1
|
Fidalgo-Illesca C, Francini A, Raffaelli A, Sebastiani L. Silicon priming triggers differential physiological, ionomic and metabolic responses in olive (Olea europaea L.) cultivars with different tolerance to salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109809. [PMID: 40138814 DOI: 10.1016/j.plaphy.2025.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Salinity stress can negatively influence the growth potential and productivity of olive trees affecting photosynthesis and, disturbing ions homeostasis and essential metabolic pathways. Silicon (Si) is proposed as exogenous pretreatment for mitigate the salinity impact on olive plants. One-year old 'Frantoio' (salt-tolerant) and 'Leccino' (salt-sensitive) plants (n = 5) were grown in pots filled with sand and clay and pretreated for 28 days with 10 mg L-1 of Si(OH)4 then, for 51 days with 100 mM NaCl (12.15 g for each plant) and compared to control plants. The following hypotheses have been tested: i) Si pretreatment enhances photosynthetic performance by regulating stomatal closure and decreasing water loss; ii) Si reduces Na+ uptake and accumulation in new leaves; iii) Si improve the biosynthesis of compatible osmolytes that have a role in the regulation of the osmotic stress induced by salinity. The Si priming effect in olive tree was cultivar dependent. In 'Frantoio' Si induce a rapid early decrease of stomatal conductance increasing the intrinsic water use efficiencies (intWUE) not observed in 'Leccino' plants. In 'Leccino' the key Si effect was the reduction of Na+ accumulation in new leaves (-58 %) and maintenance of the K+ concentration under salinity. Specific interactions between Si and NaCl and the number of polyphenols affected were higher in 'Frantoio' than in 'Leccino'. Among the key mechanisms related to the Si-mediated tolerance to salt stress we can conclude that photosynthesis and Na+ uptake are the two principals involved in the responses of salinity to 'Frantoio' and 'Leccino' cultivars.
Collapse
Affiliation(s)
- Carmen Fidalgo-Illesca
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Alessandra Francini
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Andrea Raffaelli
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Luca Sebastiani
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| |
Collapse
|
2
|
Dawood MFA, Tahjib-Ul-Arif M, Shirazy BJ, Abdel Latef AAH. Unraveling the role of κ-carrageenan on the combined effect of drought and chromium stress in wheat (Triticum aestivium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109781. [PMID: 40157148 DOI: 10.1016/j.plaphy.2025.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025]
Abstract
Drought (D) and chromium (Cr) stress co-occur in agricultural fields due to the accumulation of excessive Cr in soils from industrial pollution and increasing frequency of water scarcity. Carrageenan (Car), a compound extracted from red seaweed, is an emerging biostimulant with multifaceted roles in plants. This study investigated the role of exogenous Car in mediating tolerance to D-, Cr-, and DCr-stress in wheat seedlings, aiming to elucidate the potential of Car in mitigating toxicity and promoting plant resilience. Wheat seedlings exposed to DCr-stress exhibited reduced growth and biomass production, along with elevated levels of reactive oxygen, carbonyl, and nitrogen species. Moreover, D-stress exacerbated Cr-toxicity, as demonstrated by principal component analysis (PCA), which showed a strong positive correlation between DCr-stress and stress marker parameters. This suggests that DCr-stress resulted in higher Cr uptake and increased oxidative damage compared to individual D- or Cr-stress, making DCr-stress more detrimental than either stress applied alone. However, Car priming ameliorated the toxic effects of DCr-stress and promoted the growth performance of DCr-stressed wheat seedlings. In PCA, the positive correlation of D + Car, Cr + Car, and DCr + Car treatments with growth and plant defense-related parameters suggests that Car-mediated improvement in stress tolerance can be attributed to reduced accumulation of toxic Cr, increased levels of total free amino acids and soluble sugars, enhanced antioxidant enzyme activity, elevated non-enzymatic antioxidant levels, higher phenolic and flavonoid content, and improved metal chelation and detoxification. Our results indicated Car is a potential and cost-effective biostimulant for managing D-, Cr-, or DCr-stress in wheat.
