1
|
Li F, Li H, Li S, He Z. A review of Lycium ruthenicum Murray: Geographic distribution tracing, bioactive components, and functional properties. Heliyon 2024; 10:e39566. [PMID: 39524793 PMCID: PMC11550641 DOI: 10.1016/j.heliyon.2024.e39566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Lycium ruthenicum (LRM), endemic to Northwest China, is known as hei goji or black goji and is renowned for its rich bioactive compounds. This review analyzes LRM's geographic distribution and traceability and highlights challenges and future developments in geographical traceability. The work also focuses on LRM's bioactive constituents, especially on anthocyanins and polysaccharides, demonstrating a clear clue for understanding their updated extraction methods, identification, and diverse bioactive activities, including antioxidation, anti-inflammation, and immunomodulation, which is beneficial to developing novel functional foods and new medical materials. Moreover, the paper elucidates advances in the potential application of LRM in food preservation, packaging, and other domains. Notably, we figure out gaps in LRM research, such as traceability technology and the proven efficacy of biological activities. This study provides a foundation for future perspectives on developing nutraceuticals and functional foods, disease treatment supplements, and green food packaging materials by bridging these gaps.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Regional Foods, Chongqing, China
| | - Shaobo Li
- Institute of Food Science and Technology CAAS, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Regional Foods, Chongqing, China
| |
Collapse
|
2
|
Mai J, Zhu MJ, Hu BB, Zhang H, Liu ZH, Sun JF, Hu Y, Zhao L. Effects of Phaffia rhodozyma on microbial community dynamics and tobacco quality during tobacco fermentation. Front Microbiol 2024; 15:1451582. [PMID: 39355430 PMCID: PMC11442207 DOI: 10.3389/fmicb.2024.1451582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Carotenoids are important precursors of various aroma components in tobacco and play an important role in the sensory quality of tobacco. Phaffia rhodozyma is a species of Xanthophyllomyces capable of synthesizing a highly valuable carotenoid-astaxanthin, but has not yet been used in improving tobacco quality. Methods The dynamic changes of microbial community and metabolites during tobacco fermentation were analyzed in combination with microbiome and metabolome, and the quality of tobacco after fermentation was evaluated by sensory scores. Results P. rhodozyma could grow and produce carotenoids in tobacco extract, with a maximum biomass of 6.50 g/L and a maximum carotenoid production of 36.13 mg/L at 100 g/L tobacco extract. Meanwhile, the correlation analysis combined with microbiome and metabolomics showed that P. rhodozyma was significantly positively correlated with 11 metabolites such as 6-hydroxyluteolin and quercetin. Furthermore, the contents of alcohols, ketones and esters, which were important aromatic components in fermented tobacco, reached 77.57 μg/g, 58.28 μg/g and 73.51 μg/g, increasing 37.39%, 265.39% and 266.27% compared to the control group, respectively. Therefore, the aroma and flavor, and taste scores of fermented tobacco increased by 0.5 and 1.0 points respectively. Discussion This study confirmed that P. rhodozyma fermentation could effectively improve the sensory evaluation of tobacco, and provided a novel microbial fermentation method to improve tobacco quality.
Collapse
Affiliation(s)
- Jing Mai
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Hong Zhang
- Yunnan Tobacco Monopoly Bureau, Kunming, China
| | | | | | - Yang Hu
- Chuxiong State Tobacco Monopoly Bureau, Chuxiong, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
3
|
Zhang K, Li H, Shi J, Liu W, Wang Y, Tu P, Li J, Song Y. Strategy strengthens structural identification through hyphenating full collision energy ramp-MS 2 and full exciting energy ramp-MS 3 spectra: An application for metabolites identification of rosmarinic acid. Anal Chim Acta 2024; 1296:342346. [PMID: 38401935 DOI: 10.1016/j.aca.2024.342346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
"MS/MS spectrum to structure" analysis is the most challenging task for MS/MS-relied qualitative characterization. The conventional database- and computation-assisted strategies cannot reach confirmative identification, notably for isomers. Hence, an advanced strategy was proposed here through tackling the two determinant obstacles such as the transformation from elemental compositions to fragment ion structures and the linkage style amongst substructures. As typical conjugated structures, esters were measured for strategy illustration, and metabolite identification of a famous natural antioxidant namely rosmarinic acid (RosA) in rat was undertaken for applicability justification. Through programming online energy-resolved (ER)-MS for the first collision cell of Qtrap-MS device, full collision energy ramp (FCER)-MS2 spectrum was configured for [M-H]- ion of each ester to provide optimal collision energies (OCEs) for all concerned diagnostic fragment ions (DFIs), i.e. a-, b-, c-, y-, and z-type ions. The linear correlations between masses and OCEs were built for each ion type to facilitate DFIs recognition from chaotic MS2 spectrum. To identify 1st-generation fragment ions, full exciting energy ramp (FEER)-MS3 spectra were configured for key DFIs via programming the second ER-MS in the latter collision chamber. FEER-MS3 spectrum of 1st-generation fragment ion for ester was demonstrated to be identical with FEER-MS2 spectrum of certain hydrolysis product when sharing the same structure. After applying the advanced strategy to recognize DFIs and identify 1st-generation fragment ions, a total of forty metabolites (M1-M40), resulted from hydrolysis, methylation, sulfation, and glucuronidation, were unambiguously identified for RosA after oral administration. Together, the advanced bottom-up strategy hyphenating FCER-MS2 and FEER-MS3 spectra, is meaningful to strengthen "MS/MS spectrum to structure" analysis through recognizing and identifying fragment ions.
Collapse
Affiliation(s)
- Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| | - Han Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| | - Jingjing Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
4
|
van Zadelhoff A, de Bruijn WJ, Vincken JP. Comment on "Three New Dimers and Two Monomers of Phenolic Amides from the Fruits of Lycium barbarum and Their Antioxidant Activities". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6781-6786. [PMID: 38470138 PMCID: PMC10979425 DOI: 10.1021/acs.jafc.3c08738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
This Comment critically addresses the article by Gao et al. (Gao, K., et al. J. Agric. Food Chem. 2015, 63, 1067-1075), providing the structural elucidation of three phenolamide dimers (neolignanamides) from the fruits of Lycium barbarum. A more recent article published by Chen et al. (Chen, H., et al. J. Agric. Food Chem. 2023, 71, 11080-11093) incorporates these structures into further research on the bioactivity of these compounds. Although the analytical techniques used by Gao et al. are adequate, in our opinion, the nuclear magnetic resonance (NMR) spectroscopic data have not been interpreted correctly, resulting in incorrect structures for three neolignanamides from the fruits of L. barbarum. In this Comment, an alternative interpretation of the NMR spectroscopic data and the corresponding structures are proposed. The proposed structures feature linkage types that are much more common for neolignanamides than the linkage types in the originally reported structures of these compounds.
Collapse
Affiliation(s)
- Annemiek van Zadelhoff
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Wouter J.C. de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
5
|
Zhou Y, Wu W, Sun Y, Shen Y, Mao L, Dai Y, Yang B, Liu Z. Integrated transcriptome and metabolome analysis reveals anthocyanin biosynthesis mechanisms in pepper (Capsicum annuum L.) leaves under continuous blue light irradiation. BMC PLANT BIOLOGY 2024; 24:210. [PMID: 38519909 PMCID: PMC10960449 DOI: 10.1186/s12870-024-04888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Different metabolic compounds give pepper leaves and fruits their diverse colors. Anthocyanin accumulation is the main cause of the purple color of pepper leaves. The light environment is a critical factor affecting anthocyanin biosynthesis. It is essential that we understand how to use light to regulate anthocyanin biosynthesis in plants. RESULT Pepper leaves were significantly blue-purple only in continuous blue light or white light (with a blue light component) irradiation treatments, and the anthocyanin content of pepper leaves increased significantly after continuous blue light irradiation. This green-to-purple phenotype change in pepper leaves was due to the expression of different genes. We found that the anthocyanin synthesis precursor-related genes PAL and 4CL, as well as the structural genes F3H, DFR, ANS, BZ1, and F3'5'H in the anthocyanin synthesis pathway, had high expression under continuous blue light irradiation. Similarly, the expression of transcription factors MYB1R1-like, MYB48, MYB4-like isoform X1, bHLH143-like, and bHLH92-like isoform X3, and circadian rhythm-related genes LHY and COP1, were significantly increased after continuous blue light irradiation. A correlation network analysis revealed that these transcription factors and circadian rhythm-related genes were positively correlated with structural genes in the anthocyanin synthesis pathway. Metabolomic analysis showed that delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside were significantly higher under continuous blue light irradiation relative to other light treatments. We selected 12 genes involved in anthocyanin synthesis in pepper leaves for qRT-PCR analysis, and the accuracy of the RNA-seq results was confirmed. CONCLUSIONS In this study, we found that blue light and 24-hour irradiation together induced the expression of key genes and the accumulation of metabolites in the anthocyanin synthesis pathway, thus promoting anthocyanin biosynthesis in pepper leaves. These results provide a basis for future study of the mechanisms of light quality and photoperiod in anthocyanin synthesis and metabolism, and our study may serve as a valuable reference for screening light ratios that regulate anthocyanin biosynthesis in plants.
