1
|
Kulkarni A, Michel S, Butler JE, Ziegler KJ. Gelation and large thermoresponse of cranberry-based xyloglucan. Carbohydr Polym 2024; 339:122189. [PMID: 38823897 DOI: 10.1016/j.carbpol.2024.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/03/2024]
Abstract
Cranberry waste contains potentially valuable components, such as proanthocyanidins, flavanols, and xyloglucan. Highly-purified xyloglucan (XG) from cranberries were studied through steady and oscillatory shear rheology at various concentrations and temperatures. At room temperature, an apparent yield stress is observed and the storage modulus exceeds the loss modulus ( [Formula: see text] ) for concentrations of 0.5 wt% and higher, indicating that the XG solution has formed a physical hydrogel. Thermoresponsive gelation is observed with a five-order of magnitude increase in shear moduli as it undergoes a weak to strong gel transition around 52 °C. The gelation time was 5 min with an observed storage moduli up to 3500 Pa. Cranberry-based XG exhibits thermoresponsive behavior at concentrations as low as 0.1 wt% (w/v), which is significantly lower than prior gelation studies of XG from other sources. The formation of a weak gel at room temperature and large storage moduli observed at room temperature is likely associated with the low level of impurities and small amount of galactose present in the XG chains.
Collapse
Affiliation(s)
- Aniruddha Kulkarni
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA
| | - Stephen Michel
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA
| | - Jason E Butler
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Kirk J Ziegler
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
2
|
Dadashi Ouranj Z, Hosseini S, Alipour A, Homaeigohar S, Azari S, Ghazizadeh L, Shokrgozar M, Thomas S, Irian S, Shahsavarani H. The potent osteo-inductive capacity of bioinspired brown seaweed-derived carbohydrate nanofibrous three-dimensional scaffolds. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:515-534. [PMID: 39219680 PMCID: PMC11358581 DOI: 10.1007/s42995-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.
Collapse
Affiliation(s)
- Zahra Dadashi Ouranj
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Leila Ghazizadeh
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Mohammadali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala India
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 19839-69411 Iran
- Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, 1533734716 Iran
| |
Collapse
|
3
|
Howell AB, Dreyfus JF, Bosley S, Krueger CG, Birmingham A, Reed JD, Chughtai B. Differences in P-Type and Type 1 Uropathogenic Escherichia coli Urinary Anti-Adhesion Activity of Cranberry Fruit Juice Dry Extract Product and D-Mannose Dietary Supplement. J Diet Suppl 2024; 21:633-659. [PMID: 38804849 DOI: 10.1080/19390211.2024.2356592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Urinary tract infection (UTI) prevention benefits of cranberry intake are clinically validated, especially for women and children. To ensure the benefits of cranberry dietary supplement products, the anti-adhesion activity (AAA) against uropathogenic bacteria is routinely used in in vitro bioassays to determine the activity in whole product formulations, isolated compounds, and ex vivo bioassays to assess urinary activity following intake. D-mannose is another dietary supplement taken for UTI prevention, based on the anti-adhesion mechanism. OBJECTIVE Compare the relative AAA of cranberry and D-mannose dietary supplements against the most important bacterial types contributing to the pathogenesis of UTI, and consider how certain components potentially induce in vivo activity. METHODS The current study used a crossover design to determine ex vivo AAA against both P- and Type 1-fimbriated uropathogenic Escherichia coli of either D-mannose or a cranberry fruit juice dry extract product containing 36 mg of soluble proanthocyanidins (PACs), using bioassays that measure urinary activity following consumption. AAA of extracted cranberry compound fractions and D-mannose were compared in vitro and potential induction mechanisms of urinary AAA explored. RESULTS The cranberry dietary supplement exhibited both P-type and Type 1 in vitro and ex vivo AAA, while D-mannose only prevented Type 1 adhesion. Cranberry also demonstrated more robust and consistent ex vivo urinary AAA than D-mannose over each 1-week study period at different urine collection time points. The means by which the compounds with in vitro activity in each supplement product could potentially induce the AAA in urines was discussed relative to the data. CONCLUSIONS Results of the current study provide consumers and healthcare professionals with additional details on the compounds and mechanisms involved in the positive, broad-spectrum AAA of cranberry against both E. coli bacterial types most important in UTIs and uncovers limitations on AAA and effectiveness of D-mannose compared to cranberry.
Collapse
Affiliation(s)
- Amy B Howell
- Marucci Center for Blueberry Cranberry Research and Extension, Rutgers, the State University of NJ, Chatsworth, NJ, USA
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
| | | | - Scott Bosley
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
| | - Christian G Krueger
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- Department of Animal and Dairy Sciences, University of WI, Madison, WI, USA
| | | | - Jess D Reed
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- Department of Animal and Dairy Sciences, University of WI, Madison, WI, USA
| | - Bilal Chughtai
- Plainview Hospital, Smith Institute of Urology, Northwell Health, Syosset, NY, USA
| |
Collapse
|
4
|
Hotchkiss AT, Chau HK, Strahan GD, Nuñez A, Harron A, Simon S, White AK, Dieng S, Heuberger ER, Black I, Yadav MP, Welchoff MA, Hirsch J. Structural characterization of strawberry pomace. Heliyon 2024; 10:e29787. [PMID: 38707313 PMCID: PMC11066319 DOI: 10.1016/j.heliyon.2024.e29787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Strawberries are a nutrient dense food rich in vitamins, minerals, non-nutrient antioxidant phenolics, and fibers. Strawberry fiber bioactive structures are not well characterized and limited information is available about the interaction between strawberry fiber and phenolics. Therefore, we analyzed commercial strawberry pomace in order to provide a detailed carbohydrate structural characterization, and to associate structures with functions. The pomace fraction, which remained after strawberry commercial juice extraction, contained mostly insoluble (49.1 % vs. 5.6 % soluble dietary fiber) dietary fiber, with pectin, xyloglucan, xylan, β-glucan and glucomannan polysaccharides; glucose, fructose, xylose, arabinose, galactose, fucose and galacturonic acid free carbohydrates; protein (15.6 %), fat (8.34 %), and pelargonidin 3-glucoside (562 μg/g). Oligosaccharides from fucogalacto-xyloglucan, methyl-esterified rhamnogalacturonan I with branched arabinogalacto-side chains, rhamnogalacturonan II, homogalacturonan and β-glucan were detected by MALDI-TOF MS, NMR and glycosyl-linkage analysis. Previous reports suggest that these oligosaccharide and polysaccharide structures have prebiotic, bacterial pathogen anti-adhesion, and cholesterol-lowering activity, while anthocyanins are well-known antioxidants. A strawberry pomace microwave acid-extracted (10 min, 80 °C) fraction had high molar mass (2376 kDa) and viscosity (3.75 dL/g), with an extended rod shape. A random coil shape, that was reported previously to bind to phenolic compounds, was observed for other strawberry microwave-extracted fractions. These strawberry fiber structural details suggest that they can thicken foods, while the polysaccharide and polyphenol interaction indicates great potential as a multiple-function bioactive food ingredient important for gut and metabolic health.
Collapse
Affiliation(s)
- Arland T. Hotchkiss
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Hoa K. Chau
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Gary D. Strahan
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Alberto Nuñez
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Andrew Harron
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Stefanie Simon
- Sustainable Biofuels and Co-Products Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Andre K. White
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Senghane Dieng
- Ingredion, Inc., 10 Finderne Avenue, Bridgewater, NJ, 08807, USA
| | | | - Ian Black
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Madhav P. Yadav
- Sustainable Biofuels and Co-Products Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | | | - Julie Hirsch
- Digestiva, Inc., 2860 Covell Blvd., Davis, CA, 95616, USA
| |
Collapse
|
5
|
Lessard-Lord J, Roussel C, Lupien-Meilleur J, Généreux P, Richard V, Guay V, Roy D, Desjardins Y. Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect. NPJ Biofilms Microbiomes 2024; 10:18. [PMID: 38448452 PMCID: PMC10918075 DOI: 10.1038/s41522-024-00493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Cranberry is associated with multiple health benefits, which are mostly attributed to its high content of (poly)phenols, particularly flavan-3-ols. However, clinical trials attempting to demonstrate these positive effects have yielded heterogeneous results, partly due to the high inter-individual variability associated with gut microbiota interaction with these molecules. In fact, several studies have demonstrated the ability of these molecules to modulate the gut microbiota in animal and in vitro models, but there is a scarcity of information in human subjects. In addition, it has been recently reported that cranberry also contains high concentrations of oligosaccharides, which could contribute to its bioactivity. Hence, the aim of this study was to fully characterize the (poly)phenolic and oligosaccharidic contents of a commercially available cranberry extract and evaluate its capacity to positively modulate the gut microbiota of 28 human subjects. After only four days, the (poly)phenols and oligosaccharides-rich cranberry extract, induced a strong bifidogenic effect, along with an increase in the abundance of several butyrate-producing bacteria, such as Clostridium and Anaerobutyricum. Plasmatic and fecal short-chain fatty acids profiles were also altered by the cranberry extract with a decrease in acetate ratio and an increase in butyrate ratio. Finally, to characterize the inter-individual variability, we stratified the participants according to the alterations observed in the fecal microbiota following supplementation. Interestingly, individuals having a microbiota characterized by the presence of Prevotella benefited from an increase in Faecalibacterium with the cranberry extract supplementation.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Pamela Généreux
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Véronique Richard
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Valérie Guay
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada.