Collapse
Affiliation(s)
- Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Bir Jahangir Shirazy
- Rice Farming Systems Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - Arafat Abdel Hamed Abdel Latef
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt; Molecular Biology and Biotechnology Center, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
3
|
Yin H, Nakamura T, Nakamura Y, Munemasa S, Murata Y. Dual role of cytosolic GSH in the ABA signaling pathway and plasma membrane ion channel regulation in guard cells of Vicia faba. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154447. [PMID: 39923261 DOI: 10.1016/j.jplph.2025.154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Abscisic acid (ABA) induces stomatal closure in higher plants under drought stress. Glutathione (GSH) negatively regulates ABA-induced stomatal closure and reactive carbonyl species (RCS) play a role as signal mediators downstream of reactive oxygen species production in ABA signaling pathway in Arabidopsis thaliana. Activation of slow (S-type) anion channels and inhibition of inward-rectifying potassium ion (Kin+) channels in the plasma membrane are essential for ABA-induced stomatal closure. However, there is limited evidence regarding role of GSH in the activation of S-type anion channels and the inhibition of Kin+ channels. We used Vicia faba to clarify the regulation of these ion channels by GSH and RCS. Pretreatment of guard-cell protoplasts with the GSH-supplementing agent, glutathione monoethyl ester (GSHmee), suppressed the activation of S-type anion channels and the inactivation of Kin+ channels induced by ABA. The pretreatment with the RCS scavenger carnosine suppressed the activation of S-type anion channels and the inactivation of Kin+ channels by ABA. On patch clamping guard-cell protoplasts, the addition of GSH to the pipette (cytosolic) buffer decreased the S-type anion currents and increased the Kin+ currents. These results suggest that cytosolic GSH is involved in ABA-induced stomatal closure via negative regulation of ABA signaling and via direct regulation of ion channel activities in V. faba.
Collapse
Affiliation(s)
- Huifei Yin
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Fu M, Liu L, Fu B, Hou M, Xiao Y, Liu Y, Sa D, Lu Q. Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions. FRONTIERS IN PLANT SCIENCE 2025; 15:1516336. [PMID: 39850220 PMCID: PMC11753915 DOI: 10.3389/fpls.2024.1516336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
Introduction Salt stress significantly affects plant growth, and Na+ has gained attention for its potential to enhance plant adaptability to saline conditions. However, the interactions between Na+, plants, and rhizosphere bacterial communities remain unclear, hindering a deeper understanding of how Na+ contributes to plant resilience under salt stress. Methods This study aimed to investigate the mechanisms through which Na+ promotes alfalfa's adaptation to salt stress by modifying rhizosphere bacterial communities. We examined the metabolic activity and community composition of both plant and rhizosphere bacteria under Na+ treatment. Results and discussion Our results revealed significant changes in the metabolism and community composition of both plant and rhizosphere bacteria following Na+ addition. Na+ not only promoted the growth of rhizosphere bacteria but also induced shifts in the plant-associated bacterial community, increasing the abundance of bacterial species linked to alfalfa's resistance to salt stress. Furthermore, the chemical characteristics of alfalfa were strongly correlated with the composition and network complexity of both plant and rhizosphere bacterial communities. These interactions suggest that Na+ plays a crucial role in enhancing alfalfa's adaptability to salt stress by fostering beneficial bacterial communities in the rhizosphere. This finding highlights the potential of leveraging Na+ interactions with plant-microbe systems to improve crop resilience and productivity in saline agricultural environments.
