derivatives play an important role in the discovery and development of novel insecticides. The natural plant product (3E)-4,8-dimethyl-1,3,7-nontriene (DMNT) has been proven to be able to effectively repel and kill the lepidopteran insect pest Plutella xylostella. RESULTS In this study, four oxygenated derivatives of DMNT were synthesized by allylic hydroxylation and subsequent etherification or esterification. Bioassays on P. xylostella larvae showed that the compounds DMNT-OCH3 (2), DMNT-OCy (3) and DMNT-OAc (4) were more toxic to the larvae than DMNT alone. The most pronounced effect was observed for compound 2, which showed a 22.23% increase in lethality at a concentration of 0.25 μm. Moreover, the peritrophic matrix (PM) barrier in the insect midgut was more severely damaged by compounds 2, 3 and 4 than by DMNT. The median lethal concentration (LC50 , 48 h) of compounds 2, 3 and 4 on P. xylostella was determined to be 0.98, 1.13 and 1.11 mg mL-1 , respectively, which is much lower than the commercial insecticides eucalyptol (2.89 mg mL-1 ) and thymol (2.45 mg mL-1 ). CONCLUSION These results suggested that oxygenated DMNT derivatives offer a significantly improved killing effect over DMNT on P. xylostella. This work has provided a basis for further design, structural modification and development of DMNT as botanical insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ling Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shijie Huang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yuming Wei
- The School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Taoshan Jiang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Li Z, Chen M, Bai W, Zhang S, Meng L, Dou W, Wang J, Yuan G. Identification, expression profiles and involvement in insecticides tolerance and detoxification of carboxylesterase genes in Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105443. [PMID: 37248012 DOI: 10.1016/j.pestbp.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023]
Abstract
Carboxylesterases (CarEs) are a multifunctional superfamily of enzymes and play an important role in detoxification of various insecticides in insects. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive agricultural pests and has developed different degrees of resistance to organophosphates in field. However, the involvement of BdCarEs in tolerance or resistance to other alternative insecticides are still unclear. In the present study, 33 BdCarEs genes were identified based on the genome database of B. dorsalis. Phylogenetic analysis demonstrated that they were classified into nine clades, with abundance of α-esterases. Meanwhile, the sequence characterization and the chromosome distribution were also analyzed. The spatiotemporal expression analysis of BdCarEs genes suggested that the diversity of potential function in different physiological processes. With the exception of BdCarE21, all BdCarEs genes responded to at least one insecticide exposure, and BdCarE20 was found to be up-regulated after exposure to all five tested insecticides individually. Eight BdCarEs genes were overexpressed in MR strain when compared to that in SS strain. Subsequently, knockdown the expression of representative BdCarEs genes significantly increased the susceptibility of the oriental fruit fly to corresponding insecticides, which indicated that the tested BdCarEs genes contributed to one or multiple insecticide detoxification. These findings provide valuable insights into the potential role in respond to tolerance or resistance to insecticides with different mode of action, and will facilitate development of efficiency management strategy for B. dorsalis.
Collapse
Affiliation(s)
- Zhenyu Li
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Mengling Chen
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wenjie Bai
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuxia Zhang
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Liwei Meng
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Yang F, Li Y, Gao M, Xia Q, Wang Q, Tang M, Zhou X, Guo H, Xiao Q, Sun L. Comparative expression profiles of carboxylesterase orthologous CXE14 in two closely related tea geometrid species, Ectropis obliqua Prout and Ectropis grisescens Warren. Front Physiol 2023; 14:1194997. [PMID: 37293262 PMCID: PMC10244532 DOI: 10.3389/fphys.2023.1194997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Insect carboxylesterases (CXEs) can be expressed in multiple tissues and play crucial roles in detoxifying xenobiotic insecticides and degrading olfactory cues. Therefore, they have been considered as an important target for development of eco-friendly insect pest management strategies. Despite extensive investigation in most insect species, limited information on CXEs in sibling moth species is currently available. The Ectropis obliqua Prout and Ectropis grisescens Warren are two closely related tea geometrid species, which share the same host of tea plant but differ in geographical distribution, sex pheromone composition, and symbiotic bacteria abundance, providing an excellent mode species for studies of functional diversity of orthologous CXEs. In this study, we focused on EoblCXE14 due to its previously reported non-chemosensory organs-biased expression. First, the EoblCXE14 orthologous gene EgriCXE14 was cloned and sequence characteristics analysis showed that they share a conserved motif and phylogenetic relationship. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to compare the expression profiles between two Ectropis spp. The results showed that EoblCXE14 was predominately expressed in E. obliqua larvae, whereas EgriCXE14 was abundant in E. grisescens at multiple developmental stages. Interestingly, both orthologous CXEs were highly expressed in larval midgut, but the expression level of EoblCXE14 in E. obliqua midgut was significantly higher than that of EgriCXE14 in E. grisescens midgut. In addition, the potential effect of symbiotic bacteria Wolbachia on the CXE14 was examined. This study is the first to provide comparative expression profiles of orthologous CXE genes in two sibling geometrid moth species and the results will help further elucidate CXEs functions and identify a potential target for tea geometrid pest control.