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
| |
Collapse
|
6
|
Wilson LFL, Neun S, Yu L, Tryfona T, Stott K, Hollfelder F, Dupree P. The biosynthesis, degradation, and function of cell wall β-xylosylated xyloglucan mirrors that of arabinoxyloglucan. THE NEW PHYTOLOGIST 2023; 240:2353-2371. [PMID: 37823344 PMCID: PMC10952531 DOI: 10.1111/nph.19305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit β1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan β-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and β-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that β-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.
Collapse
Affiliation(s)
- Louis F. L. Wilson
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Stefanie Neun
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Li Yu
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Katherine Stott
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Florian Hollfelder
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
7
|
Sun X, Ai C, Wen C, Peng H, Yang J, Cui Y, Song S. Inhibitory effects of fucoidan from Laminaria japonica against some pathogenic bacteria and SARS-CoV-2 depend on its large molecular weight. Int J Biol Macromol 2023; 229:413-421. [PMID: 36587644 PMCID: PMC9800020 DOI: 10.1016/j.ijbiomac.2022.12.307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Fucoidan is a highly sulfated polysaccharide with a wide range of bioactivities, including anti-pathogenic activity. However, the relationship between structure and activity of fucoidan in inhibiting pathogen infections remains unclear. Here, different-molecular-weight fucoidans were prepared by photocatalytic degradation followed by membrane ultrafiltration, and their chemical structures and anti-pathogenic microbiota activity were compared. Results showed that photocatalytic degradation could effectively degrade fucoidan while its structure block and sulfate groups were not destroyed obviously. Fucoidan (90.8 kDa) of 5 mg/mL could inhibit the growth of S. aureus, S. typhimurium and E. coli, but its degradation products, Dfuc1 (19.2 kDa) and Dfuc2 (5.5 kDa), demonstrated lower inhibitory effect. In addition, compared to Dfuc1 and Dfuc2, fucoidan showed stronger capability to prevent the adhesion of S. aureus, L. monocytogenes, V. parahaemolyticus and S. typhimurium to HT-29 cells. Moreover, the inhibitory effect against SARS-CoV-2 and the binding activity to S protein were also positively correlated to molecular weight. These results indicate that natural fucoidan with higher molecular weight are more effective to inhibit these pathogenic bacteria and SARS-CoV-2, providing a better understanding of the relationship between structure and activity of fucoidan against pathogenic microbiota.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chengrong Wen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Haoran Peng
- Department of Biomedical Defense, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, PR China
| | - Jingfeng Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuna Cui
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
8
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Natural antimicrobial oligosaccharides in the food industry. Int J Food Microbiol 2023; 386:110021. [PMID: 36462348 DOI: 10.1016/j.ijfoodmicro.2022.110021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
An increase in the number of antibiotic resistance genes burdens the environment and affects human health. Additionally, people have developed a cautious attitude toward chemical preservatives. This attitude has promoted the search for new natural antimicrobial substances. Oligosaccharides from various sources have been studied for their antimicrobial and prebiotic effects. Antimicrobial oligosaccharides have several advantages such as being produced from renewable resources and showing antimicrobial properties similar to those of chemical preservatives. Their excellent broad-spectrum antibacterial properties are primarily because of various synergistic effects, including destruction of pathogen cell wall. Additionally, the adhesion of harmful microorganisms and the role of harmful factors may be reduced by oligosaccharides. Some natural oligosaccharides were also shown to stimulate the growth probiotic organisms. Therefore, antimicrobial oligosaccharides have the potential to meet food processing industry requirements in the future. The latest progress in research on the antimicrobial activity of different oligosaccharides is demonstrated in this review. The possible mechanism of action of these antimicrobial oligosaccharides is summarized with respect to their direct and indirect effects. Finally, the extended applications of oligosaccharides from the food source industry to food processing are discussed.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
High polyphenolic cranberry beverage alters specific fecal microbiota but not gut permeability following aspirin challenge in healthy obese adults: A randomized, double-blind, crossover trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Hotchkiss AT, Chau HK, Strahan GD, Nuñez A, Simon S, White AK, Dieng S, Heuberger ER, Yadav MP, Hirsch J. Structural characterization of red beet fiber and pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Cranberry Arabino-Xyloglucan and Pectic Oligosaccharides Induce Lactobacillus Growth and Short-Chain Fatty Acid Production. Microorganisms 2022; 10:microorganisms10071346. [PMID: 35889065 PMCID: PMC9319371 DOI: 10.3390/microorganisms10071346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous health benefits have been reported from the consumption of cranberry-derived products, and recent studies have identified bioactive polysaccharides and oligosaccharides from cranberry pomace. This study aimed to further characterize xyloglucan and pectic oligosaccharide structures from pectinase-treated cranberry pomace and measure the growth and short-chain fatty acid production of 86 Lactobacillus strains using a cranberry oligosaccharide fraction as the carbon source. In addition to arabino-xyloglucan structures, cranberry oligosaccharides included pectic rhamnogalacturonan I which was methyl-esterified, acetylated and contained arabino-galacto-oligosaccharide side chains and a 4,5-unsaturated function at the non-reducing end. When grown on cranberry oligosaccharides, ten Lactobacillus strains reached a final culture density (ΔOD) ≥ 0.50 after 24 h incubation at 32 °C, which was comparable to L. plantarum ATCC BAA 793. All strains produced lactic, acetic, and propionic acids, and all but three strains produced butyric acid. This study demonstrated that the ability to metabolize cranberry oligosaccharides is Lactobacillus strain specific, with some strains having the potential to be probiotics, and for the first time showed these ten strains were capable of growth on this carbon source. The novel cranberry pectic and arabino-xyloglucan oligosaccharide structures reported here combined with the Lactobacillus strains that can metabolize cranberry oligosaccharides and produce short-chain fatty acids, have excellent potential as health-promoting synbiotics.
Collapse
|
12
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
13
|
Khoo C, Duysburgh C, Marzorati M, Van den Abbeele P, Zhang D. A Freeze-Dried Cranberry Powder Consistently Enhances SCFA Production and Lowers Abundance of Opportunistic Pathogens In Vitro. BIOTECH 2022; 11:biotech11020014. [PMID: 35822787 PMCID: PMC9264401 DOI: 10.3390/biotech11020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The American cranberry, Vaccinium macrocarpon, contains fibers and (poly)phenols that could exert health-promoting effects through modulation of gut microbiota. This study aimed to investigate how a freeze-dried whole cranberry powder (FCP) modulated metabolite production and microbial composition using both a 48-h incubation strategy and a long-term human gut simulator study with the M-SHIME (Mucosal Simulator of the Human Intestinal Microbial Ecosystem). FCP was repeatedly administered over three weeks. The studies included five and three study subjects, respectively. In both models, FCP significantly increased levels of health-related short-chain fatty acids (SCFA: acetate, propionate and butyrate), while decreased levels of branched-chain fatty acids (markers of proteolytic fermentation). Interestingly, FCP consistently increased luminal Bacteroidetes abundances in the proximal colon of the M-SHIME (+17.5 ± 9.3%) at the expense of Proteobacteria (−10.2 ± 1.5%). At family level, this was due to the stimulation of Bacteroidaceae and Prevotellaceae and a decrease of Pseudomonodaceae and Enterobacteriaceae. Despite of interpersonal differences, FCP also increased the abundance of families of known butyrate producers. Overall, FCP displayed an interesting prebiotic potential in vitro given its selective utilization by host microorganisms and potential health-related effects on inhibition of pathogens and selective stimulation of beneficial metabolites.