Collapse
Affiliation(s)
- Yao Zhou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Weisheng Wu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ying Sun
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yiyu Shen
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lianzhen Mao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yunhua Dai
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
6
|
Chuaijit S, Punsawad C, Winoto V, Plaingam W, Kongkaew I, Phetcharat A, Ichikawa T, Kubo M, Kawakami F, Tedasen A, Chatatikun M. Leaf extract of Garcinia atroviridis promotes anti-heat stress and antioxidant effects in Caenorhabditis elegans. Front Pharmacol 2024; 15:1331627. [PMID: 38515852 PMCID: PMC10955098 DOI: 10.3389/fphar.2024.1331627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Garcinia atroviridis has been used for traditional medicines, healthy foods and tea. The chemical compositions and biological activities of fruit, stem bark and root have been widely studied. However, the phytochemical components and the biological activities in Garcinia atroviridis leaves (GAL) are limited. This research aims to study the phytochemical components and the stress resistance effects of GAL in Caenorhabditis elegans (C. elegans). Methods: To investigate the chemical components and antioxidant activities of GAL extract, the ethanol extract was characterized by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF MS) analysis and C. elegans was used to evaluate the effects of GAL extracts on longevity and stress resistance. Results and discussion: The results revealed that the ethanol extract of GAL possesses free radical scavenging activities. Furthermore, GAL extract increased the lifespan of C. elegans by 6.02%, 15.26%, and 12.75% at concentrations of 25, 50, and 100 μg/mL, respectively. GAL extract exhibited improved stress resistance under conditions of heat and hydrogen peroxide-induced stress. The survival rates of GAL extract-treated worms were significantly higher than those of untreated worms, and GAL extract reduced reactive oxygen species (ROS) accumulation. Additionally, GAL extract treatment upregulated the expression of stress resistance-associated genes, including gst-4, sod-3, skn-1, and hsp16.2. GAL extract supplementation alleviated stress and enhanced longevity by inducing stress-related genes in C. elegans. The observed effects of GAL extracts may be attributed to the stimulation of oxidant enzymes mediated through DAF-16/FOXO and SKN-1/NRF2, as well as the enhancement of thermal defense in C. elegans. Collectively, this study provides the first evidence of the antioxidant activities of GAL and elucidates the underlying mechanisms of stress resistance.
Collapse
Affiliation(s)
- Sirithip Chuaijit
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Veronica Winoto
- Department of Chemical Engineering, Thammasat School of Engineering, Thammasat University Rangsit Campus, Rangsit, Pathum Thani, Thailand
| | - Waluga Plaingam
- College of Oriental Medicine, Rangsit University, Rangsit, Pathum Thani, Thailand
| | - Itti Kongkaew
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atidtaya Phetcharat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Makoto Kubo
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Moragot Chatatikun
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
7
|
Li T, Zhang K, Niu X, Chen W, Yang X, Gong X, Tu P, Wang Y, Liu W, Song Y. MS/MS fingerprint comparison between adjacent generations enables substructure identification: Flavonoid glycosides as cases. J Pharm Biomed Anal 2023; 234:115559. [PMID: 37393693 DOI: 10.1016/j.jpba.2023.115559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
MS/MS spectrum matching currently serves as a favored means to identify the concerned metabolites attributing to the accessibility of several famous databases. However, the rule that takes the entire structure into account frequently leads to "0 hit" when inquiring MS/MS (usually MS2) spectrum in the databases. Conjugation plays an important role for the high-level structural diversity of metabolites in all organisms, and a given conjugate usually consists of two or more substructures. If MS3 spectra participate in database retrieval, the structural annotation potential of those databases should be dramatically expanded via identifying substructures. Attributing to the ubiquitous distribution pattern, flavonoid glycosides were deployed as the representative family to justify whether the primary fragment ion termed as Y0+, resulted from neutral loss of glycosyl residue(s), generated identical MS3 spectrum with MS2 spectrum of the aglycone cation namely [A+H]+. Because of owning unique ability to measure MS/MS spectrum with the exactly desired exciting energy, linear ion trap chamber of Qtrap-MS was responsible for generating the desired MS3 and MS2 spectra. When taking both m/z and ion intensity features into consideration, the findings included: 1) glycosides sharing identical aglycones produced the same MS3 spectra for Y0+; 2) different MS3 spectra for Y0+ occurred amongst glycosides bearing distinct, even isomeric, aglycones; 3) isomeric aglycones generated different MS2 spectra; and 4) MS3 spectra for Y0+ agreed with MS2 spectra of [A+H]+ when comparing paired glycoside and aglycone. Together, fingerprint comparison between MS3 and MS2 spectra could structurally annotate the substructures and further advance MS/MS spectrum matching towards the identification of, but not limited to, aglycones for flavonoid glycosides.
Collapse
Affiliation(s)
- Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoya Niu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Chen
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangfen Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xingcheng Gong
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road, Zhengdong New District, Zhengzhou 450046, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
8
|
Chemical constituents from the stems of Physalis pubescens L. (Solanaceae). BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
de Souza GR, De-Oliveira ACAX, Soares V, De-Souza TP, Barbi NS, Paumgartten FJR, da Silva AJR. Protective effects of a chemically characterized extract from solanum torvum leaves on acetaminophen-induced liver injury. Drug Chem Toxicol 2023; 46:122-135. [PMID: 35105269 DOI: 10.1080/01480545.2021.2012905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Distinct parts of Solanum torvum Swartz. (Solanaceae) are popularly used for a variety of therapeutic purposes. This study determined the phytochemical composition of a phenolic fraction of S. torvum leaf aqueous extract and investigated its antioxidant and liver-protective properties. A phenolic compound-enriched fraction, or phenolic fraction (STLAE-PF) of an infusion (STLAE) of S. torvum leaves, was tested in vitro (antagonism of H2O2 in cytotoxicity and DCF assays with HepG2/C3A cells), and in vivo for antioxidant activity and protective effects against acetaminophen (APAP)-induced liver injury in mice. Thirty-eight compounds (flavonoids, esters of hydroxycinnamic acid, and chlorogenic acid isomers) were tentatively identified (high-performance liquid chromatography coupled to high-resolution electrospray mass spectrometry) in the STLAE-PF fraction. In vitro assays in HepG2/C3A cells showed that STLAE-PF and some flavonoids contained in this phenolic fraction, at noncytotoxic levels, antagonized in a concentration-dependent manner the effects of a powerful oxidant agent (H2O2). In C57BL/6 mice, oral administration of STLAE (600 and 1,200 mg/kg bw) or STLAE-PF (300 mg/kg bw) prevented the rise in serum transaminases (ALT and AST), depletion of reduced glutathione (GSH) and elevation of thiobarbituric acid reactive species (TBARs) levels in the liver caused by APAP (600 mg/kg bw, i.p.). The hepatoprotective effects of STLAE-PF (300 mg/kg bw) against APAP-caused liver injury were comparable to those of N-acetyl-cysteine (NAC 300 or 600 mg/kg bw i.p.). These findings indicate that a phenolic fraction of S. torvum leaf extract (STLAE-PF) is a new phytotherapeutic agent potentially useful for preventing/treating liver injury caused by APAP overdosing.
Collapse
Affiliation(s)
- Gabriela R de Souza
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Ana Cecilia A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Vitor Soares
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thamyris Perez De-Souza
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Nancy S Barbi
- Department of Clinical and Toxicological Analyses, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J R Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Antonio J R da Silva
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Liu Z, Ma X, Zhang N, Yuan L, Yin H, Zhang L, An T, Xu Y. Phenylpropanoid amides from Solanum rostratum and their phytotoxic activities against Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1174844. [PMID: 37123827 PMCID: PMC10130401 DOI: 10.3389/fpls.2023.1174844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Introduction Solanum rostratum, an annual malignant weed, has seriously damaged the ecological environment and biodiversity of invasion area. This alien plant gains a competitive advantage by producing some new phytotoxic substances to inhibit the growth of native plants, thus achieving successful invasion. However, the chemical structures, inhibitory functions and action mechanisms of phytotoxic substances of S. rostratum remain unclear. Methods In this study, to clarify the chemical structures of phytotoxic substances from S. rostratum, we isolated phenylpropanoid amides from the plant. Their structures were identified by comprehensive HR-ESIMS, NMR and ECD data. And the inhibitory functions of isolated phenylpropanoid amides on one model plant (Arabidopsis thaliana) were also investigated. In addition, the action mechanisms of active phenylpropanoid amides were revealed by antioxidant-related enzymes [Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD)] activities and corresponding molecular docking analyses. Results and Discussion Phytochemical research on the whole plant of S. rostratum led to the isolation and identification of four new phenylpropanoid amides (1-4), together with two known analogues (5-6). All the compounds showed phytotoxic effects with varying levels on the seed germination and root elongation of one model plant (Arabidopsis thaliana), especially compound 2 and 4. Likewise, compounds 2 and 4 displayed potent inhibitory effects on antioxidant-related enzyme (POD). In addition, compounds 2 and 4 formed common conventional hydrogen bonds with residues Ala34 and Ser35 in POD revealed by molecular docking analyses. These findings not only helped to reveal the invasion mechanism of S. rostratum from the perspective of "novel weapons hypothesis", but also opened up new ways for the exploitation and utilization of S. rostratum.
