1
|
Caillaud MA, Audonnet M, Couderc C, Thierry A, Maillard MB, Doutart E, Laroute V, Cocaign-Bousquet M, Tormo H, Daveran-Mingot ML. Interaction between a Lactococcus lactis autochthonous starter and a raw goat milk microbial community during long-term backslopping. Food Microbiol 2025; 125:104656. [PMID: 39448166 DOI: 10.1016/j.fm.2024.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Traditional cheesemaking processes often involve backslopping practice. However, over successive inoculations, acidification deficiencies may arise. In such cases, adding a starter is recommended to restore the ecosystem stability. This study examines the impact of an autochthonous starter composed of three Lactococcus lactis strains on a raw goat milk microbial community during their evolution. Bacterial composition and technological features (acidification and aroma) were analyzed during communities' evolution over 800 generations. 16S rRNA gene metabarcoding showed that Lactococcus lactis strains predominated. The raw goat milk community acidification capacities varied early in the evolution and then remained stable. Adding the L. lactis starter to this community stabilized the ecosystem from the beginning of the evolution. The acetoin production was associated with the starter presence, consistent with the establishment of the diacetylatis biovar strain from the starter in the raw goat milk community throughout the evolution. Increased or decreased production of some volatile organic compounds when the starter was added revealed a specific aroma footprint due to interactions between the two communities. This study showed that adding a starter could help to achieve the maximum acidification rate from the early inoculation cycles and could significantly modify the aroma profile during long-term backslopping.
Collapse
Affiliation(s)
- Marie-Aurore Caillaud
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France; Université de Toulouse, École d'Ingénieurs de Purpan, INPT, Toulouse, France
| | | | - Christel Couderc
- Université de Toulouse, École d'Ingénieurs de Purpan, INPT, Toulouse, France
| | - Anne Thierry
- UMR1253 STLO, INRAE, Institut Agro, 35042, Rennes, France
| | | | | | - Valérie Laroute
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Hélène Tormo
- Université de Toulouse, École d'Ingénieurs de Purpan, INPT, Toulouse, France
| | | |
Collapse
|
2
|
Li D, Cui Y, Wu X, Li J, Min F, Zhao T, Zhang J, Zhang J. Graduate Student Literature Review: Network of flavor compounds formation and influence factors in yogurt. J Dairy Sci 2024; 107:8874-8886. [PMID: 38945263 DOI: 10.3168/jds.2024-24875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
Yogurt is popular as a natural and healthy food, but its flavor greatly affects acceptability by consumers. Flavor compounds of yogurt are generally produced by the metabolism of lactose, protein, and fat, and the resulting flavors include carbonyls, acids, esters, alcohols, and so on. Each flavor compound can individually provide the corresponding flavor, or it can be combined with other compounds to form a new flavor. The flavor network is formed among the metabolites of milk components, and acetaldehyde, as the central compound, plays a role in connecting the whole network. The flavor compounds can be affected by many factors, such as the use of different raw milks, ways of homogenization, sterilization, fermentation, postripening, storage condition, and packaging materials, which can affect the overall flavor of yogurt. This paper provides an overview of the volatile flavor compounds in yogurt, the pathways of production of the main flavor compounds during yogurt fermentation, and the factors that influence the flavor of yogurt, including type of raw milk, processing, and storage. It also aims to provide theoretical guidance for the product of yogurt in ideal flavor, but further research is needed to provide a more comprehensive description of the flavor system of yogurt.
Collapse
Affiliation(s)
- Die Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| | - Yutong Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Xinying Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Jiyong Li
- Shangri-la Kangmei Dairy Products Co. Ltd., Diqing Prefecture 674400, China
| | - Fuhai Min
- Shangri-la Kangmei Dairy Products Co. Ltd., Diqing Prefecture 674400, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Jianming Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Jiliang Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| |
Collapse
|
3
|
Boran OS, Sulejmani E, Hayaloglu AA. Acceleration of proteolysis, flavour development and enhanced bioactivity in a model cheese using Kuflu cheese slurry: An optimisation study. Food Chem 2023; 412:135495. [PMID: 36731232 DOI: 10.1016/j.foodchem.2023.135495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
This study aimed to use Kuflu (a mould-ripened cheese) cheese slurry to accelerate ripening, improve biological activity and flavour development in a model cheese in terms of proteolysis and volatile compounds. Response surface methodology (RSM) was employed for the model cheese to determine higher proteolysis and volatile development level during ripening as a function of Kuflu cheese slurry addition level (0-5 %), salt concentration (1-3 %) and ripening temperature (5-15 °C). The highest aminopeptidase activities (0.140 and 0.187 OD/g per hour) were determined in 15-day-old samples containing 3 % and 5 % Kuflu cheese slurry, respectively. Also, the use of Kuflu cheese slurry, regardless of ripening, caused an increase in ABTS*+ antioxidants, angiotensin-converting enzyme (ACE)-inhibition activity and volatile compounds in model cheeses. The sensory evaluation indicated that the use of 3 % (w/w) Kuflu cheese slurry, storage temperature 10 °C for 15 days provided better flavour, odour, texture, colour, appearance and overall acceptability. In conclusion, using Kuflu cheese slurry for model cheese production enhanced the level of proteolysis and volatile flavour composition with shortened ripening time.