Collapse
Affiliation(s)
- Christina Khoo
- Ocean Spray Cranberries, Inc., Bridge Street 152, Middleborough, MA 02349, USA
- Correspondence:
| | - Cindy Duysburgh
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Pieter Van den Abbeele
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium;
| | - Derek Zhang
- Ocean Spray Cranberries, Inc., Bridge Street 152, Middleborough, MA 02349, USA
- IQVIA, Emperor Boulevard 4820, Durham, NC 27703, USA;
| |
Collapse
|
14
|
Baggio CH, Shang J, Gordon MH, Stephens M, von der Weid PY, Nascimento AM, Román Y, Cipriani TR, MacNaughton WK. The dietary fibre rhamnogalacturonan improves intestinal epithelial barrier function in a microbiota-independent manner. Br J Pharmacol 2021; 179:337-352. [PMID: 34784647 DOI: 10.1111/bph.15739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Dietary fibre comprises a complex group of polysaccharides that are indigestible but are fermented by gut microbiota, promoting beneficial effects to the intestinal mucosa indirectly through the production of short chain fatty acids. We found that a polysaccharide, rhamnogalacturonan (RGal), from the plant Acmella oleracea, has direct effects on intestinal epithelial barrier function. Our objective was to determine the mechanism whereby RGal enhances epithelial barrier function. EXPERIMENTAL APPROACH Monolayers of colonic epithelial cell lines (Caco-2, T84) and of human primary cells from organoids were mounted in Ussing chambers to assess barrier function. The cellular mechanism of RGal effects on barrier function was determined using inhibitors of TLR-4 and PKC isoforms. KEY RESULTS Apically applied RGal (1000 μg/ml) significantly enhanced barrier function as shown by increased transepithelial electrical resistance (TER) and reduced fluorescein isothiocyanate (FITC)-dextran flux in Caco-2, T84 and human primary cell monolayers, and accelerated tight junction reassembly in Caco-2 cells in a calcium switch assay. RGal also reversed the barrier-damaging effects of inflammatory cytokines on FITC-dextran flux and preserved the tight junction distribution of occludin. RGal activated TLR4 in TLR4-expressing HEK reporter cells, an effect that was significantly inhibited by the TLR4 inhibitor, C34. The effect of RGal was also dependent on PKC, specifically the isoforms PKCd and PKCζ. CONCLUSION AND IMPLICATIONS RGal enhances intestinal epithelial barrier function through activation of TLR4 and PKC signaling pathways. Elucidation of RGal mechanisms of action could lead to new, dietary approaches to enhance mucosal healing in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Cristiane H Baggio
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Judie Shang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Marilyn H Gordon
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew Stephens
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Adamara M Nascimento
- Department of Biochemistry, Universidade Federal do Acre, Rio Branco, AC, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Yony Román
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Thales R Cipriani
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Xue Y, Zhu MJ. Unraveling enterohemorrhagic Escherichia coli infection: the promising role of dietary compounds and probiotics in bacterial elimination and host innate immunity boosting. Crit Rev Food Sci Nutr 2021; 63:1551-1563. [PMID: 34404306 DOI: 10.1080/10408398.2021.1965538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The innate immune system has developed sophisticated strategies to defense against infections. Host cells utilize the recognition machineries such as toll-like receptors and nucleotide binding and oligomerization domain-like receptors to identify the pathogens and alert immune system. However, some pathogens have developed tactics to evade host defenses, including manipulation of host inflammatory response, interference with cell death pathway, and highjack of phagocytosis signaling for a better survival and colonization in host. Enterohemorrhagic Escherichia coli (EHEC) is a notorious foodborne pathogen that causes severe tissue damages and gastrointestinal diseases, which has been reported to disturb host immune responses. Diverse bioactive compounds such as flavonoids, phenolic acids, alkaloids, saccharides, and terpenoids derived from food varieties and probiotics have been discovered and investigated for their capability of combating bacterial infections. Some of them serve as novel antimicrobial agents and act as immune boosters that harness host immune system. In this review, we will discuss how EHEC, specifically E. coli O157:H7, hijacks the host immune system and interferes with host signaling pathway; and highlight the promising role of food-derived bioactive compounds and probiotics in harnessing host innate immunity and eliminating E. coli O157:H7 infection with multiple strategies.
Collapse
Affiliation(s)
- Yansong Xue
- Key Laboratory of Functional Dairy, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
16
|
Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
18
|
Spadoni Andreani E, Karboune S, Liu L. Structural Characterization of Pectic Polysaccharides in the Cell Wall of Stevens Variety Cranberry Using Highly Specific Pectin-Hydrolyzing Enzymes. Polymers (Basel) 2021; 13:1842. [PMID: 34199419 PMCID: PMC8199606 DOI: 10.3390/polym13111842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
The potential of poly- and oligosaccharides as functional ingredients depends on the type and glycosidic linkages of their monosaccharide residues, which determine their techno-functional properties, their digestibility and their fermentability. To isolate the pectic polysaccharides of cranberry, alcohol insoluble solids were first obtained from pomace. A sequential extraction with hot phosphate buffer, chelating agents (CH), diluted (DA) and concentrated sodium hydroxide was then carried out. Pectic polysaccharides present in CH and DA extracts were purified by anion exchange and gel filtration chromatography, then sequentially exposed to commercially available pectin-degrading enzymes (endo-polygalacturonase, pectin lyase and endo-arabinanase/endo-galactanase/both). The composition and linkages of the generated fragments revealed important characteristic features, including the presence of homogalacturonan with varied methyl esterification extent, branched type I arabinogalactan and pectic galactan. The presence of arabinan with galactose branches was suggested upon the analysis of the fragments by LC-MS.
Collapse
Affiliation(s)
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, S.te-Anne-de-Bellevue, QC H9X 3V9, Canada; (E.S.A.); (L.L.)
| | | |
Collapse
|
19
|
Neto CC, Mortzfeld BM, Turbitt JR, Bhattarai SK, Yeliseyev V, DiBenedetto N, Bry L, Bucci V. Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model. MICROBIAL CELL 2021; 8:131-142. [PMID: 34055966 PMCID: PMC8144911 DOI: 10.15698/mic2021.06.752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cranberry consumption has numerous health benefits, with experimental reports showing its anti-inflammatory and anti-tumor properties. Importantly, microbiome research has demonstrated that the gastrointestinal bacterial community modulates host immunity, raising the question of whether the cranberry-derived effect may be related to its ability to modulate the microbiome. Only a few studies have investigated the effect of cranberry products on the microbiome to date. Especially because cranberries are rich in dietary fibers, the extent of microbiome modulation by polyphenols, particularly proanthocyanidins (PACs), remains to be shown. Since previous work has only focused on long-term effects of cranberry extracts, in this study we investigated the effect of a water-soluble, PAC-rich cranberry juice extract (CJE) on the short-term dynamics of a human-derived bacterial community in a gnotobiotic mouse model. CJE characterization revealed a high enrichment in PACs (57%), the highest ever utilized in a microbiome study. In a 37-day experiment with a ten-day CJE intervention and 14-day recovery phase, we profiled the microbiota via 16S rRNA sequencing and applied diverse time-series analytics methods to identify individual bacterial responses. We show that daily administration of CJE induces distinct dynamic patterns in bacterial abundances during and after treatment, before recovering resiliently to pre-treatment levels. Specifically, we observed an increase of Akkermansia muciniphila and Clostridium hiranonis at the expense of Bacteroides ovatus after the offset of the selection pressure imposed by the PAC-rich CJE. This demonstrates that termination of an intervention with a cranberry product can induce changes of a magnitude as high as the intervention itself.