Collapse
Affiliation(s)
- Zhixiang Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaoqing Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Nan Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Linlin Yuan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongrui Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lingling Zhang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tong An
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Tong An, ; Yubin Xu,
| | - Yubin Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- *Correspondence: Tong An, ; Yubin Xu,
| |
Collapse
|
11
|
Liu X, Jiang L, Zhang Q, Zhao Z, Zhang H. Arecoline and arecaidine lixiviation in areca nut blanching: Liquid chromatography‐ion trap‐time of flight hybrid mass spectrometry determination and kinetic modeling. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoling Liu
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Lian Jiang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Qi Zhang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Zhendong Zhao
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
- Analytical and Testing Center Hainan University Haikou China
| | - Haide Zhang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| |
Collapse
|
12
|
Li Y, Liu Z, Tamia GM, He X, Sun J, Chen P, Lee SH, Wang TTY, Gao B, Xie Z, Yu LL. Soluble Free, Soluble Conjugated, and Insoluble Bound Phenolics in Tomato Seeds and Their Radical Scavenging and Antiproliferative Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9039-9047. [PMID: 35820155 DOI: 10.1021/acs.jafc.2c03418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The soluble free, soluble conjugated, and insoluble bound phenolic compounds in tomato seeds were extracted and analyzed using ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Total phenolic content (TPC) and free radical scavenging activities along with the antiproliferative effects against the human colorectal cancer cell line (HCT-116) were also examined for the soluble free, soluble conjugated, and insoluble bound phenolic fractions. 13, 7, and 10 compounds were tentatively identified in the soluble free, soluble conjugated, and insoluble bound phenolic fractions, respectively, including indole-3-acetic acid derivatives, flavonoids, phenolic acid, and tyramine-derived hydroxycinnamic acid amines. The insoluble bound phenolic fraction was observed to have a greater TPC value and stronger free radical scavenging activities against ABTS•+, DPPH•, and peroxyl radicals and a stronger inhibitory effect against HCT-116 cells compared with the soluble free and the soluble conjugated fractions. Soluble free and insoluble bound fractions significantly inhibited the proliferation of the HCT-116 cell line, and no antiproliferative effects were observed with the soluble conjugated fraction under the experimental conditions. The results may provide a foundation for future application of tomato seeds as nutraceuticals in dietary supplements and functional foods.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihao Liu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Gillian Manka Tamia
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaohua He
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, California 94710, United States
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuohong Xie
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
13
|
Asuquo EA, Nwodo OFC, Assumpta AC, Orizu UN, Oziamara ON, Solomon OA. FTO gene expression in diet-induced obesity is downregulated by Solanum fruit supplementation. Open Life Sci 2022; 17:641-658. [PMID: 35800074 PMCID: PMC9202533 DOI: 10.1515/biol-2022-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/15/2022] Open
Abstract
The Fat Mass and Obesity-associated (FTO) gene has been shown to play an important role in developing obesity, manifesting in traits such as increased body mass index, increased waist-to-hip ratio, and the distribution of adipose tissues, which increases the susceptibility to various metabolic syndromes. In this study, we evaluated the impact of fruit-based diets of Solanum melongena (SMF) and Solanum aethiopicum fruits (SAF) on the FTO gene expression levels in a high-fat diet (HFD)-induced obese animals. Our results showed that the mRNA level of the FTO gene was downregulated in the hypothalamus, and white and brown adipose tissue following three and six weeks of treatment with SMF- and SAF-based diets in the HFD-induced obese animals. Additionally, the Solanum fruit supplementation exhibited a curative effect on obesity-associated abrasions on the white adipose tissue (WAT), hypothalamus, and liver. Our findings collectively suggest the anti-obesity potential of SMF and SAF via the downregulation of the FTO gene.
Collapse
Affiliation(s)
- Edeke Affiong Asuquo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | | | - Anosike Chioma Assumpta
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Uchendu Nene Orizu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Okoro Nkwachukwu Oziamara
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Odiba Arome Solomon
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
- Department of Molecular Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| |
Collapse
|
14
|
Cao Y, Li W, Gong X, Niu X, Zheng J, Yu J, Li J, Tu P, Song Y. Widely quasi-quantitative analysis enables temporal bile acids-targeted metabolomics in rat after oral administration of ursodeoxycholic acid. Anal Chim Acta 2022; 1212:339885. [DOI: 10.1016/j.aca.2022.339885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
|
15
|
Chen C, Wang B, Li J, Xiong F, Zhou G. Multivariate Statistical Analysis of Metabolites in Anisodus tanguticus (Maxim.) Pascher to Determine Geographical Origins and Network Pharmacology. FRONTIERS IN PLANT SCIENCE 2022; 13:927336. [PMID: 35845631 PMCID: PMC9277180 DOI: 10.3389/fpls.2022.927336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/09/2022] [Indexed: 05/17/2023]
Abstract
Anisodus tanguticus (Maxim.) Pascher, has been used for the treatment of septic shock, analgesia, motion sickness, and anesthesia in traditional Tibetan medicine for 2,000 years. However, the chemical metabolites and geographical traceability and their network pharmacology are still unknown. A total of 71 samples of A. tanguticus were analyzed by Ultra-Performance Liquid Chromatography Q-Exactive Mass Spectrometer in combination with chemometrics developed for the discrimination of A. tanguticus from different geographical origins. Then, network pharmacology analysis was used to integrate the information of the differential metabolite network to explore the mechanism of pharmacological activity. In this study, 29 metabolites were identified, including tropane alkaloids, hydroxycinnamic acid amides and coumarins. Principal component analysis (PCA) explained 49.5% of the total variance, and orthogonal partial least-squares discriminant analysis (OPLS-DA) showed good discrimination (R2Y = 0.921 and Q2 = 0.839) for A. tanguticus samples. Nine differential metabolites accountable for such variations were identified through variable importance in the projection (VIP). Through network pharmacology, 19 components and 20 pathways were constructed and predicted for the pharmacological activity of A. tanguticus. These results confirmed that this method is accurate and effective for the geographic classification of A. tanguticus, and the integrated strategy of metabolomics and network pharmacology can explain well the "multicomponent--multitarget" mechanism of A. tanguticus.
Collapse
Affiliation(s)
- Chen Chen
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- College of Life Science, Qinghai Normal University, Xining, China
| | - Feng Xiong
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Guoying Zhou
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- *Correspondence: Guoying Zhou
| |
Collapse
|
16
|
Nishidono Y, Tanaka K. Comprehensive characterization of polyacetylenes and diterpenes from the underground parts of Solidago altissima L. and their contribution to the overall allelopathic activity. PHYTOCHEMISTRY 2022; 193:112986. [PMID: 34688040 DOI: 10.1016/j.phytochem.2021.112986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Solidago altissima L. (Asteraceae), a perennial plant native to North America, is considered one of the most invasive weeds in Asia and Europe. The successful invasion of S. altissima is possibly due to its allelopathic effect along with high seed productivity and strong vegetative propagation through rhizomes. Herein, to understand the invasion of S. altissima via the allelopathic effect, we isolated and characterized known and undescribed compounds from the underground parts of S. altissima and evaluated their contribution to the overall allelopathic activity of the plant. NMR spectroscopy and LC-MS analyses clarified the chemical structure of ten specialized metabolites including three undescribed compounds, i.e., (4Z, 8Z)-10-tigloyloxy matricaria lactone, (4Z, 8Z)-10-angeloyloxy matricaria lactone, and (2Z, 8Z)-10-methacryloyloxy matricaria ester. The evaluation of the content and allelopathic ability of each compound showed that cis-dehydromatricaria ester contributes to the allelopathic activities of the S. altissima extract.