Collapse
Affiliation(s)
- O S Boran
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey
| | - E Sulejmani
- Department of Food Technology, University of Tetova, 1200 Tetovo, Macedonia
| | - A A Hayaloglu
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey.
| |
Collapse
|
4
|
Pua A, Huang Y, Vivian Goh RM, Ee KH, Li L, Cornuz M, Lassabliere B, Jublot L, Liu SQ, Yu B. Multidimensional Gas Chromatography of Organosulfur Compounds in Coffee and Structure-Odor Analysis of 2-Methyltetrahydrothiophen-3-one. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4337-4345. [PMID: 36861492 DOI: 10.1021/acs.jafc.2c08842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organosulfur compounds (OSCs) in coffee remain challenging to analyze by conventional gas chromatography (GC) due to their low concentrations amid coffee's complex matrix and susceptibility to chiral-odor influences. In this study, multidimensional GC (MDGC) methods were developed to profile OSCs in coffee. Conventional GC was compared to comprehensive GC (GC×GC) for untargeted OSC analysis in eight specialty coffees, and GC×GC was found to improve the fingerprinting of OSCs in coffee (50 vs 16 OSCs identified). Of the 50 OSCs, 2-methyltetrahydrothiophen-3-one (2-MTHT) was of high interest due to its chirality and known aroma contribution. Following that, a heart-cutting method for chiral GC (GC-GC) was developed, validated, and applied to the coffees. The mean enantiomer ratio of 2-MTHT was observed to be 1.56 (R/S) in brewed coffees. Overall, MDGC techniques allowed for more comprehensive analyses of coffee OSCs, from which (R)-2-MTHT was found to be the predominant enantiomer with the lower odor threshold.
Collapse
Affiliation(s)
- Aileen Pua
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore
| | - Yunle Huang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore
| | - Rui Min Vivian Goh
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Kim-Huey Ee
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Lingyi Li
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore
| | - Maurin Cornuz
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Benjamin Lassabliere
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Lionel Jublot
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore
| | - Bin Yu
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| |
Collapse
|
5
|
Ma JH, Zhong Y, Zhou Y, Zhang Y, Feng XS. Organosulfur in food samples: Recent updates on sampling, pretreatment and determination technologies. J Chromatogr A 2023; 1689:463769. [PMID: 36610185 DOI: 10.1016/j.chroma.2022.463769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Organosulfur compounds (OSCs), mainly found in garlic, are the main biologically active substances for their pharmacological effects, including lowering of blood pressure and cholesterol, anti-cancer effect, liver protection, and anti-inflammatory. Efficient and sensitive pretreatment and determination methods of OSCs in different food matrices are of great significance. This review provides a comprehensive summary about the pretreatment and determination methods for OSCs in different food samples since 2010. Commonly used pretreatment methods, such as liquid-liquid extraction, microwave-assisted extraction, pressurized liquid extraction, liquid-liquid microextraction, solid phase extraction, dispersive solid phase extraction, solid-phase microextraction, and so on, have been summarized and overviewed in this paper. In particular, we discussed and compared various analysis methods including high performance liquid chromatography coupled with different detectors, gas chromatography-based methods, and few other methods. Finally, we tried to highlight the applicability, advantages and disadvantages of different pretreatment and analysis methods, and identified future prospects in this field.
Collapse
Affiliation(s)
- Jia-Hui Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang Zhong
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Liu A, Zhang H, Liu T, Gong P, Wang Y, Wang H, Tian X, Liu Q, Cui Q, Xie X, Zhang L, Yi H. Aroma classification and flavor characterization of Streptococcus thermophilus fermented milk by HS-GC-IMS and HS-SPME-GC-TOF/MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Gfeller A, Fuchsmann P, De Vrieze M, Gindro K, Weisskopf L. Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains. Microorganisms 2022; 10:microorganisms10081510. [PMID: 35893568 PMCID: PMC9394277 DOI: 10.3390/microorganisms10081510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial volatiles play important roles in mediating beneficial interactions between plants and their associated microbiota. Despite their relevance, bacterial volatiles are mostly studied under laboratory conditions, although these strongly differ from the natural environment bacteria encounter when colonizing plant roots or shoots. In this work, we ask the question whether plant-associated bacteria also emit bioactive volatiles when growing on plant leaves rather than on artificial media. Using four potato-associated Pseudomonas, we demonstrate that potato leaves offer sufficient nutrients for the four strains to grow and emit volatiles, among which 1-undecene and Sulfur compounds have previously demonstrated the ability to inhibit the development of the oomycete Phytophthora infestans, the causative agent of potato late blight. Our results bring the proof of concept that bacterial volatiles with known plant health-promoting properties can be emitted on the surface of leaves and warrant further studies to test the bacterial emission of bioactive volatiles in greenhouse and field-grown plants.