Collapse
Affiliation(s)
- Catherine C Neto
- Department of Chemistry and Biochemistry University of Massachusetts Dartmouth, North Dartmouth, MA.,UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA
| | - Benedikt M Mortzfeld
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| | - John R Turbitt
- Department of Chemistry and Biochemistry University of Massachusetts Dartmouth, North Dartmouth, MA.,UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Vanni Bucci
- UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
20
|
Rheological Behavior of a New Mucoadhesive Oral Formulation Based on Sodium Chondroitin Sulfate, Xyloglucan and Glycerol. J Funct Biomater 2021; 12:jfb12020028. [PMID: 33925057 PMCID: PMC8167776 DOI: 10.3390/jfb12020028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The study aimed at assessing the mucoadhesive properties and the barrier effect of a formulation, labelled as AL2106, containing sodium chondroitin sulfate (ChS), xyloglucan from tamarind seed extract, and glycerol, by evaluating the capacity to adhere to a layer of mucin, the rheological synergism and the barrier effect in comparison to the marketed Esoxx One medical device. AL2106 is a medical device distributed by Alfasigma SpA, Italy with REF FTP57 (Manufacturer: Labomar SpA); it is analogous to Esoxx One medical device: the two products are drinkable solutions that, after swallowing, adhere to the esophageal mucosa, protecting it from the corrosive effect of the gastric acid reflux. AL2106 has been conceived to be better performing in terms of duration of the barrier effect compared to Esoxx One. Methods: The mucoadhesive properties, rheological behavior, buffering capacity against acidity, and film-forming ability with the resultant protecting effect on esophagus mucosa (caffeine permeation test) was compared between the two products. Results: The mucoadhesivity of the formulations was shown in vitro: both remained adherent to a mucin layer, also when the support was rotated by 90°, and when the film layer was washed with water, intended to simulate the washout due to swallowing. AL2106 showed a good buffering efficacy, being able to absorb at least 50% of its weight of 0.03 M HCl while maintaining the pH above 4. The film-forming effect and barrier properties of AL2106 and Esoxx One were confirmed by an in vitro study on reconstructed human esophageal epithelium. A greater film-forming efficacy of AL2106, lasting for at least 5 h, than Esoxx One was observed. Noteworthy, the barrier function of esophageal tissues was shown to be preserved after the application of both formulations. Conclusions: The combination of ChS with the mucoadhesive glycerol-xyloglucan complex and other excipients, which contribute to the barrier effect and to mucoadhesion, contained in AL2106, allowed a longer-lasting protective effect than Esoxx One, proving its effectivity and safety for oral use.
Collapse
|
21
|
Howell AB, Dreyfus JF, Chughtai B. Differences in Urinary Bacterial Anti-Adhesion Activity after Intake of Cranberry Dietary Supplements with Soluble versus Insoluble Proanthocyanidins. J Diet Suppl 2021; 19:621-639. [PMID: 33818241 DOI: 10.1080/19390211.2021.1908480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A number of clinical trials support the use of standardized cranberry supplement products for prevention of urinary tract infections; however, products that are not well-characterized for sufficient levels of bioactive components may contribute to negative clinical outcomes. Cranberry supplements for consumer use are not regulated and can be formulated different ways using cranberry juice, pomace or various combinations. This can lead to consumer confusion regarding effectiveness of individual products. The current study compared two commercial supplement products, one made from cranberry juice extract and the other from a blend of whole cranberry. The influence of formulation and proanthocyanidin (PAC) solubility on in vitro and ex vivo P-fimbriated Escherichia coli bacterial anti-adhesion activity (AAA) was determined. Both supplement products as well as whole, frozen cranberries were chromatographically separated into crude polyphenolic, sugar and acid fractions. In vitro AAA testing of all fractions confirmed that only those containing soluble PACs elicited activity. The cranberry juice extract product had higher soluble PAC content than the whole cranberry blended product, which contained mainly insoluble PACs. The influence of soluble and insoluble PAC levels in each product on the urinary (ex vivo) AAA was determined following ingestion. The juice extract product was associated with significantly higher urinary AAA than that of the whole berry blended product when consumed once daily over the 1-week intervention period.
Collapse
Affiliation(s)
- Amy B Howell
- Marucci Center for Blueberry Cranberry Research and Extension, Rutgers, the State University of New Jersey, Chatsworth, NJ, USA
| | | | - Bilal Chughtai
- Department of Urology, New York-Presbyterian Hospital/Weill Cornell, New York, NY, USA
| |
Collapse
|
22
|
Özcan E, Rozycki MR, Sela DA. Cranberry Proanthocyanidins and Dietary Oligosaccharides Synergistically Modulate Lactobacillus plantarum Physiology. Microorganisms 2021; 9:microorganisms9030656. [PMID: 33810188 PMCID: PMC8004764 DOI: 10.3390/microorganisms9030656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022] Open
Abstract
Plant-based foods contain bioactive compounds such as polyphenols that resist digestion and potentially benefit the host through interactions with their resident microbiota. Based on previous observations, we hypothesized that the probiotic Lactobacillus plantarum interacts with cranberry polyphenols and dietary oligosaccharides to synergistically impact its physiology. In this study, L. plantarum ATCC BAA-793 was grown on dietary oligosaccharides, including cranberry xyloglucans, fructooligosaccharides, and human milk oligosaccharides, in conjunction with proanthocyanidins (PACs) extracted from cranberries. As a result, L. plantarum exhibits a differential physiological response to cranberry PACs dependent on the carbohydrate source and polyphenol fraction introduced. Of the two PAC extracts evaluated, the PAC1 fraction contains higher concentrations of PACs and increased growth regardless of the oligosaccharide, whereas PAC2 positively modulates its growth during xyloglucan metabolism. Interestingly, fructooligosaccharides (FOS) are efficiently utilized in the presence of PAC1, as this L. plantarum strain does not utilize this substrate typically. Relative to glucose, oligosaccharide metabolism increases the ratio of secreted acetic acid to lactic acid. The PAC2 fraction differentially increases this ratio during cranberry xyloglucan fermentation compared with PAC1. The global transcriptome links the expression of putative polyphenol degradation genes and networks and metabolic phenotypes.
Collapse
Affiliation(s)
- Ezgi Özcan
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (E.Ö.); (M.R.R.)
| | - Michelle R. Rozycki
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (E.Ö.); (M.R.R.)
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (E.Ö.); (M.R.R.)
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01003, USA
- Correspondence: ; Tel.: +1-(413)-545-1010
| |
Collapse
|
23
|
Gbinigie OA, Spencer EA, Heneghan CJ, Lee JJ, Butler CC. Cranberry Extract for Symptoms of Acute, Uncomplicated Urinary Tract Infection: A Systematic Review. Antibiotics (Basel) 2020; 10:12. [PMID: 33375566 PMCID: PMC7824375 DOI: 10.3390/antibiotics10010012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Effective alternatives to antibiotics for alleviating symptoms of acute infections may be appealing to patients and enhance antimicrobial stewardship. Cranberry-based products are already in wide use for symptoms of acute urinary tract infection (UTI). The aim of this review was to identify and critically appraise the supporting evidence. METHODS The protocol was registered on PROSPERO. Searches were conducted of Medline, Embase, Amed, Cinahl, The Cochrane library, Clinicaltrials.gov and WHO International Clinical Trials Registry Platform. We included randomised clinical trials (RCTs) and non-randomised studies evaluating the effect of cranberry extract in the management of acute, uncomplicated UTI on symptoms, antibiotic use, microbiological assessment, biochemical assessment and adverse events. Study risk of bias assessments were made using Cochrane criteria. RESULTS We included three RCTs (n = 688) judged to be at moderate risk of bias. One RCT (n = 309) found that advice to consume cranberry juice had no statistically significant effect on UTI frequency symptoms (mean difference (MD) -0.01 (95% CI: -0.37 to 0.34), p = 0.94)), on UTI symptoms of feeling unwell (MD 0.02 (95% CI: -0.36 to 0.39), p = 0.93)) or on antibiotic use (odds ratio 1.27 (95% CI: 0.47 to 3.43), p = 0.64), when compared with promoting drinking water. One RCT (n = 319) found no symptomatic benefit from combining cranberry juice with immediate antibiotics for an acute UTI, compared with placebo juice combined with immediate antibiotics. In one RCT (n = 60), consumption of cranberry extract capsules was associated with a within-group improvement in urinary symptoms and Escherichia coli load at day 10 compared with baseline (p < 0.01), which was not found in untreated controls (p = 0.72). Two RCTs were under-powered to detect differences between groups for outcomes of interest. There were no serious adverse effects associated with cranberry consumption. CONCLUSION The current evidence base for or against the use of cranberry extract in the management of acute, uncomplicated UTIs is inadequate; rigorous trials are needed.