Collapse
Affiliation(s)
- Fengshui Yang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yujie Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengyuan Gao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Qing Xia
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Wang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Meijun Tang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogui Zhou
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Huawei Guo
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Mrdaković M, Filipović A, Ilijin L, Grčić A, Matić D, Vlahović M, Todorović D, Perić-Mataruga V. Effects of dietary fluoranthene on tissue-specific responses of carboxylesterases, acetylcholinesterase and heat shock protein 70 in two forest lepidopteran species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114937. [PMID: 37094482 DOI: 10.1016/j.ecoenv.2023.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
In this study, responses of carboxylesterases, acetylcholinesterase, and stress protein Hsp70 were examined in the midgut and midgut tissue, and brain of fifth instar larvae of Lymantria dispar L. and Euproctis chrysorrhoea L. following chronic exposure to dietary fluoranthene. Specific carboxylesterase activity increased significantly in the midgut tissue of E. chrysorrhoea larvae treated with a lower fluoranthene concentration. The specific patterns of isoforms expression, recorded in larvae of both species, enable efficient carboxylesterase activity as a significant part of defense mechanisms. Increased Hsp70 concentration in the brain of L. dispar larvae points to a response to the proteotoxic effects of a lower fluoranthene concentration. Decreased Hsp70 in the brain of E. chrysorrhoea larvae in both treated groups can suggest induction of other mechanisms of defense. The results indicate the importance of the examined parameters in larvae of both species exposed to the pollutant, as well as their potential as biomarkers.
Collapse
Affiliation(s)
- Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
11
|
Cruse C, Moural TW, Zhu F. Dynamic Roles of Insect Carboxyl/Cholinesterases in Chemical Adaptation. INSECTS 2023; 14:194. [PMID: 36835763 PMCID: PMC9958613 DOI: 10.3390/insects14020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Insects have evolved several intricate defense mechanisms to adapt to their chemical environment. Due to their versatile capabilities in hydrolytic biotransformation, insect carboxyl/cholinesterases (CCEs) play vital roles in the development of pesticide resistance, facilitating the adaptation of insects to their host plants, and manipulating insect behaviors through the olfaction system. CCEs confer insecticide resistance through the mechanisms of qualitative or quantitative changes of CCE-mediated enhanced metabolism or target-site insensitivity, and may contribute to the host plant adaptation. CCEs represent the first odorant-degrading enzymes (ODEs) discovered to degrade insect pheromones and plant odors and remain the most promising ODE candidates. Here, we summarize insect CCE classification, currently characterized insect CCE protein structure characteristics, and the dynamic roles of insect CCEs in chemical adaptation.