Collapse
Affiliation(s)
- Maoxing Fu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Liying Liu
- Inner Mongolia Autonomous Region Forestry Scientific Research Institute, Hohhot, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Yanzi Xiao
- Agricultural College, Hulun Buir College, Hailar, China
| | - Yinghao Liu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Ksas B, Chiarenza S, Dubourg N, Ménard V, Gilbin R, Havaux M. Plant acclimation to ionising radiation requires activation of a detoxification pathway against carbonyl-containing lipid oxidation products. PLANT, CELL & ENVIRONMENT 2024; 47:3882-3898. [PMID: 38831671 DOI: 10.1111/pce.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Ionising γ radiation produces reactive oxygen species by water radiolysis, providing an interesting model approach for studying oxidative stress in plants. Three-week old plants of Arabidopsis thaliana were exposed to a low dose rate (25 mGy h-1) of γ radiation for up to 21 days. This treatment had no effect on plant growth and morphology, but it induced chronic oxidation of lipids which was associated with an accumulation of reactive carbonyl species (RCS). However, contrary to lipid peroxidation, lipid RCS accumulation was transient only, being maximal after 1 day of irradiation and decreasing back to the initial level during the subsequent days of continuous irradiation. This indicates the induction of a carbonyl-metabolising process during chronic ionising radiation. Accordingly, the γ-radiation treatment induced the expression of xenobiotic detoxification-related genes (AER, SDR1, SDR3, ALDH4, and ANAC102). The transcriptomic response of some of those genes (AER, SDR1, and ANAC102) was deregulated in the tga256 mutant affected in three TGAII transcription factors, leading to enhanced and/or prolonged accumulation of RCS and to a marked inhibition of plant growth during irradiation compared to the wild type. These results show that Arabidopsis is able to acclimate to chronic oxidative stress and that this phenomenon requires activation of a carbonyl detoxification mechanism controlled by TGAII. This acclimation did not occur when plants were exposed to an acute γ radiation stress (100 Gy) which led to persistent accumulation of RCS and marked inhibition of plant growth. This study shows the role of secondary products of lipid peroxidation in the detrimental effects of reactive oxygen species.
Collapse
Affiliation(s)
- Brigitte Ksas
- Aix Marseille Université, UMR7265 CNRS, CEA, Institut de Biosciences et de Biotechnologies d'Aix-Marseille (BIAM), CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Serge Chiarenza
- Aix Marseille Université, UMR7265 CNRS, CEA, Institut de Biosciences et de Biotechnologies d'Aix-Marseille (BIAM), CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Nicolas Dubourg
- IRSN, Service de Radioprotection des Populations et de l'Environnement (SERPEN), MICADOLab, CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Véronique Ménard
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Rodophe Gilbin
- IRSN, Service de Radioprotection des Populations et de l'Environnement (SERPEN), MICADOLab, CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix Marseille Université, UMR7265 CNRS, CEA, Institut de Biosciences et de Biotechnologies d'Aix-Marseille (BIAM), CEA/Cadarache, Saint-Paul-lez-Durance, France
| |
Collapse
|
6
|
Leporino M, Rouphael Y, Bonini P, Colla G, Cardarelli M. Protein hydrolysates enhance recovery from drought stress in tomato plants: phenomic and metabolomic insights. FRONTIERS IN PLANT SCIENCE 2024; 15:1357316. [PMID: 38533405 PMCID: PMC10963501 DOI: 10.3389/fpls.2024.1357316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Introduction High-throughput phenotyping technologies together with metabolomics analysis can speed up the development of highly efficient and effective biostimulants for enhancing crop tolerance to drought stress. The aim of this study was to examine the morphophysiological and metabolic changes in tomato plants foliarly treated with two protein hydrolysates obtained by enzymatic hydrolysis of vegetal proteins from Malvaceae (PH1) or Fabaceae (PH2) in comparison with a control treatment, as well as to investigate the mechanisms involved in the enhancement of plant resistance to repeated drought stress cycles. Methods A phenotyping device was used for daily monitoring morphophysiological traits while untargeted metabolomics analysis was carried out in leaves of the best performing treatment based on phenotypic results.Results: PH1 treatment was the most effective in enhancing plant resistance to water stress due to the better recovery of digital biomass and 3D leaf area after each water stress event while PH2 was effective in mitigating water stress only during the recovery period after the first drought stress event. Metabolomics data indicated that PH1 modified primary metabolism by increasing the concentration of dipeptides and fatty acids in comparison with untreated control, as well as secondary metabolism by regulating several compounds like phenols. In contrast, hormones and compounds involved in detoxification or signal molecules against reactive oxygen species were downregulated in comparison with untreated control. Conclusion The above findings demonstrated the advantages of a combined phenomics-metabolomics approach for elucidating the relationship between metabolic and morphophysiological changes associated with a biostimulant-mediated increase of crop resistance to repeated water stress events.