Collapse
Affiliation(s)
- Oghenekome A. Gbinigie
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; (E.A.S.); (C.J.H.); (J.J.L.); (C.C.B.)
| | | | | | | | | |
Collapse
|
24
|
Donno D, Mellano MG, Gamba G, Riondato I, Beccaro GL. Analytical Strategies for Fingerprinting of Antioxidants, Nutritional Substances, and Bioactive Compounds in Foodstuffs Based on High Performance Liquid Chromatography-Mass Spectrometry: An Overview. Foods 2020; 9:foods9121734. [PMID: 33255692 PMCID: PMC7760506 DOI: 10.3390/foods9121734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/12/2023] Open
Abstract
New technology development and globalisation have led to extreme changes in the agri-food sector in recent years that need an important food supply chain characterisation from plant materials to commercial productions. Many analytical strategies are commonly utilised in the agri-food industry, often using complementary technologies with different purposes. Chromatography on-line coupled to mass spectrometry (MS) is one of the most selective and sensitive analytical methodologies. The purpose of this overview is to present the most recent MS-based techniques applied to food analysis. An entire section is dedicated to the recent applications of high-resolution MS. Covered topics include liquid (LC)– and gas chromatography (GC)–MS analysis of natural bioactive substances, including carbohydrates, flavonoids and related compounds, lipids, phenolic compounds, vitamins, and other different molecules in foodstuffs from the perspectives of food composition, food authenticity and food adulteration. The results represent an important contribution to the utilisation of GC–MS and LC–MS in the field of natural bioactive compound identification and quantification.
Collapse
|
25
|
Zhao S, Liu H, Gu L. American cranberries and health benefits - an evolving story of 25 years. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5111-5116. [PMID: 29315597 DOI: 10.1002/jsfa.8882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Cranberries contain various types of bioactive components. Scientists have been studying cranberries' beneficial effects on urinary tract health since the 20th century. In the 21st century, the protection provided by cranberry phytochemicals against cancer and vascular diseases has drawn more attention from researchers. Anthocyanins, procyanidins, and flavonols in cranberries were all documented to have potential effects on cancer prevention. The cardiometabolic effects of cranberries have been investigated in several clinical trials. It was found that cranberries positively affect atherosclerotic cholesterol profiles and that they reduced several cardiometabolic risk factors. Nowadays, growing evidence suggests other important roles of cranberries in maintaining digestive health. Cranberry juice or cranberries have been shown to inhibit the colonization of H. pylori in stomach, and protect against intestinal inflammation. For future research, clinical trials with improved study design are urgently needed to demonstrate cranberries' benefits on urinary tract health and cardiometabolic diseases. Hypothesis-driven studies using animals or cell culture are needed to elucidate the mechanisms of cranberries' effects on digestive health. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaomin Zhao
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Haiyan Liu
- Ocean Spray Cranberries, Inc., Lakeville, -Middleboro, MA, USA
| | - Liwei Gu
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Gato E, Rosalowska A, Martínez-Guitián M, Lores M, Bou G, Pérez A. Anti-adhesive activity of a Vaccinium corymbosum polyphenolic extract targeting intestinal colonization by Klebsiella pneumoniae. Biomed Pharmacother 2020; 132:110885. [PMID: 33113420 DOI: 10.1016/j.biopha.2020.110885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
The therapeutic effect of Vaccinium polyphenols against uropathogens has been widely studied. Most attention has focused on the antimicrobial activity against P-fimbriated Escherichia coli strains. The present study investigated the anti-adhesive and anti-biofilm activity of a saline extract of blueberry (Vaccinium corymbosum) targeting intestinal colonization by a highly adherent Klebsiella pneumoniae strain. This strain, responsible for a large outbreak of infection in Spain, was selected on the basis of its remarkable capacity to colonize the gastrointestinal tract of patients. The blueberry extract was obtained using a medium scale ambient temperature system (MSAT) in a novel approach based on the use of an aqueous solvent and addition of mineral salts. The polyphenolic content was determined by liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS). The findings confirmed that the blueberry extract is a rich source of phenolic compounds, including the most polar polyphenols (mostly non-flavonoids), intermediate polarity compounds (flavan-3-ols and most procyanidins) and low polarity compounds (flavonols and anthocyanins). The extract significantly inhibited biofilm formation and bacterial adhesion to HT-29 colorectal cells by a highly adherent multidrug-resistant K. pneumoniae. Although some individual anthocyanidins (malvidin, delphinidin and cyanidin) and one hydroxycinnamic acid (caffeic acid) proved capable of reducing bacterial adhesion, the unfractionated extract was more active than any of the individual polyphenolic compounds. In addition, the extract displayed considerable potential as an intestinal decolonization treatment in a murine model. The study findings demonstrate the potential value of the V. corymbosum extract as an alternative treatment for K. pneumoniae infections.
Collapse
Affiliation(s)
- Eva Gato
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Alicja Rosalowska
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Martínez-Guitián
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Marta Lores
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - German Bou
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain.
| |
Collapse
|
27
|
Esposito E, Campolo M, Casili G, Lanza M, Franco D, Fazio E, Filippone A, Paterniti I, Cuzzocrea S. Efficacy of Xyloglucan against Escherichia coli Extraintestinal Urinary Tract Infection: An in vivo Study. Microb Physiol 2020; 30:50-60. [PMID: 33070135 DOI: 10.1159/000510874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 08/13/2020] [Indexed: 11/19/2022]
Abstract
Natural approaches to conventional pharmaceutical treatments for urinary tract infections (UTIs) have focused attention toward reducing the colonization of intestinal Escheri-chia coli reservoirs, the cause of ascending and hematogenous UTIs. In this study, we evaluated the protective effect of xyloglucan and xyloglucan plus gelose on intestinal and urinary epithelia in an in vivo E. coli infection model. Preventative xyloglucan and xyloglucan plus gelose oral treatments were performed by gavage 2 days before E. coli administration and every day until day 7. In vitro, xyloglucan had no effect on bacterial growth, cell morphology, or integrity. The results clearly demonstrated the protective barrier effect of xyloglucan in the bladder and intestine, as evidenced by a reduction in histological changes, neutrophil infiltration, and tight junction permeability in the intestine following E. coli infection. The potential beneficial effect of xyloglucan in preventing UTIs was supported by a reduction of E. coli-positive colony-forming units in the urinary tract. We consider xyloglucan in association with gelose to be an effective oral medical device for the prevention of extraintestinal UTIs.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy,
| | - Michela Campolo
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Domenico Franco
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physical and Earth Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
28
|
Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy E, Marette A, Roy D, Desjardins Y. Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice. Front Microbiol 2020; 11:2032. [PMID: 32983031 PMCID: PMC7479096 DOI: 10.3389/fmicb.2020.02032] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Berries are rich in polyphenols and plant cell wall polysaccharides (fibers), including cellulose, hemicellulose, arabinans and arabino-xyloglucans rich pectin. Most of polyphenols and fibers are known to be poorly absorbed in the small intestine and reach the colon where they interact with the gut microbiota, conferring health benefits to the host. This study assessed the contribution of polyphenol-rich whole cranberry and blueberry fruit powders (CP and BP), and that of their fibrous fractions (CF and BF) on modulating the gut microbiota, the microbial functional profile and influencing metabolic disorders induced by high-fat high-sucrose (HFHS) diet for 8 weeks. Lean mice-associated taxa, including Akkermansia muciniphila, Dubosiella newyorkensis, and Angelakisella, were selectively induced by diet supplementation with polyphenol-rich CP and BP. Fiber-rich CF also triggered polyphenols-degrading families Coriobacteriaceae and Eggerthellaceae. Diet supplementation with polyphenol-rich CP, but not with its fiber-rich CF, reduced fat mass depots, body weight and energy efficiency in HFHS-fed mice. However, CF reduced liver triglycerides in HFHS-fed mice. Importantly, polyphenol-rich CP-diet normalized microbial functions to a level comparable to that of Chow-fed controls. Using multivariate association modeling, taxa and predicted functions distinguishing an obese phenotype from healthy controls and berry-treated mice were identified. The enterotype-like clustering analysis underlined the link between a long-term diet intake and the functional stratification of the gut microbiota. The supplementation of a HFHS-diet with polyphenol-rich CP drove mice gut microbiota from Firmicutes/Ruminococcus enterotype into an enterotype linked to healthier host status, which is Prevotella/Akkermansiaceae. This study highlights the prebiotic role of polyphenols, and their contribution to the compositional and functional modulation of the gut microbiota, counteracting obesity.