Collapse
Affiliation(s)
- Casey Cruse
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Timothy Walter Moural
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
12
|
Yang Z, Xiao T, Lu K. Contribution of UDP-glycosyltransferases to chlorpyrifos resistance in Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105321. [PMID: 36740334 DOI: 10.1016/j.pestbp.2022.105321] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
As a multigene superfamily of Phase II detoxification enzymes, uridine diphosphate (UDP)-glycosyltransferases (UGTs) play important roles in the metabolism of xenobiotics including insecticides. In this study, 5-nitrouracil, an inhibitor of UGT enzyme activity, effectively increased the toxicity of chlorpyrifos to the chlorpyrifos-resistant strain of Nilaparvata lugens, one of the most resistant rice pests. The enzyme content of UGT in the resistant strain was significantly higher than that in the susceptible strain. Among 20 identified UGT genes, UGT386H2, UGT386J2, UGT386N2 and UGT386P1 were found significantly overexpressed in the resistant strain and can be effectively induced by chlorpyrifos. These four UGT genes were most highly expressed in the midgut and/or fat body, two main insect detoxification tissues. Amino acid sequence alignments revealed that these four UGTs contained a variable N-terminal substrate-binding domain and a conserved C-terminal sugar donor-binding domain. Furthermore, homology modeling and molecular docking analyses showed that these UGTs could stably bind to chlorpyrifos and chlorpyrifos oxon, with the binding free energies from -19.4 to -110.62 kcal mol-1. Knockdown of UGT386H2 or UGT386P1 by RNA interference dramatically increased the susceptibility of the resistant strain to chlorpyrifos. These findings suggest that overexpression of these two UGT genes contributes to chlorpyrifos resistance in N. lugens.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
Li P, Tian Y, Du M, Xie Q, Chen Y, Ma L, Huang Y, Yin Z, Xu H, Wu X. Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:211-222. [PMID: 36538414 DOI: 10.1021/acs.jafc.2c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Mingyi Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Qingrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Lianlian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yudi Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Zhai W, Cao M, Xiao Z, Li D, Wang M. Rapid Detection of Malathion, Phoxim and Thiram on Orange Surfaces Using Ag Nanoparticle Modified PDMS as Surface-Enhanced Raman Spectroscopy Substrate. Foods 2022; 11:3597. [PMID: 36429190 PMCID: PMC9689543 DOI: 10.3390/foods11223597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Malathion, phoxim, and thiram are organophosphates and organosulfur pesticides widely used in agricultural products. The residues of these pesticides present a direct threat to human health. Rapid and on-site detection is critical for minimizing such risks. In this work, a simple approach was introduced using a flexible surface-enhanced Raman spectroscopy (SERS) substrate. The prepared Ag nanoparticles-polydimethylsiloxane (AgNPs-PDMS) substrate showed high SERS activity, good precision (relative standard deviation = 5.33%), and stability (30 days) after optimization. For target pesticides, the linear relationship between characteristic SERS bands and concentrations were achieved in the range of 10~1000, 100~5000, and 50~5000 μg L-1 with LODs down to 3.62, 41.46, and 15.69 μg L-1 for thiram, malathion, and phoxim, respectively. Moreover, SERS spectra of mixed samples indicated that three pesticides can be identified simultaneously, with recovery rates between 96.5 ± 3.3% and 118.9 ± 2.4%, thus providing an ideal platform for detecting more than one target. Pesticide residues on orange surfaces can be simply determined through swabbing with the flexible substrate before acquiring the SERS signal. This study demonstrated that the prepared substrate can be used for the rapid detection of pesticides on real samples. Overall, this method greatly simplified the pre-treatment procedure, thus serving as a promising analytical tool for rapid and nondestructive screening of malathion, phoxim, and thiram on various agricultural products.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiyong Xiao
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
15
|
De Beer B, Vandenhole M, Njiru C, Spanoghe P, Dermauw W, Van Leeuwen T. High-Resolution Genetic Mapping Combined with Transcriptome Profiling Reveals That Both Target-Site Resistance and Increased Detoxification Confer Resistance to the Pyrethroid Bifenthrin in the Spider Mite Tetranychus urticae. BIOLOGY 2022; 11:1630. [PMID: 36358331 PMCID: PMC9687926 DOI: 10.3390/biology11111630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2023]
Abstract
Pyrethroids are widely applied insecticides in agriculture, but their frequent use has provoked many cases of resistance, in which mutations in the voltage-gated sodium channel (VGSC), the pyrethroid target-site, were shown to play a major role. However, for the spider mite Tetranychus urticae, it has also been shown that increased detoxification contributes to resistance against the pyrethroid bifenthrin. Here, we performed QTL-mapping to identify the genomic loci underlying bifenthrin resistance in T. urticae. Two loci on chromosome 1 were identified, with the VGSC gene being located near the second QTL and harboring the well-known L1024V mutation. In addition, the presence of an L925M mutation in the VGSC of a highly bifenthrin-resistant strain and its loss in its derived, susceptible, inbred line indicated the importance of target-site mutations in bifenthrin resistance. Further, RNAseq experiments revealed that genes encoding detoxification enzymes, including carboxyl/choline esterases (CCEs), cytochrome P450 monooxygenases and UDP-glycosyl transferases (UGTs), were overexpressed in resistant strains. Toxicity bioassays with bifenthrin (ester pyrethroid) and etofenprox (non-ester pyrethroid) also indicated a possible role for CCEs in bifenthrin resistance. A selection of CCEs and UGTs were therefore functionally expressed, and CCEinc18 was shown to metabolize bifenthrin, while teturUGT10 could glycosylate bifenthrin-alcohol. To conclude, our findings suggest that both target-site and metabolic mechanisms underlie bifenthrin resistance in T. urticae, and these might synergize high levels of resistance.
Collapse
Affiliation(s)
- Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christine Njiru
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Spanoghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|