Collapse
Affiliation(s)
- Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
17
|
Song Y, Mei T, Liu Y, Kong S, Zhang J, Xie M, Ou S, Liang M, Wang Q. Metabolites Identification of Chemical Constituents From the Eggplant ( Solanum melongena L.) Calyx in Rats by UPLC/ESI/qTOF-MS Analysis and Their Cytotoxic Activities. Front Pharmacol 2021; 12:655008. [PMID: 34335243 PMCID: PMC8320773 DOI: 10.3389/fphar.2021.655008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Eggplant (Solanum melongena L.) Calyx is a medicinal and edible traditional Chinese medicine with anti-inflammatory, anti-oxidant, and anti-cancer properties. However, the pharmacodynamic components and metabolic characteristics remain unclear. Amide and phenylpropanoid were the two main constituents, and four amides, including n-trans-p-coumaroyltyramine (1), n-trans-p-coumaroyloctopamine (2), n-trans-p-coumaroylnoradrenline (3), n-trans-feruloyloctopamine (4), and a phenylpropanoid neochlorogenic acid (5) were selected. In this study, these five representative compounds showed cytotoxic activities on A549, HCT116, and MCF7 cells. In addition, the metabolites of 1–5 from the eggplant calyx in rats were identified. In total, 23, 37, 29, and 17 metabolites were separately characterized in rat plasma, urine, feces, and livers, by UPLC/ESI/qTOF-MS analysis. The metabolism of amides and phenylpropanoid was mainly involved in hydroxylation, methylation, glucuronidation, or sulfation reactions. Two hydroxylated metabolites (1-M2 and 2-M3) were clearly identified by comparison with reference standards. Rat liver microsome incubation experiments indicated that P450 enzymes could hydroxylate 1–5, and the methylation reaction of the 7-hydroxyl was also observed. This is the first study on the in vivo metabolism of these compounds, which lays a foundation for follow-up studies on pharmacodynamic evaluations and mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Song
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ting Mei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengnan Kong
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jincheng Zhang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shan Ou
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Meixia Liang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Transcriptome-Wide Identification and Quantification of Caffeoylquinic Acid Biosynthesis Pathway and Prediction of Its Putative BAHDs Gene Complex in A. spathulifolius. Int J Mol Sci 2021; 22:ijms22126333. [PMID: 34199260 PMCID: PMC8231772 DOI: 10.3390/ijms22126333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
The phenylpropanoid pathway is a major secondary metabolite pathway that helps plants overcome biotic and abiotic stress and produces various byproducts that promote human health. Its byproduct caffeoylquinic acid is a soluble phenolic compound present in many angiosperms. Hydroxycinnamate-CoA shikimate/quinate transferase is a significant enzyme that plays a role in accumulating CQA biosynthesis. This study analyzed transcriptome-wide identification of the phenylpropanoid to caffeoylquinic acid biosynthesis candidate genes in A. spathulifolius flowers and leaves. Transcriptomic analyses of the flowers and leaves showed a differential expression of the PPP and CQA biosynthesis regulated unigenes. An analysis of PPP-captive unigenes revealed a major duplication in the following genes: PAL, 120 unigenes in leaves and 76 in flowers; C3′H, 169 unigenes in leaves and 140 in flowers; 4CL, 41 unigenes in leaves and 27 in flowers; and C4H, 12 unigenes in leaves and 4 in flowers. The phylogenetic analysis revealed 82 BAHDs superfamily members in leaves and 72 in flowers, among which five unigenes encode for HQT and three for HCT. The three HQT are common to both leaves and flowers, whereas the two HQT were specialized for leaves. The pattern of HQT synthesis was upregulated in flowers, whereas HCT was expressed strongly in the leaves of A. spathulifolius. Overall, 4CL, C4H, and HQT are expressed strongly in flowers and CAA and HCT show more expression in leaves. As a result, the quantification of HQT and HCT indicates that CQA biosynthesis is more abundant in the flowers and synthesis of caffeic acid in the leaves of A. spathulifolius.
Collapse
|
19
|
Liquid chromatography-three-dimensional mass spectrometry enables confirmative structural annotation of cistanoside F metabolites in rat. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1162:122457. [PMID: 33310479 DOI: 10.1016/j.jchromb.2020.122457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
Clarification the existence forms, including prototype and metabolite(s) is the prerequisite for understanding in-depth the therapeutic mechanisms of a given agent, particularly when oral administration. However, it is still a long distance for unambiguous structural identification of metabolites even employing the cutting-edge MS/MS technique, and the determinant obstacle is produced by its inherent isomer-blind disadvantage. To tackle with this drawback, online energy-resolved mass spectrometry (online ER-MS) was introduced to enable isomeric discrimination after that high-resolution MS/MS provided empirical molecular formula as well as substructures. In-depth metabolic characterization of cistanoside F (CF), an effective natural product, was conducted as a proof-of-concept for the new strategy namely three-dimensional MS that was configured by MS1, MS2 and online ER-MS as 1st, 2nd, and 3rd dimensions, respectively. Sensitive metabolite detection was assisted by predictive multiple-reaction monitoring function on Qtrap-MS, and the empirical formulas of all metabolites were calculated from the quasi-molecular ions yielded from IT-TOF-MS. Subsequently, substructures of each metabolite were constructed by combining the calculated element compositions and the well-defined mass fragmentation pathways. Finally, online ER-MS was responsible to generate optimal collision energies for bonds-of-interest, and enabled rational selection among candidate structures. A total of thirteen metabolites were detected and confirmatively identified in rat after oral treatment of CF using LC-3D MS. Acyl-migration, hydrolysis and sulfation played key roles for the metabolic fate of CF. More importantly, LC-3D MS is an eligible tool to achieve confidence-enhanced structural annotation of metabolites in biological matrices because of the unique isomeric differentiation ability from online ER-MS.
Collapse
|
20
|
Zhang Y, Sun Y, Zhang H, Mai Q, Zhang B, Li H, Deng Z. The degradation rules of anthocyanins from eggplant peel and antioxidant capacity in fortified model food system during the thermal treatments. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Leonard W, Zhang P, Ying D, Fang Z. Tyramine-derived hydroxycinnamic acid amides in plant foods: sources, synthesis, health effects and potential applications in food industry. Crit Rev Food Sci Nutr 2020; 62:1608-1625. [PMID: 33206548 DOI: 10.1080/10408398.2020.1845603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyramine-derived hydroxycinnamic acid amines (HCAAT) are naturally occurring group of secondary metabolites present in various plant genera, such as Allium, Cannabis, Lycium, Polyganotum and Solanum. It belongs to the neutral, water-insoluble compounds and plays a role in plant growth, development and defence mechanism. The past two decades have seen a shift in the study of HCAAT from its role in plants to its potent biological activities. This review highlights the sources, roles in plants, biosynthetic pathways, metabolic engineering and chemical synthesis of HCAAT. The biological properties of HCAAT remain the focus in this paper, including antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-melanogenesis and neuroprotective properties. The effects of food processing and technology on HCAAT are also discussed. Given the current research gap, this review proposes future directions on the study of HCAAT, as well as its potential applications in food and pharmaceutical industry.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Danyang Ying
- CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Pengwei G, Song Q, Li T, Cao L, Tang H, Wang Y, Tu P, Zheng J, Song Y, Li J. Confirmative Structural Annotation for Metabolites of ( R)-7,3'-Dihydroxy-4'-methoxy-8-methylflavane, A Natural Sweet Taste Modulator, by Liquid Chromatography-Three-Dimensional Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12454-12466. [PMID: 33084329 DOI: 10.1021/acs.jafc.0c05154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flavonoids occupy the largest family of natural products and possess a broad spectrum of health benefits. Their metabolites are sometimes the truly effective molecules in vivo. It is still challenging, however, to unambiguously identify flavonoid metabolites using conventional LC-MS/MS. Herein, we aimed to pursue auxiliary structural clues to m/z values in both MS1 and MS2 spectra through LC coupled to three-dimensional MS (LC-3D MS). MS1, as the first dimension, was in charge of suggesting theoretical molecular formulas, MS2, the as second dimension, was responsible for offering substructures, and exactly, online energy-resolved MS (ER-MS), as the third dimension, provided optimal collision energies (OCEs) that reflected the linkage manners among the substructures. Metabolic characterization of a natural sweet taste modulator, namely, (R)-7,3'-dihydroxy-4'-methoxy-8-methylflavane (DHMMF), was conducted as a proof-of-concept. Extensive efforts, such as full MS1 and MS2 scans on IT-TOF-MS and predictive selected-reaction monitoring mode on Qtrap-MS, were made for in-depth metabolite mining. Seventeen metabolites (M1-M17) were captured from DHMMF-treated biological samples, including 17 (M1-M17), 10 (M4-M9, M11, M13, M14, and M16), and 2 (M5 and M10) metabolites from urine, plasma, and feces, respectively. Their structures were configured by integrating MS1, MS2, and OCE information. Except M10, all metabolites were new compounds. LC-MS/MS-guided chromatographic purification yielded three glucuronyl-conjugated metabolites (M5, M8, and M11), and NMR spectroscopic assays consolidated the structures transmitted from LC-3D MS. Demethylation, glucuronidation, and sulfation occurred as the primary metabolic pathways of DHMMF. Above all, LC-3D MS bridged LC-MS/MS from putatively structural annotation toward confidence-enhanced identification, beyond the metabolite characterization of flavonoids.