Collapse
Affiliation(s)
- Maria-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Marcela Roquim
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
29
|
Zeuner B, Meyer AS. Enzymatic transfucosylation for synthesis of human milk oligosaccharides. Carbohydr Res 2020; 493:108029. [DOI: 10.1016/j.carres.2020.108029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022]
|
30
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
31
|
Sun J, Deering RW, Peng Z, Najia L, Khoo C, Cohen PS, Seeram NP, Rowley DC. Pectic Oligosaccharides from Cranberry Prevent Quiescence and Persistence in the Uropathogenic Escherichia coli CFT073. Sci Rep 2019; 9:19590. [PMID: 31862919 PMCID: PMC6925298 DOI: 10.1038/s41598-019-56005-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022] Open
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli create a large burden on healthcare and frequently lead to recurrent infections. Part of the success of E. coli as an uropathogenic bacterium can be attributed to its ability to form quiescent intracellular reservoirs in bladder cells and its persistence after antibiotic treatment. Cranberry juice and related products have been used for the prevention of UTIs with varying degrees of success. In this study, a group of cranberry pectic oligosaccharides (cPOS) were found to both inhibit quiescence and reduce the population of persister cells formed by the uropathogenic strain, CFT073. This is the first report detailing constituents of cranberry with the ability to modulate these important physiological aspects of uropathogenic E. coli. Further studies investigating cranberry should be keen to include oligosaccharides as part of the ‘active’ cocktail of chemical compounds.
Collapse
Affiliation(s)
- Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.,Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Robert W Deering
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Laila Najia
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Christina Khoo
- Ocean Spray Cranberries, Inc., One Ocean Spray Drive, Lakeville-Middleboro, MA, 02349, USA
| | - Paul S Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - David C Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
32
|
Vaca DJ, Thibau A, Schütz M, Kraiczy P, Happonen L, Malmström J, Kempf VAJ. Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Med Microbiol Immunol 2019; 209:277-299. [PMID: 31784893 PMCID: PMC7248048 DOI: 10.1007/s00430-019-00644-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
The capacity of pathogenic microorganisms to adhere to host cells and avoid clearance by the host immune system is the initial and most decisive step leading to infections. Bacteria have developed different strategies to attach to diverse host surface structures. One important strategy is the adhesion to extracellular matrix (ECM) proteins (e.g., collagen, fibronectin, laminin) that are highly abundant in connective tissue and basement membranes. Gram-negative bacteria express variable outer membrane proteins (adhesins) to attach to the host and to initiate the process of infection. Understanding the underlying molecular mechanisms of bacterial adhesion is a prerequisite for targeting this interaction by “anti-ligands” to prevent colonization or infection of the host. Future development of such “anti-ligands” (specifically interfering with bacteria-host matrix interactions) might result in the development of a new class of anti-infective drugs for the therapy of infections caused by multidrug-resistant Gram-negative bacteria. This review summarizes our current knowledge about the manifold interactions of adhesins expressed by Gram-negative bacteria with ECM proteins and the use of this information for the generation of novel therapeutic antivirulence strategies.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Infection Control, University Hospital, Eberhard Karls-University, Tübingen, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany.
| |
Collapse
|
33
|
Zeuner B, Teze D, Muschiol J, Meyer AS. Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules 2019; 24:E2033. [PMID: 31141914 PMCID: PMC6600218 DOI: 10.3390/molecules24112033] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) signify a unique group of oligosaccharides in breast milk, which is of major importance for infant health and development. The functional benefits of HMOs create an enormous impetus for biosynthetic production of HMOs for use as additives in infant formula and other products. HMO molecules can be synthesized chemically, via fermentation, and by enzymatic synthesis. This treatise discusses these different techniques, with particular focus on harnessing enzymes for controlled enzymatic synthesis of HMO molecules. In order to foster precise and high-yield enzymatic synthesis, several novel protein engineering approaches have been reported, mainly concerning changing glycoside hydrolases to catalyze relevant transglycosylations. The protein engineering strategies for these enzymes range from rationally modifying specific catalytic residues, over targeted subsite -1 mutations, to unique and novel transplantations of designed peptide sequences near the active site, so-called loop engineering. These strategies have proven useful to foster enhanced transglycosylation to promote different types of HMO synthesis reactions. The rationale of subsite -1 modification, acceptor binding site matching, and loop engineering, including changes that may alter the spatial arrangement of water in the enzyme active site region, may prove useful for novel enzyme-catalyzed carbohydrate design in general.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - David Teze
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
34
|
Auker KM, Coleman CM, Wang M, Avula B, Bonnet SL, Kimble LL, Mathison BD, Chew BP, Ferreira D. Structural Characterization of Cranberry Arabinoxyloglucan Oligosaccharides. JOURNAL OF NATURAL PRODUCTS 2019; 82:606-620. [PMID: 30839212 DOI: 10.1021/acs.jnatprod.8b01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cranberry ( Vaccinium macrocarpon) products are widely available in North American food, juice, and dietary supplement markets. The use of cranberry is popular for the prevention of urinary tract infections (UTIs) and other reported health benefits. Preliminary findings by our research group indicate that arabinoxyloglucan oligosaccharides are present in cranberry products and may contribute to the antiadhesion properties of urine produced after cranberry consumption, but relatively little is known regarding the oligosaccharide components of cranberry. This report describes the isolation from two cranberry sources and the complete structure elucidation of two arabinoxyloglucan oligosaccharides through the use of carbohydrate-specific NMR spectroscopic and chemical derivatization methods. These compounds were identified as the heptasaccharide β-d-glucopyranosyl-(1→4)-[α-d-xylopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranose (1) and the octasaccharide β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranose (2). Selected fractions and the isolated compounds were subjected to antimicrobial, cell viability, and E. coli antiadhesion assays. Results indicated that enriched fractions and purified compounds lacked antimicrobial and cytotoxic effects, supporting the potential use of such compounds for disease prevention without the risk for resistance development. Preliminary antiadhesion results indicated that mixtures of oligosaccharides exhibited greater antiadhesion properties than purified fractions or pure compounds. The potential use of cranberry oligosaccharides for the prevention of UTIs warrants continued investigations of this complex compound series.
Collapse
Affiliation(s)
- Kimberly M Auker
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Christina M Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Mei Wang
- National Center for Natural Products Research and the Research Institute for Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Bharathi Avula
- National Center for Natural Products Research and the Research Institute for Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Susanna L Bonnet
- Department of Chemistry , University of the Free State , 205 Nelson Mandela Drive , Bloemfontein , 9301 , South Africa
| | - Lindsey L Kimble
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Bridget D Mathison
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Boon P Chew
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| |
Collapse
|
35
|
Coleman CM, Auker KM, Killday KB, Azadi P, Black I, Ferreira D. Arabinoxyloglucan Oligosaccharides May Contribute to the Antiadhesive Properties of Porcine Urine after Cranberry Consumption. JOURNAL OF NATURAL PRODUCTS 2019; 82:589-605. [PMID: 30873836 DOI: 10.1021/acs.jnatprod.8b01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cranberry ( Vaccinium macrocarpon) juice is traditionally used for the prevention of urinary tract infections. Human urine produced after cranberry juice consumption can prevent Escherichia coli adhesion, but the antiadhesive urinary metabolites responsible have not been conclusively identified. Adult female sows were therefore fed spray-dried cranberry powder (5 g/kg/day), and urine was collected via catheter. Urine fractions were tested for antiadhesion activity using a human red blood cell (A+) anti-hemagglutination assay with uropathogenic P-fimbriated E. coli. Components were isolated from fractions of interest using Sephadex LH-20 gel filtration chromatography followed by HPLC on normal and reversed-phase sorbents with evaporative light scattering detection. Active urine fractions were found to contain a complex series of oligosaccharides but not proanthocyanidins, and a single representative arabinoxyloglucan octasaccharide was isolated in sufficient quantity and purity for full structural characterization by chemical derivatization and NMR spectroscopic methods. Analogous cranberry material contained a similar complex series of arabinoxyloglucan oligosaccharides that exhibited antiadhesion properties in preliminary testing. These results indicate that oligosaccharides structurally related to those found in cranberry may contribute to the antiadhesion properties of urine after cranberry consumption.