Collapse
Affiliation(s)
- Marzia Leporino
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences at the University of Naples, Portici, Italy
| | - Paolo Bonini
- oloBion SL, Barcelona, Spain
- Arcadia s.r.l., Rivoli Veronese, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
- Arcadia s.r.l., Rivoli Veronese, Italy
| | | |
Collapse
|
7
|
Minen RI, Thirumalaikumar VP, Skirycz A. Proteinogenic dipeptides, an emerging class of small-molecule regulators. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102395. [PMID: 37311365 DOI: 10.1016/j.pbi.2023.102395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Proteinogenic dipeptides, with few known exceptions, are products of protein degradation. Dipeptide levels respond to the changes in the environment, often in a dipeptide-specific manner. What drives this specificity is currently unknown; what likely contributes is the activity of the different peptidases that cleave off the terminal dipeptide from the longer peptides. Dipeptidases that degrade dipeptides to amino acids, and the turnover rates of the "substrate" proteins/peptides. Plants can both uptake dipeptides from the soil, but dipeptides are also found in root exudates. Dipeptide transporters, members of the proton-coupled peptide transporters NTR1/PTR family, contribute to nitrogen reallocation between the sink and source tissues. Besides their role in nitrogen distribution, it becomes increasingly clear that dipeptides may also serve regulatory, dipeptide-specific functions. Dipeptides are found in protein complexes affecting the activity of their protein partners. Moreover, dipeptide supplementation leads to cellular phenotypes reflected in changes in plant growth and stress tolerance. Herein we will review the current understanding of dipeptides' metabolism, transport, and functions and discuss significant challenges and future directions for the comprehensive characterization of this fascinating but underrated group of small-molecule compounds.
Collapse
Affiliation(s)
| | | | - Aleksandra Skirycz
- Boyce Thompson Institute, 14853, Ithaca, NY, USA; Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
8
|
Yuan L, Liu H, Cao Y, Wu W. Transcription factor TERF1 promotes seed germination through HEXOKINASE 1 (HXK1)-mediated signaling pathway. JOURNAL OF PLANT RESEARCH 2023; 136:743-753. [PMID: 37233958 DOI: 10.1007/s10265-023-01471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Seed germination, a vital process for plant growth and development, is regulated by ethylene. Previously, we showed that Tomato Ethylene Responsive Factor 1 (TERF1), an ethylene-responsive factor (ERF) transcription factor, could significantly promote seed germination by increasing glucose content. As glucose can function as a signaling molecule to regulate plant growth and development through HEXOKINASE 1 (HXK1), we aim to illustrate how TERF1 promotes seed germination through the HXK1-mediated signaling pathway. We showed that seeds overexpressing TERF1 exhibited more resistance to N-acetylglucosamine (NAG), an inhibitor of the HXK1- mediated signaling pathway. We identified genes regulated by TERF1 through HXK1 based on transcriptome analysis. Gene expression and phenotype analysis demonstrated that TERF1 repressed the ABA signaling pathway through HXK1, which promoted germination through activating the plasma membrane (PM) H+-ATPase. TERF1 also alleviated the endoplasmic reticulum (ER) stress to accelerate germination by maintaining reactive oxygen species (ROS) homeostasis through HXK1. Our findings provide new insights into the mechanism regulated by ethylene through the glucose-HXK1 signaling pathway during seed germination.