Collapse
Affiliation(s)
- Guan Pengwei
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Libo Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huiting Tang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
23
|
Zhang Y, Deng Z, Li H, Zheng L, Liu R, Zhang B. Degradation Kinetics of Anthocyanins from Purple Eggplant in a Fortified Food Model System during Microwave and Frying Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11817-11828. [PMID: 32975408 DOI: 10.1021/acs.jafc.0c05224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A model food system was designed with dietary fiber and crude anthocyanins from purple eggplant peel to explore the degradation mechanism of anthocyanins during microwave and frying treatments. Our results found that delphinidin-3-O-rutinoside was either hydrolyzed into delphinidin or condensed with p-coumaric acid to form p-coumaroyl-delphinidin-3-O-glucoside. Delphinidin was cleaved into gallic acid and phloroglucinaldehyde, which might be further oxidized into pyrogallol and phloroglucinol, respectively. The total anthocyanin degradation followed the first-order kinetics in fried and microwaved solid matrix samples as well as microwaved liquid matrix samples. However, the total anthocyanin degradation followed the second-order kinetics in the heated liquid matrix samples at the frying temperature. The brown/polymeric color index, which negatively correlated with the anthocyanin content, increased faster in the liquid matrix samples than in the solid matrix samples. Compared with frying treatment, a higher rate of anthocyanin degradation in solution was observed under microwave treatment. However, anthocyanins were subject to much more damage under frying treatment than microwave treatment in a solid food system.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
24
|
Samulski GB, Gontijo DC, Moreira NC, Brandão GC, Braga de Oliveira A. Dereplication of Palicourea sessilis ethanol extracts by UPLC-DAD-ESI-MS/MS discloses the presence of hydroxycinnamic acid amides and the absence of monoterpene indole alkaloids. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Leonard W, Zhang P, Ying D, Fang Z. Lignanamides: sources, biosynthesis and potential health benefits - a minireview. Crit Rev Food Sci Nutr 2020; 61:1404-1414. [PMID: 32366112 DOI: 10.1080/10408398.2020.1759025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lignanamides are natural plant secondary metabolites derived from oxidative coupling mechanism with hydroxycinnamic acid amides as intermediates. These compounds display powerful anti-inflammatory, antioxidant, anti-cancer and anti-hyperlipidemic capacities in vitro, cell culture and in vivo studies. With strong potential to be utilized as protective agents against human chronic diseases, these compounds have attracted the interest of researchers. This review aims to discuss current understanding on the sources, classification, biosynthesis of lignanamides in plants, and importantly their biological activity and potential health benefits. The general biosynthesis pathway for lignanamides is comprehensively summarized, though some details in molecular regulation of the coupling process have yet to be elucidated. Lignanamides deserves additional clinical studies involving animal and human subjects, to prove its health benefits.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, University of Melbourne, Parkville, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, University of Melbourne, Parkville, Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
Zhang H, Liu R, Lu Q. Separation and Characterization of Phenolamines and Flavonoids from Rape Bee Pollen, and Comparison of Their Antioxidant Activities and Protective Effects Against Oxidative Stress. Molecules 2020; 25:molecules25061264. [PMID: 32168811 PMCID: PMC7144025 DOI: 10.3390/molecules25061264] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023] Open
Abstract
Phenolamines and flavonoids are two important components in bee pollen. There are many reports on the bioactivity of flavonoids in bee pollen, but few on phenolamines. This study aims to separate and characterize the flavonoids and phenolamines from rape bee pollen, and compare their antioxidant activities and protective effects against oxidative stress. The rape bee pollen was separated to obtain 35% and 50% fractions, which were characterized by HPLC-ESI-QTOF-MS/MS. The results showed that the compounds in 35% fraction were quercetin and kaempferol glycosides, while the compounds in 50% fraction were phenolamines, including di-p-coumaroyl spermidine, p-coumaroyl caffeoyl hydroxyferuloyl spermine, di-p-coumaroyl hydroxyferuloyl spermine, and tri-p-coumaroyl spermidine. The antioxidant activities of phenolamines and flavonoids were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays. It was found that the antioxidant activity of phenolamines was significantly higher than that of flavonoids. Moreover, phenolamines showed better protective effects than flavonoids on HepG2 cells injured by AAPH. Furthermore, phenolamines could significantly reduce the reactive oxygen species (ROS), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and increase the superoxide dismutase (SOD) and glutathione (GSH) levels. This study lays a foundation for the further understanding of phenolamines in rape bee pollen.
Collapse
Affiliation(s)
- Huifang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (R.L.)
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (R.L.)
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (R.L.)
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87288373; Fax: +86-27-87282111
| |
Collapse
|
27
|
Zhao DY, Liu Y, Sun YP, Li XM, Xu ZP, Pan J, Guan W, Yang BY, Kuang HX. Sesquiterpenoids with diverse carbon skeletons from the sepals of Solanum melongena L. Fitoterapia 2020; 142:104517. [PMID: 32070772 DOI: 10.1016/j.fitote.2020.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/25/2022]
Abstract
Eight new sesquiterpenoids named melongenaterpenes M-T (1-8), together with nine known compounds (9-17), were isolated from the 70% ethanol extract of the sepals of Solanum melongena L. The structures of all isolated compounds were elucidated based on 1D and 2D NMR spectra and a comprehensive comparison of their spectroscopic and physical data with values from the published literatures. Meanwhile, the cytotoxicity of all the isolated compounds was evaluated on the three human cancer lines of Hela, Ishikawa and MGC-803 by CCK8 assay, respectively.
Collapse
Affiliation(s)
- Dong-Ying Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yan-Ping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Xiao-Mao Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Zhen-Peng Xu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Juan Pan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, PR China.
| |
Collapse
|
28
|
Zhao DY, Liu Y, Yin X, Li XM, Pan J, Guan W, Yang BY, Kuang HX. Two new alkaloids from the sepals of Solanum melongena L. Nat Prod Res 2020; 35:3569-3577. [PMID: 31951465 DOI: 10.1080/14786419.2020.1713126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two new alkaloids named Melongenamides H-I (1-2), together with twenty-one known compounds (3-23), were isolated from the 70% ethanol extract of the sepals of Solanum melongena L. The structures of all isolated compounds were determined by 1D and 2D NMR spectra and by comparing their spectroscopic and physical data with values from the published literatures. All the isolated compounds were evaluated the cytotoxicity against three human canner lines (Hela, Ishikawa and MGC-803) by CCK8 assay.
Collapse
Affiliation(s)
- Dong-Ying Zhao
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Xin Yin
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, P.R. China
| | - Xiao-Mao Li
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Juan Pan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
29
|
Cao Y, Chai C, Chang A, Xu X, Song Q, Liu W, Li J, Song Y, Tu P. Optimal collision energy is an eligible molecular descriptor to boost structural annotation: An application for chlorogenic acid derivatives-focused chemical profiling. J Chromatogr A 2020; 1609:460515. [DOI: 10.1016/j.chroma.2019.460515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
|
30
|
Song Q, Li J, Cao Y, Liu W, Huo H, Wan JB, Song Y, Tu P. Binary code, a flexible tool for diagnostic metabolite sequencing of medicinal plants. Anal Chim Acta 2019; 1088:89-98. [DOI: 10.1016/j.aca.2019.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/22/2022]
|
31
|
Serial hyphenation of dried spot, reversed phase liquid chromatography, hydrophilic interaction liquid chromatography, and tandem mass spectrometry towards direct chemical profiling of herbal medicine-derived liquid matrices, an application in Cistanche sinensis. J Pharm Biomed Anal 2019; 174:34-42. [DOI: 10.1016/j.jpba.2019.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
|
32
|
Youn Y, Jeon SH, Jin HY, Che DN, Jang SI, Kim YS. Chlorogenic acid-rich Solanum melongena extract has protective potential against rotenone-induced neurotoxicity in PC-12 cells. J Food Biochem 2019; 43:e12999. [PMID: 31368148 DOI: 10.1111/jfbc.12999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/13/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative diseases are major threats to human health. Here, through fluorescence, colorimetric, immunoblotting, spectroscopy, and laser scanning confocal microscopic techniques, we investigated the neuroprotective properties of chlorogenic acid-rich Solanum melongena extracts (SM extract) in rotenone-induced PC-12 cell death. The results showed that rotenone caused apoptosis to PC-12 cells by elevating Bax/Bcl-2 ratio and increasing caspase-3 activity. Rotenone also increased ROS in cells while suppressing SOD and catalase activities. This resulted in the depletion of ATP in cells by blocking mitochondria complex I activity. Pretreatment of the cells with SM extract at concentrations of 100, 250, and 500 μg/ml before incubation for 24 hr with rotenone significantly prevented apoptosis, decreased ROS, and increased ATP production in the cells. SM extract upregulated SOD and catalase activities in the cells. These results unveil evidence that SM extract content neuroprotective properties that can be exploited to prevent and treat neurodegenerative diseases. PRACTICAL APPLICATIONS: Solanum melongena eggplant is a popular ingredient in many traditional recipes and is well known in Asia for its medicinal benefits. Despite numerous scientific reports of the potential health benefits of this plant, reports on its effects in neurodegenerative diseases is still lacking. This pilot study demonstrates that S. melongena eggplant can protect against neurotoxicity in neurodegenerative diseases. The results of this research serves as a base for further research on eggplant that will result in its usage on a larger scale as functional food materials.