Collapse
Affiliation(s)
- Christina M Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Kimberly M Auker
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - K Brian Killday
- Bruker BioSpin Corporation , Billerica , Massachusetts 01821 , United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Ian Black
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| |
Collapse
|
36
|
Gao J, Lin L, Sun B, Zhao M. Comparison Study on Polysaccharide Fractions from Laminaria japonica: Structural Characterization and Bile Acid Binding Capacity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9790-9798. [PMID: 29023123 DOI: 10.1021/acs.jafc.7b04033] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Our previous study has suggested that the crude polysaccharide obtained from Laminaria japonica by acid assisted extraction (LP-A) have significant bile acid-binding capacity, which probably ascribed to its specific structure characterization. The relationship between structure characterization and bile acid-binding capacity of the purified LP-A fractions are still unknown. This paper conducted a comparison study on the structure characterization and bile acid-binding capacity of three LP-A fractions (LP-A4, LP-A6, and LP-A8). The results indicated that LP-A4, LP-A6, and LP-A8, characterized as mannoglucan, fucomannoglucan, and fucogalactan, had significantly different structure characterization. Furthermore, the bile acid-binding capacity of LP-A8 was obviously higher than the other fractions, which may be attributed to its highly branched structure, abundant sulfate, fucose, and galactose in chemical composition and denser interconnected macromolecule network in molecular morphology. This study provides scientific evidence for the potential utilization of LP-A8 as an attractive functional food supplement candidate for the hyperlipidemia population.
Collapse
Affiliation(s)
- Jie Gao
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510640, P. R. China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510640, P. R. China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University , Beijing 100048, P. R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University , Beijing 100048, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510640, P. R. China
| |
Collapse
|
37
|
Neto CC, Penndorf KA, Feldman M, Meron-Sudai S, Zakay-Rones Z, Steinberg D, Fridman M, Kashman Y, Ginsburg I, Ofek I, Weiss EI. Characterization of non-dialyzable constituents from cranberry juice that inhibit adhesion, co-aggregation and biofilm formation by oral bacteria. Food Funct 2017; 8:1955-1965. [PMID: 28470309 DOI: 10.1039/c7fo00109f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An extract prepared from cranberry juice by dialysis known as nondialyzable material (NDM) has been shown previously to possess anti-adhesion activity toward microbial species including oral bacteria, uropathogenic Escherichia coli and Helicobacter pylori. Bioassay-guided fractionation of cranberry NDM was therefore undertaken to identify the anti-adhesive constituents. An aqueous acetone-soluble fraction (NDMac) obtained from Sephadex LH-20 inhibited adhesion-linked activities by oral bacteria, including co-aggregation of oral bacteria Fusobacterium nucleatum with Streptococcus sanguinis or Porphyromonas gingivalis, and biofilm formation by Streptococcus mutans. Analysis of NDMac and subsequent subfractions by MALDI-TOF MS and 1H NMR revealed the presence of A-type proanthocyanidin oligomers (PACs) of 3-6 degrees of polymerization composed of (epi)catechin units, with some (epi)gallocatechin and anthocyanin units also present, as well as quercetin derivatives. Subfractions containing putative xyloglucans in addition to the mixed polyphenols also inhibit biofilm formation by S. mutans (MIC = 125-250 μg mL-1). These studies suggest that the anti-adhesion activities of cranberry NDM on oral bacteria may arise from a combination of mixed polyphenol and non-polyphenol constituents.
Collapse
Affiliation(s)
- C C Neto
- Department of Chemistry and Biochemistry, Cranberry Health Research Center, University of Massachusetts-Dartmouth, North Dartmouth, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
A Human Gut Commensal Ferments Cranberry Carbohydrates To Produce Formate. Appl Environ Microbiol 2017; 83:AEM.01097-17. [PMID: 28667113 DOI: 10.1128/aem.01097-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.
Collapse
|
39
|
Abstract
Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections. Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of urinary tract infections in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of uropathogenic E. coli and other uropathogens.
Collapse
|
40
|
Paquette M, Medina Larqué AS, Weisnagel SJ, Desjardins Y, Marois J, Pilon G, Dudonné S, Marette A, Jacques H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: a parallel, double-blind, controlled and randomised clinical trial. Br J Nutr 2017; 117:519-531. [PMID: 28290272 PMCID: PMC5426341 DOI: 10.1017/s0007114517000393] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/18/2022]
Abstract
Plant-derived foods rich in polyphenols are associated with several cardiometabolic health benefits, such as reduced postprandial hyperglycaemia. However, their impact on whole-body insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp technique remains under-studied. We aimed to determine the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity, glucose tolerance, insulin secretion, lipid profile, inflammation and oxidative stress markers in free-living insulin-resistant overweight or obese human subjects (n 41) in a parallel, double-blind, controlled and randomised clinical trial. The experimental group consumed an SCP beverage (333 mg SCP) daily for 6 weeks, whereas the Control group received a flavour-matched Control beverage that contained 0 mg SCP. At the beginning and at the end of the experimental period, insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, and glucose tolerance and insulin secretion by a 2-h oral glucose tolerance test (OGTT). Insulin sensitivity increased in the SCP group as compared with the Control group (+0·9 (sem 0·5)×10-3 v. -0·5 (sem 0·5)×10-3 mg/kg per min per pmol, respectively, P=0·03). Compared with the Control group, the SCP group had a lower first-phase insulin secretion response as measured by C-peptide levels during the first 30 min of the OGTT (P=0·002). No differences were detected between the two groups for lipids and markers of inflammation and oxidative stress. A 6-week dietary intervention with 333 mg of polyphenols from strawberries and cranberries improved insulin sensitivity in overweight and obese non-diabetic, insulin-resistant human subjects but was not effective in improving other cardiometabolic risk factors.
Collapse
Affiliation(s)
- Martine Paquette
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - Ana S. Medina Larqué
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - S. J. Weisnagel
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
- Diabetes Research Unit, Endocrinology and Nephrology
Axis, Research Centre, Laval University
Health Center of Quebec, Quebec, Canada, G1V
4G2
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
| | - Julie Marois
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- Quebec Heart and Lung Institute, Quebec,
Canada, G1V 4G5
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
| | - André Marette
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- Quebec Heart and Lung Institute, Quebec,
Canada, G1V 4G5
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| |
Collapse
|
41
|
Di R, Vakkalanka MS, Onumpai C, Chau HK, White A, Rastall RA, Yam K, Hotchkiss AT. Pectic oligosaccharide structure-function relationships: Prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells. Food Chem 2017; 227:245-254. [PMID: 28274429 DOI: 10.1016/j.foodchem.2017.01.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 01/25/2023]
Abstract
Shiga toxin (Stx)-producing, food-contaminating Escherichia coli (STEC) is a major health concern. Plant-derived pectin and pectic-oligosaccharides (POS) have been considered as prebiotics and for the protection of humans from Stx. Of five structurally different citrus pectic samples, POS1, POS2 and modified citrus pectin 1 (MCP1) were bifidogenic with similar fermentabilities in human faecal cultures and arabinose-rich POS2 had the greatest prebiotic potential. Pectic oligosaccharides also enhanced lactobacilli growth during mixed batch faecal fermentation. We demonstrated that all pectic substrates were anti-adhesive for E. coli O157:H7 binding to human HT29 cells. Lower molecular weight and deesterification enhanced the anti-adhesive activity. We showed that all pectic samples reduced Stx2 cytotoxicity in HT29 cells, as measured by the reduction of human rRNA depurination detected by our novel TaqMan-based RT-qPCR assay, with POS1 performing the best. POS1 competes with Stx2 binding to the Gb3 receptor based on ELISA results, underlining the POS anti-STEC properties.