Collapse
Affiliation(s)
- Long Yuan
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Hongzhi Liu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Yupeng Cao
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
9
|
Kok Z, Kuo YW, Soh ZT, Huang HC, Tseng BS, Hsieh HC, Tsai WA, Jeng ST, Chen SP, Lin JS. Regulatory roles of microRNA163 in responses to stresses in Arabidopsis. PHYSIOLOGIA PLANTARUM 2023; 175:e14053. [PMID: 37882263 DOI: 10.1111/ppl.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that participate in various biological processes by silencing target genes. In Arabidopsis, microRNA163 (miR163) was found to be involved in seed germination, root development, and biotic resistance. However, the regulatory roles of miR163 remain unclear. In the current study, the mir163 mutant was investigated to comprehensively understand and characterize its functions in Arabidopsis. RNA-sequencing and Gene Ontology enrichment analyses revealed that miR163 might be involved in "response to stimulus" and "metabolic process". Interestingly, "response to stress", including heat, cold, and oxidative stress, was enriched under the subcategory of "response to stimulus". We observed that miR163 and PXMT were repressed and induced under heat stress, respectively. Furthermore, the study detected significant differences in seed germination rate, hypocotyl length, and survival rate, indicating a variation in the thermotolerance between WT and mir163 mutant. The results revealed that the mir163 mutant had a lesser degree of germination inhibition by heat treatment than WT. In addition, the mir163 mutant showed a better survival rate and longer hypocotyl length under heat treatment than the WT. The metabolomes of WT and mir163 mutant were further analyzed. The contents of benzene derivatives and flavonoids were affected by miR163, which could enhance plants' defense abilities. In conclusion, miR163/targets regulated the expression of stress-responsive genes and the accumulation of defense-related metabolites to alter stress tolerance.
Collapse
Affiliation(s)
- Zhenyuan Kok
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yun-Wei Kuo
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Zhi Thong Soh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Bo-Shun Tseng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Cheng Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wei-An Tsai
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shi-Peng Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Saleem K, Asghar MA, Raza A, Javed HH, Farooq TH, Ahmad MA, Rahman A, Ullah A, Song B, Du J, Xu F, Riaz A, Yong JWH. Biochar-Mediated Control of Metabolites and Other Physiological Responses in Water-Stressed Leptocohloa fusca. Metabolites 2023; 13:511. [PMID: 37110169 PMCID: PMC10146376 DOI: 10.3390/metabo13040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
We investigated biochar-induced drought tolerance in Leptocohloa fusca (Kallar grass) by exploring the plant defense system at physiological level. L. fusca plants were exposed to drought stress (100%, 70%, and 30% field capacity), and biochar (BC), as an organic soil amendment was applied in two concentrations (15 and 30 mg kg-1 soil) to induce drought tolerance. Our results demonstrated that drought restricted the growth of L. fusca by inhibiting shoot and root (fresh and dry) weight, total chlorophyll content and photosynthetic rate. Under drought stress, the uptake of essential nutrients was also limited due to lower water supply, which ultimately affected metabolites including amino and organic acids, and soluble sugars. In addition, drought stress induced oxidative stress, which is evidenced by the higher production of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide ion (O2-), hydroxyl ion (OH-), and malondialdehyde (MDA). The current study revealed that stress-induced oxidative injury is not a linear path, since the excessive production of lipid peroxidation led to the accumulation of methylglyoxal (MG), a member of reactive carbonyl species (RCS), which ultimately caused cell injury. As a consequence of oxidative-stress induction, the ascorbate-glutathione (AsA-GSH) pathway, followed by a series of reactions, was activated by the plants to reduce ROS-induced oxidative damage. Furthermore, biochar considerably improved plant growth and development by mediating metabolites and soil physio-chemical status.
Collapse
Affiliation(s)
- Khansa Saleem
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunzvik St., 2462 Martonvásár, Hungary
| | - Ali Raza
- Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hafiz Hassan Javed
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Taimoor Hassan Farooq
- Bangor College China, A Joint Unit of Bangor University and Central South University of Forestry and Technology, Changsha 410004, China
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Altafur Rahman
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunzvik St., 2462 Martonvásár, Hungary
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiquan Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Fei Xu
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Aamir Riaz
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden
| |
Collapse
|