Collapse
Affiliation(s)
- Young Youn
- Imsil Cheese & Food Research Institute, Imsil-gun, Republic of Korea
| | - Sung-Hee Jeon
- Imsil Cheese & Food Research Institute, Imsil-gun, Republic of Korea
| | - Hee-Yeon Jin
- Imsil Cheese & Food Research Institute, Imsil-gun, Republic of Korea
| | - Denis Nchang Che
- Department of Food Science and Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Seon-Il Jang
- Department of Health Management, Jeonju University, Jeonju, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
33
|
Monitoring of Chlorogenic Acid and Antioxidant Capacity of Solanum melongena L. (Eggplant) under Different Heat and Storage Treatments. Antioxidants (Basel) 2019; 8:antiox8070234. [PMID: 31330814 PMCID: PMC6680626 DOI: 10.3390/antiox8070234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Solanum melongena L., also known as eggplant, is a widely consumed vegetable and it is well-known for its beneficial antioxidant properties, due to phenolic compounds. In this work, the influence of different cooking procedures on the content of chlorogenic acid was evaluated on eggplant samples of different geographic origin by high-performance liquid chromatography (HPLC). An easy and quick extraction procedure with 50% methanol as the extraction solvent was optimized for the first time by means of a design-of-experiment and applied to heat treated samples of eggplant. The antioxidant capacity of eggplant extracts was also evaluated by using the ABTS assay and it was correlated with the data obtained by the HPLC method. The content of chlorogenic acid was different in each heat-treated eggplant sample and it depended on the temperature applied during the cooking procedure. In particular, an increase of chlorogenic acid content with rising temperature was observed. Conversely, a very high temperature (250 °C) caused a decrease of chlorogenic acid amount. The influence of storage on the content of chlorogenic acid was also monitored. While the level of chlorogenic acid in fresh samples decreased during four weeks of storage, an increase in its content in heat treated eggplant was observed within the same period. Multivariate data analysis was used to classify eggplant samples into different groups, according to the country of origin and heat treatment procedure. This study provides new insights to preserve the antioxidant properties of eggplant phenolics during different thermal and storage treatments in order to highlight their health promoting effects.
Collapse
|
34
|
Du N, Zhou W, Jin H, Liu Y, Zhou H, Liang X. Characterization of tropane and cinnamamide alkaloids from
Scopolia tangutica
by high‐performance liquid chromatography with quadrupole time‐of‐flight tandem mass spectrometry. J Sep Sci 2019; 42:1163-1173. [DOI: 10.1002/jssc.201801201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Nana Du
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
| | - Weijia Zhou
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
| | - Hongli Jin
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Han Zhou
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
35
|
Abstract
Piplartine is an alkamide found in different Piper species and possesses several biological activities, including antiparasitic properties. Thus, the aim of the present study was to evaluate a series of 32 synthetic piplartine analogues against the Leishmania amazonensis promastigote forms and establish the structure-activity relationship and 3D-QSAR of these compounds. The antileishmanial effect of the compounds was determined using the MTT method. Most compounds were found to be active against L. amazonensis. Among 32 assayed derivatives, compound (E)-(−)-bornyl 3-(3,4,5-trimethoxyphenyl)-acrylate exhibited the most potent antileishmanial activity (IC50 = 0.007 ± 0.008 μM, SI > 10), followed by benzyl 3,4,5-trimethoxybenzoate (IC50 = 0.025 ± 0.009 μM, SI > 3.205) and (E)-furfuryl 3-(3,4,5-trimethoxyphenyl)-acrylate (IC50 = 0.029 ± 0.007 μM, SI > 2.688). It was found that the rigid substituents contribute to increasing antiparasitic activity against L. amazonensis promastigotes. The presence of the unsaturated heterocyclic substituent in the phenylpropanoid chemical structure (furfuryl group) resulted in a bioactive derivative. Molecular simplification of benzyl 3,4,5-trimethoxybenzoate by omitting the spacer group contributed to the bioactivity of this compound. Furthermore, bornyl radical appears to be important for antileishmanial activity, since (E)-(−)-bornyl 3-(3,4,5-trimethoxyphenyl)-acrylate exhibited the most potent antileishmanial activity. These results show that some derivatives studied would be useful as prototype molecules for the planning of new derivatives with profile of antileishmanial drugs.
Collapse
|
36
|
Serially coupled reversed phase-hydrophilic interaction liquid chromatography–tailored multiple reaction monitoring, a fit-for-purpose tool for large-scale targeted metabolomics of medicinal bile. Anal Chim Acta 2018; 1037:119-129. [DOI: 10.1016/j.aca.2017.11.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/24/2017] [Accepted: 11/26/2017] [Indexed: 11/18/2022]
|
37
|
de Souza GR, De-Oliveira ACAX, Soares V, Chagas LF, Barbi NS, Paumgartten FJR, da Silva AJR. Chemical profile, liver protective effects and analgesic properties of a Solanum paniculatum leaf extract. Biomed Pharmacother 2018; 110:129-138. [PMID: 30466002 DOI: 10.1016/j.biopha.2018.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/AIM Solanum paniculatum L. (Solanaceae) is a plant native to South America where it is used in traditional medicine for different therapeutic indications. This study evaluated the chemical composition and the hepatoprotective and analgesic activities of S. paniculatum leaf extracts. MATERIAL AND METHODS The chemical profile of an ethyl acetate partition (SPOE) of a S. paniculatum leaf infusion (SPAE) was analysed by high performance liquid chromatography coupled to high-resolution electrospray mass spectrometry (HPLC-ESIMS). Liver protective effects of SPAE (600 and 1200 mg/kg bw, po), or SPOE (300 mg/kg bw, po) were evaluated in a C57BL/6 mouse model of acetaminophen (AP, 600 mg/kg bw, ip) hepatotoxicity by measuring alanine (ALT) and aspartate (AST) aminotransferase activity in the serum, and reduced glutathione (GSH), and thiobarbituric acid reactive species (TBARs) levels in the hepatic tissue. RESULTS HPLC-ESIMS analysis of the SPOE fraction tentatively identified 35 flavonoids, esters of hydroxycinnamic acid and isomers of chlorogenic acid. SPAE (600 and 1200 mg/kg bw) and SPOE (300 mg/kg bw) antagonized the rise in ALT and AST, and the depletion of GSH, and elevation of TBARs levels in the liver caused by AP. The liver protective effects of SPOE (300 mg/kg bw) against AP-induced liver toxicity mimicked those of N-acetyl-cysteine (NAC 300 or 600 mg/kg bw ip). The mouse writhing assay showed that SPOE (300 mg/kg bw po) has anti-nociceptive effects comparable to those of AP (180 mg/kg bw po). CONCLUSION This study suggests that an extract of S. paniculatum leaves (SPOE), rich in phenolic compounds, is a promising herbal drug to prevent and treat AP poisoning and presents analgesic properties as well.
Collapse
Affiliation(s)
- Gabriela R de Souza
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana Cecilia A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21041210, Brazil
| | - Vitor Soares
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lucas F Chagas
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21041210, Brazil
| | - Nancy S Barbi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| | - Francisco José Roma Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21041210, Brazil.
| | - Antonio Jorge R da Silva
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
38
|
Vagula JM, Rocha BA, Silva AR, Narain N, Bersani-Amado CA, Junior OOS, Visentainer JV. Analysis of Solanum Americanum Mill. by Ultrafast Liquid Chromatography with Diode Array and Time-Of-flight Mass Spectrometry Detection with Evaluation of Anti-Inflammatory Properties in Rodent Models. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1399413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Julianna M. Vagula
- Department of Food Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Bruno A. Rocha
- Department of Food Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Alexandre R. Silva
- Laboratory of Flavor & Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Brazil
| | - Narendra Narain
- Laboratory of Flavor & Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Oscar O. S. Junior
- Department of Food Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Jesuí V. Visentainer
- Department of Food Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
39
|
Huo H, Liu Y, Liu W, Sun J, Zhang Q, Zhao Y, Zheng J, Tu P, Song Y, Li J. A full solution for multi-component quantification-oriented quality assessment of herbal medicines, Chinese agarwood as a case. J Chromatogr A 2018; 1558:37-49. [PMID: 29773341 DOI: 10.1016/j.chroma.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/12/2023]
Abstract
The quality of herbal medicines (HMs) is the prerequisite for their pronounced therapeutic outcomes in clinic, and multi-component (also known as quality markers, Q-markers) quantification has been widely emphasized as a viable means for quality evaluation. Because of the chemical diversity, the quality control practices are extensively dampened by four principal technical bottlenecks, including the lack of authentic compounds, large polarity span, extensive concentration range, and signal misrecognition for those potential Q-markers. An attempt to promote the potential of LC-MS/MS is made herein to cope with those obstacles and Chinese agarwood was employed as a case study. Firstly, a home-made fraction collector was introduced to automatically fragment the entire extract into a panel of fractions-of-interest. Secondly, quantitative 1H-NMR was deployed to offset the LC-MS/MS potential towards in-depth chemical profiling each fraction, and those well-defined fractions were then pooled and combined with some accessible authentic compounds to generate the pseudo-mixed standard solution. Thirdly, serial improvements were conducted for LC-MS/MS measurements. Reversed phase LC and hydrophilic interaction LC were serially coupled in respond to the large polarity window, and online parameter optimization, response tailoring, as well as RRCEC (relative response vs. collision energy curve) matching were integrated in MS/MS domain to advance the quantitative confidences. Simultaneous determination was conducted for 26 components, in total, in Chinese agarwood after method validation. In particular, authentic compound-free quantification was achieved for eight 2-(2-phenylethyl)chromone derivatives. Above all, the strategy is a promising solution to completely tackle with the technical barriers toward Q-marker quantification-oriented quality control of Chinese agarwood, as well as other HMs.