Collapse
Affiliation(s)
- Rong Di
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Malathi S Vakkalanka
- Department of Food Science, Rutgers, the State University of New Jersey, 60 Dudley Road, New Brunswick, NJ 08901, USA
| | - Chatchaya Onumpai
- Department of Food and Nutritional Sciences, The University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, UK
| | - Hoa K Chau
- Eastern Regional Research Center, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Andre White
- Eastern Regional Research Center, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Robert A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, UK
| | - Kit Yam
- Department of Food Science, Rutgers, the State University of New Jersey, 60 Dudley Road, New Brunswick, NJ 08901, USA
| | - Arland T Hotchkiss
- Eastern Regional Research Center, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
42
|
Blumberg JB, Basu A, Krueger CG, Lila MA, Neto CC, Novotny JA, Reed JD, Rodriguez-Mateos A, Toner CD. Impact of Cranberries on Gut Microbiota and Cardiometabolic Health: Proceedings of the Cranberry Health Research Conference 2015. Adv Nutr 2016; 7:759S-70S. [PMID: 27422512 PMCID: PMC4942875 DOI: 10.3945/an.116.012583] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent advances in cranberry research have expanded the evidence for the role of this Vaccinium berry fruit in modulating gut microbiota function and cardiometabolic risk factors. The A-type structure of cranberry proanthocyanidins seems to be responsible for much of this fruit's efficacy as a natural antimicrobial. Cranberry proanthocyanidins interfere with colonization of the gut by extraintestinal pathogenic Escherichia coli in vitro and attenuate gut barrier dysfunction caused by dietary insults in vivo. Furthermore, new studies indicate synergy between these proanthocyanidins, other cranberry components such as isoprenoids and xyloglucans, and gut microbiota. Together, cranberry constituents and their bioactive catabolites have been found to contribute to mechanisms affecting bacterial adhesion, coaggregation, and biofilm formation that may underlie potential clinical benefits on gastrointestinal and urinary tract infections, as well as on systemic anti-inflammatory actions mediated via the gut microbiome. A limited but growing body of evidence from randomized clinical trials reveals favorable effects of cranberry consumption on measures of cardiometabolic health, including serum lipid profiles, blood pressure, endothelial function, glucoregulation, and a variety of biomarkers of inflammation and oxidative stress. These results warrant further research, particularly studies dedicated to the elucidation of dose-response relations, pharmacokinetic/metabolomics profiles, and relevant biomarkers of action with the use of fully characterized cranberry products. Freeze-dried whole cranberry powder and a matched placebo were recently made available to investigators to facilitate such work, including interlaboratory comparability.
Collapse
Affiliation(s)
- Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA;
| | | | - Christian G Krueger
- Complete Phytochemical Solutions, LLC, Cambridge, WI; University of Wisconsin-Madison, Madison, WI
| | | | | | - Janet A Novotny
- USDA Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Jess D Reed
- Complete Phytochemical Solutions, LLC, Cambridge, WI; University of Wisconsin-Madison, Madison, WI
| | | | - Cheryl D Toner
- The Cranberry Institute, Carver, MA; and CDT Consulting, LLC, Herndon, VA
| |
Collapse
|
43
|
Sun J, Liu W, Ma H, Marais JPJ, Khoo C, Dain JA, Rowley DC, Seeram NP. Effect of cranberry ( Vaccinium macrocarpon) oligosaccharides on the formation of advanced glycation end-products. JOURNAL OF BERRY RESEARCH 2016; 6:149-158. [PMID: 28649289 PMCID: PMC5467715 DOI: 10.3233/jbr-160126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/11/2016] [Indexed: 06/09/2023]
Abstract
BACKGROUND: The formation and accumulation of advanced glycation end-products (AGEs) are implicated in several chronic human illnesses including type-2 diabetes, renal failure, and neurodegenerative diseases. The cranberry (Vaccinium macrocarpon) fruit has been previously reported to show anti-AGEs effects, attributed primarily to its phenolic constituents. However, there is lack of similar data on the non-phenolic constituents found in the cranberry fruit, in particular, its carbohydrate constituents. Herein, a chemically characterized oligosaccharide-enriched fraction purified from the cranberry fruit was evaluated for its potential anti-AGEs and free radical scavenging effects. OBJECTIVE: The aim of this study was to evaluate the in vitro anti-AGEs and free radical scavenging effects of a chemically characterized oligosaccharide-enriched fraction purified from the North American cranberry (Vaccinium macrocarpon) fruit. METHOD: The cranberry oligosaccharide-enriched fraction was purified from cranberry hull powder and characterized based on spectroscopic and spectrometric (NMR, MALDI-TOF-MS, and HPAEC-PAD) data. The oligosaccharide-enriched fraction was evaluated for its anti-AGEs and free radical scavenging effects by the bovine serum albumin-fructose, and DPPH assays, respectively. RESULTS: Fractionation of cranberry hull material yielded an oligosaccharide-enriched fraction named Cranf1b-CL. The 1H NMR and MALDI-TOF-MS revealed that Cranf1b-CL consists of oligosaccharides ranging primarily from 6-mers to 9-mers. The monosaccharide composition of Cranf1b-CL was arabinose (25%), galactose (5%), glucose (47%) and xylose (23%). In the bovine serum albumin-fructose assay, Cranf1b-CL inhibited AGEs formation in a concentration-dependent manner with comparable activity to the synthetic antiglycating agent, aminoguanidine, used as the positive control (57 vs. 75%; both at 500μg/mL). In the DPPH free radical scavenging assay, Cranf1b-CL showed superior activity to the synthetic commercial antioxidant, butylated hydroxytoluene, used as the positive control (IC50 = 680 vs. 2200μg/mL, respectively). CONCLUSION: The in vitro anti-AGEs and free radical scavenging effects of cranberry oligosaccharides support previous data suggesting that these constituents may also contribute to biological effects of the whole fruit beyond its phenolic constituents alone. Also, this is the first study to evaluate a chemically characterized oligosaccharide fraction purified from the North American cranberry fruit for anti-AGEs and free radical scavenging properties.
Collapse
Affiliation(s)
- Jiadong Sun
- Alex and Ani Positive Impact Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Weixi Liu
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Hang Ma
- Alex and Ani Positive Impact Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | | | | - Joel A. Dain
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - David C. Rowley
- Alex and Ani Positive Impact Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Navindra P. Seeram
- Alex and Ani Positive Impact Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
44
|
Pauly M, Keegstra K. Biosynthesis of the Plant Cell Wall Matrix Polysaccharide Xyloglucan. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:235-59. [PMID: 26927904 DOI: 10.1146/annurev-arplant-043015-112222] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xyloglucan (XyG) is a matrix polysaccharide that is present in the cell walls of all land plants. It consists of a β-1,4-linked glucan backbone that is further substituted with xylosyl residues. These xylosyl residues can be further substituted with other glycosyl and nonglycosyl substituents that vary depending on the plant family and specific tissue. Advances in plant mutant isolation and characterization, functional genomics, and DNA sequencing have led to the identification of nearly all transferases and synthases necessary to synthesize XyG. Thus, in terms of the molecular mechanisms of plant cell wall polysaccharide biosynthesis, XyG is the most well understood. However, much remains to be learned about the molecular mechanisms of polysaccharide assembly and the regulation of these processes. Knowledge of the XyG biosynthetic machinery allows the XyG structure to be tailored in planta to ascertain the functions of this polysaccharide and its substituents in plant growth and interactions with the environment.
Collapse
Affiliation(s)
- Markus Pauly
- Department of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Kenneth Keegstra
- DOE Great Lakes Bioenergy Research Center, DOE Plant Research Laboratory, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
45
|
Gupta P, Song B, Neto C, Camesano TA. Atomic force microscopy-guided fractionation reveals the influence of cranberry phytochemicals on adhesion of Escherichia coli. Food Funct 2016; 7:2655-66. [DOI: 10.1039/c6fo00109b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of cranberry juice fractions for their role in anti-adhesive properties against pathogenicE. coliusing Atomic Force Microscopy (AFM).
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Chemical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| | - Biqin Song
- Department of Chemistry and Biochemistry
- University of Massachusetts-Dartmouth
- North Dartmouth
- USA
| | - Catherine Neto
- Department of Chemistry and Biochemistry
- University of Massachusetts-Dartmouth
- North Dartmouth
- USA
| | - Terri A. Camesano
- Department of Chemical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| |
Collapse
|