Collapse
Affiliation(s)
- Huixia Huo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jing Sun
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qian Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
40
|
Basaiyye SS, Naoghare PK, Kanojiya S, Bafana A, Arrigo P, Krishnamurthi K, Sivanesan S. Molecular mechanism of apoptosis induction in Jurkat E6-1 cells by Tribulus terrestris alkaloids extract. J Tradit Complement Med 2017; 8:410-419. [PMID: 29992112 PMCID: PMC6035304 DOI: 10.1016/j.jtcme.2017.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/14/2023] Open
Abstract
The present study demonstrates apoptosis-inducing potential and mechanism of action of Tribulus terristris alkaloid extract in Jurkat E6-1 cancer cell line. Liquid Chromatography-Mass Spectrometry and High Resolution-Mass Spectrometry analysis identified the presence of four N-feruloyltyramine derivatives, namely trans-N-feruloyl-3-hydroxytyramine (1), trans-N-coumaroyltyramine (2), trans-N-feruloyltyramine (3) and trans-N-feruloyl-3-ethoxytyramine (4) in the alkaloid extract. Compounds 2 and 3 have not been yet reported in the alkaloid extract of T. terristris. In silico analysis revealed therapeutic potential of N-feruloyltyramine derivatives and strong binding efficiency to both chains of Tumor Necrosis Factor Receptor 1. Treatment of alkaloids extract to Jurkat E6-1 clone induced dose-dependent cytotoxicity (LC50 140.4 μg mL−1). Jurkat cells treated with alkaloids extract at sub-lethal concentration showed DNA fragmentation, enhancement in caspase-3 activity and phosphatidylserine translocation (apoptosis indicator) compared to control cells. Gene expression analysis using Human Apoptosis RT2 Profiler PCR Array analysis upon alkaloid treatment was found to significantly alter expression of critical genes such as TNFR1, FADD, AIFM, CASP8, TP53, DFFA and NFKB1. These genes are predicted to mediate apoptotic cell death via both intrinsic and extrinsic apoptosis pathway. In summary, we report the identification of new N-feruloyltyramine derivatives from alkaloid extract of T. terristris fruit with probable anti-leukemic and pharmacological potential.
Collapse
Affiliation(s)
- Shriniwas S Basaiyye
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
| | - Pravin K Naoghare
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Amit Bafana
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
| | | | - Kannan Krishnamurthi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
| | - Saravanadevi Sivanesan
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
| |
Collapse
|
41
|
Sun J, Song Y, Sun H, Liu W, Zhang Y, Zheng J, Zhang Q, Zhao Y, Xiao W, Tu P, Li J. Characterization and quantitative analysis of phenolic derivatives in Longxuetongluo Capsule by HPLC-DAD-IT-TOF-MS. J Pharm Biomed Anal 2017; 145:462-472. [PMID: 28743077 DOI: 10.1016/j.jpba.2017.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/03/2017] [Accepted: 07/14/2017] [Indexed: 01/27/2023]
Abstract
Longxuetongluo Capsule (LTC), which is derived from the total phenolic extract of Chinese dragon's blood, has been proved to be safe as well as effective towards ischemic stroke. However, the effective material basis remains unclear. The present study thereby focused on the clarification of the qualitative and quantitative properties for the phenolic derivatives in LTC. Regarding homolog-focused chemical profiling, the mass fragmentation patterns of the primary subtypes of phenolic compounds such as homoisoflavanones, flavanes, chalcones, and flavonoid oligomers were summarized by assaying authentic references with hybrid ion trap time-of-flight mass spectrometry, and the chemical structures of 124 phenolic compounds, in total, were unambiguously or tentatively annotated in LTC by matching the accurate mass spectral profiles with the proposed mass cracking rules and those reference substances. Afterwards, simultaneous determination of 12 primary phenolic compounds was carried out in different batches of LTC using HPLC-DAD, after that the method was proved to be accurate, precise, and reproducible according to diverse method validation assays. The obtained findings are expected to be meaningful for clarifying the effective substances and quality assessment of LTC.
Collapse
Affiliation(s)
- Jing Sun
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Sun
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunfeng Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Xiao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
42
|
Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica. Sci Rep 2017; 7:46067. [PMID: 28387362 PMCID: PMC5384254 DOI: 10.1038/srep46067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Scopolia tangutica (S. tangutica) is a traditional Chinese medicinal plant used for antispasmodics, anesthesia, analgesia and sedation. Its pharmacological activities are mostly associated with the antagonistic activity at muscarinic acetylcholine receptors (mAchRs) of several known alkaloids such as atropine and scopolamine. With our recent identification of four hydroxycinnamic acid amides from S. tangutica, we hypothesized that this plant may contain previously unidentified alkaloids that may also contribute to its in vivo effect. Herein, we used a bioassay-guided multi-dimension separation strategy to discover novel mAchR antagonists from S. tangutica. The core of this approach is to use label-free cell phenotypic assay to first identify active fractions, and then to guide purification of active ligands. Besides four tropanes and six cinnamic acid amides that have been previously isolated from S. tangutica, we recently identified two new tropanes, one new cinnamic acid amide, and nine other compounds. Six tropane compounds purified from S. tangutica for the first time were confirmed to be competitive antagonists of muscarinic receptor 3 (M3), including the two new ones 8 and 12 with IC50 values of 1.97 μM and 4.47 μM, respectively. Furthermore, the cinnamic acid amide 17 displayed 15-fold selectivity for M1 over M3 receptors. These findings will be useful in designing lead compounds for mAchRs and elucidating mechanisms of action of S. tangutica.
Collapse
|
43
|
Geng P, Harnly JM, Sun J, Zhang M, Chen P. Feruloyl dopamine-O-hexosides are efficient marker compounds as orthogonal validation for authentication of black cohosh (Actaea racemosa)-an UHPLC-HRAM-MS chemometrics study. Anal Bioanal Chem 2017; 409:2591-2600. [PMID: 28160032 DOI: 10.1007/s00216-017-0205-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/28/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Due to the complexity and variation of the chemical constituents in authentic black cohosh (Actaea racemosa) and its potential adulterant species, an accurate and feasible method for black cohosh authentication is not easy. A high-resolution accurate mass (HRAM) LC-MS fingerprinting method combined with chemometric approach was employed to discover new marker compounds. Seven hydroxycinnamic acid amide (HCAA) glycosides are proposed as potential marker compounds for differentiation of black cohosh from related species, including two Asian species (A. foetida, A. dahurica) and two American species (A. pachypoda, A. podocarpa). These markers were putatively identified by comparing their mass spectral fragmentation behavior with those of their authentic aglycone compounds and phytochemistry reports. Two isomers of feruloyl methyldopamine 4-O-hexoside ([M + H]+ 506) and one feruloyl tyramine 4-O-hexoside ([M + H]+ 476) contributed significantly to the separation of Asian species in principle component analysis (PCA) score plot. The efficacy of the models built on four reasonable combinations of these markers in differentiating black cohosh and its adulterants were evaluated and validated by partial least-square discriminant analysis (PLS-DA). Two models based on these reduced dataset achieved 100% accuracy based on the current sample collection, including the model that used only three feruloyl dopamine-O-hexoside isomers ([M + H]+ 492) and one feruloyl dopamine-O-dihexoside ([M + H-hexosyl]+ at m/z 492). Graphical abstract Hydroxycinnamic acid amide glycosides are proposed as potential marker compounds for authentication of black cohosh.
Collapse
Affiliation(s)
- Ping Geng
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - James M Harnly
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Jianghao Sun
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Mengliang Zhang
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Pei Chen
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| |
Collapse
|
44
|
Song Y, Song Q, Liu Y, Li J, Wan JB, Wang Y, Jiang Y, Tu P. Integrated work-flow for quantitative metabolome profiling of plants, Peucedani Radix as a case. Anal Chim Acta 2016; 953:40-47. [PMID: 28010741 DOI: 10.1016/j.aca.2016.11.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
Universal acquisition of reliable information regarding the qualitative and quantitative properties of complicated matrices is the premise for the success of metabolomics study. Liquid chromatography-mass spectrometry (LC-MS) is now serving as a workhorse for metabolomics; however, LC-MS-based non-targeted metabolomics is suffering from some shortcomings, even some cutting-edge techniques have been introduced. Aiming to tackle, to some extent, the drawbacks of the conventional approaches, such as redundant information, detector saturation, low sensitivity, and inconstant signal number among different runs, herein, a novel and flexible work-flow consisting of three progressive steps was proposed to profile in depth the quantitative metabolome of plants. The roots of Peucedanum praeruptorum Dunn (Peucedani Radix, PR) that are rich in various coumarin isomers, were employed as a case study to verify the applicability. First, offline two dimensional LC-MS was utilized for in-depth detection of metabolites in a pooled PR extract namely universal metabolome standard (UMS). Second, mass fragmentation rules, notably concerning angular-type pyranocoumarins that are the primary chemical homologues in PR, and available databases were integrated for signal assignment and structural annotation. Third, optimum collision energy (OCE) as well as ion transition for multiple monitoring reaction measurement was online optimized with a reference compound-free strategy for each annotated component and large-scale relative quantification of all annotated components was accomplished by plotting calibration curves via serially diluting UMS. It is worthwhile to highlight that the potential of OCE for isomer discrimination was described and the linearity ranges of those primary ingredients were extended by suppressing their responses. The integrated workflow is expected to be qualified as a promising pipeline to clarify the quantitative metabolome of plants because it could not only holistically provide qualitative information, but also straightforwardly generate accurate quantitative dataset.
Collapse
Affiliation(s)
- Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
45
|
Song Y, Song Q, Li J, Zheng J, Li C, Zhang Y, Zhang L, Jiang Y, Tu P. An integrated platform for directly widely-targeted quantitative analysis of feces part II: An application for steroids, eicosanoids, and porphyrins profiling. J Chromatogr A 2016; 1460:74-83. [DOI: 10.1016/j.chroma.2016.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
|
46
|
Chromatographic analysis of Polygalae Radix by online hyphenating pressurized liquid extraction. Sci Rep 2016; 6:27303. [PMID: 27272557 PMCID: PMC4895155 DOI: 10.1038/srep27303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/16/2016] [Indexed: 01/17/2023] Open
Abstract
Practicing “green analytical chemistry” is of great importance when profiling the chemical composition of complex matrices. Herein, a novel hybrid analytical platform was developed for direct chemical analysis of complex matrices by online hyphenating pressurized warm water extraction followed by turbulent flow chromatography coupled with high performance liquid chromatography-tandem mass spectrometry (PWWE-TFC-LC-MS/MS). Two parallel hollow guard columns acted as extraction vessels connected to a long narrow polyether ether ketone tube, while warm water served as extraction solvent and was delivered at a flow rate of 2.5 mL/min to generate considerable back pressure at either vessel. A column oven heated both the solvent and crude materials. A TFC column, which is advantageous for the comprehensive trapping of small molecular substances from fluids under turbulent flow conditions, was employed to transfer analytes from the PWWE module to LC-MS/MS. Two electronic valves alternated each vessel between extraction and elution phases. As a proof-of-concept, a famous herbal medicine for the treatment of neurodegenerative disorders, namely Polygalae Radix, was selected for the qualitative and quantitative analyses. The results suggest that the hybrid platform is advantageous in terms of decreasing time, material, and solvent consumption and in its automation, versatility, and environmental friendliness.
Collapse
|
47
|
Song Y, Song Q, Li J, Zheng J, Li C, Zhang Y, Zhang L, Jiang Y, Tu P. An integrated platform for directly widely-targeted quantitative analysis of feces part I: Platform configuration and method validation. J Chromatogr A 2016; 1454:58-66. [PMID: 27268518 DOI: 10.1016/j.chroma.2016.05.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Direct analysis is of great importance to understand the real chemical profile of a given sample, notably biological materials, because either chemical degradation or diverse errors and uncertainties might be resulted from sophisticated protocols. In comparison with biofluids, it is still challenging for direct analysis of solid biological samples using high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Herein, a new analytical platform was configured by online hyphenating pressurized liquid extraction (PLE), turbulent flow chromatography (TFC), and LC-MS/MS. A facile, but robust PLE module was constructed based on the phenomenon that noticeable back-pressure can be generated during rapid fluid passing through a narrow tube. TFC column that is advantageous at extracting low molecular analytes from rushing fluid was employed to link at the outlet of the PLE module to capture constituents-of-interest. An electronic 6-port/2-position valve was introduced between TFC column and LC-MS/MS to fragment each measurement into extraction and elution phases, whereas LC-MS/MS took the charge of analyte separation and monitoring. As a proof of concept, simultaneous determination of 24 endogenous substances including eighteen steroids, five eicosanoids, and one porphyrin in feces was carried out in this paper. Method validation assays demonstrated the analytical platform to be qualified for directly simultaneous measurement of diverse endogenous analytes in fecal matrices. Application of this integrated platform on homolog-focused profiling of feces is discussed in a companion paper.
Collapse
Affiliation(s)
- Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Lingling Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
48
|
Zhang N, Song Y, Song Q, Shi S, Zhang Q, Zhao Y, Li J, Tu P. Qualitative and Quantitative Assessments of Aconiti Lateralis Radix Praeparata Using High-Performance Liquid Chromatography Coupled with Diode Array Detection and Hybrid Ion Trap–Time-of-Flight Mass Spectrometry. J Chromatogr Sci 2016; 54:888-901. [DOI: 10.1093/chromsci/bmv245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 12/20/2022]
|
49
|
Wu T, Lv H, Wang F, Wang Y. Characterization of Polyphenols from Lycium ruthenicum Fruit by UPLC-Q-TOF/MS(E) and Their Antioxidant Activity in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2280-8. [PMID: 26963650 DOI: 10.1021/acs.jafc.6b00035] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fruit of Lycium ruthenicum Murr. (LRF) has long been used in folk medicine. Nevertheless, detailed information related to its polyphenol compositions remains scarce. In this study, we confirmed that the total phenolic and anthocyanin contents of LRF fruit extracts (LRFEs) were 4906.5 ± 60.6 mg of gallic acid equivalents/100 g DW and 787.6 ± 34.1 mg of cyanindin-3-glucoside equivalents/100 g DW, respectively. A characterization of LRFEs was performed by ultrahigh performance liquid chromatography/quadrupole time-of-flight mass spectrometry using an MS(E) data acquisition. A total of 26 polyphenols were tentatively identified, of which 19 represent the first reports of these polyphenols in LRFEs. Furthermore, the cellular antioxidant array showed that LRFEs could protect Caco-2 cells against H2O2-induced oxidative damage based on microscopic fluorometric imaging.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Food Bio-technology, School of Food and Bioengineering, Xihua University , Chengdu, 610039, China
| | - Haiyang Lv
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Fengzhong Wang
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Yi Wang
- Xi'an Manareco New Materials Co. Ltd. , Xi'an, 710086, China
| |
Collapse
|
50
|
Zhou ZQ, Fan HX, He RR, Xiao J, Tsoi B, Lan KH, Kurihara H, So KF, Yao XS, Gao H. Lycibarbarspermidines A-O, New Dicaffeoylspermidine Derivatives from Wolfberry, with Activities against Alzheimer's Disease and Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2223-2237. [PMID: 26953624 DOI: 10.1021/acs.jafc.5b05274] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fifteen new dicaffeoylspermidine derivatives, lycibarbarspermidines A-O (1-15), were isolated from the fruit of Lycium barbarum (wolfberry). The structures were unambiguously determined by spectroscopic analyses and chemical methods. Dicaffeoylspermidine derivatives, a rare kind of plant secondary metabolites, are primarily distributed in the family of Solanaceae. Only six compounds were structurally identified, and all of them are acyclic aglycones. Compounds 1-15 are the first glycosidic products of dicaffeoylspermidine derivatives, and compounds 14-15 are the first cyclization products of dicaffeoylspermidine derivatives. Moreover, dicaffeoylspermidine derivatives were first isolated and identified from wolfberry. The short-term memory assay on a transgenic fly Alzheimer's disease (AD) model showed that 1-15 exhibited different levels of anti-AD activity. The oxygen radical absorbance capacity assay revealed that 1-15 all displayed antioxidant capacity. Both anti-AD and antioxidant functions are related to the effects of wolfberry. Therefore, dicaffeoylspermidine derivatives are considered beneficial constituents responsible for the antiaging, neuroprotective, anti-AD, and antioxidant effects of wolfberry.
Collapse
Affiliation(s)
- Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Hong-Xia Fan
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Rong-Rong He
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Jia Xiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Bun Tsoi
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Kang-Hua Lan
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Hiroshi Kurihara
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Kwok-Fai So
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, ‡Department of Immunobiology, Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, and §Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University , Guangzhou 510632, PR China
| |
Collapse
|