Collapse
Affiliation(s)
- Aurélie Gfeller
- Changins School of Viticulture and Oenology, 1260 Nyon, Switzerland; (A.G.); (M.D.V.)
- Agroscope, Plant Protection, 1260 Nyon, Switzerland;
| | - Pascal Fuchsmann
- Agroscope, Nutrition, Sensory analysis and Flavour Group, 3003 Bern, Switzerland;
| | - Mout De Vrieze
- Changins School of Viticulture and Oenology, 1260 Nyon, Switzerland; (A.G.); (M.D.V.)
- Agroscope, Plant Protection, 1260 Nyon, Switzerland;
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Katia Gindro
- Agroscope, Plant Protection, 1260 Nyon, Switzerland;
| | - Laure Weisskopf
- Changins School of Viticulture and Oenology, 1260 Nyon, Switzerland; (A.G.); (M.D.V.)
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
8
|
El‐Shamy S, Farag MA. Volatiles profiling in heated cheese as analyzed using headspace solid‐phase microextraction coupled to gas chromatography coupled to mass spectrometry. EFOOD 2022. [DOI: 10.1002/efd2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sherine El‐Shamy
- Department of Pharmacognosy, Faculty of Pharmacy Modern University for Technology & Information Cairo Egypt
| | - Mohamed A. Farag
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
- Department of Chemistry, School of Sciences & Engineering The American University in Cairo New Cairo Egypt
| |
Collapse
|
9
|
Parr H, Bolat I, Cook D. Identification and Categorization of Volatile Sulfur Flavor Compounds in Roasted Malts and Barley. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.2003669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hebe Parr
- International Centre for Brewing Science, University of Nottingham, Loughborough, Leicestershire, UK
| | - Irina Bolat
- Boortmalt International, Antwerp Innovation Centre, Zandvoort 1, Haven 350, Bus 1, 2030 Antwerp, Belgium
| | - David Cook
- International Centre for Brewing Science, University of Nottingham, Loughborough, Leicestershire, UK
| |
Collapse
|
10
|
Alhelli AM, Mohammed NK, Khalil ES, Hussin ASM. Optimizing the acceleration of Cheddar cheese ripening using response surface methodology by microbial protease without altering its quality features. AMB Express 2021; 11:45. [PMID: 33751265 PMCID: PMC7984165 DOI: 10.1186/s13568-021-01205-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Cheddar cheese proteolysis were accelerated employing Penicillium candidum PCA1/TT031 protease into cheese curd. In the present study, several of the significant factors such as protease purification factor (PF), protease concentration and ripening time were optimized via the response surface methodology (RSM). The ideal accelerated Cheddar cheese environment consisted of 3.12 PF, 0.01% (v/v) protease concentration and 0.6/3 months ripening time at 10 °C. The RSM models was verified to be the most proper methodology for the maintain of chosen Cheddar cheese. Under this experimental environment, the pH, acid degree value (ADV), moisture, water activity (aw), soluble nitrogen (SN)%, fat and overall acceptability were found to be 5.4, 6.6, 35%, 0.9348, 18.8%, 34% and 13.6, respectively of ideal Cheddar cheese. Furthermore, the predicted and experimental results were in significant agreement, which confirmed the validity and reliability of the suggested method. In spite of the difference between the ideal and commercial Cheddar cheese in the concentration of some of amino acids and free fatty acids, the sensory evaluation did not show any significant difference in aroma profile between them. ![]()
Collapse
|
11
|
Wang J, Yang Z, Xu L, Wang B, Zhang J, Li B, Cao Y, Tan L. Key aroma compounds identified in Cheddar cheese with different ripening times by aroma extract dilution analysis, odor activity value, aroma recombination, and omission. J Dairy Sci 2021; 104:1576-1590. [DOI: 10.3168/jds.2020-18757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 02/02/2023]
|
12
|
Meng HY, Piccand M, Fuchsmann P, Dubois S, Baumeyer A, Tena Stern M, von Ah U. Formation of 3-Methylbutanal and 3-Methylbutan-1-ol Recognized as Malty during Fermentation in Swiss Raclette-Type Cheese, Reconstituted Milk, and de Man, Rogosa, and Sharpe Broth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:717-729. [PMID: 33406836 DOI: 10.1021/acs.jafc.0c06570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work aimed to determine the formation over time of 3-methylbutanal and 3-methylbutan-1-ol recognized as malty during the manufacture of Raclette-type cheese and the fermention of reconstituted skim milk, and filter-sterilized MRS broth. Using dynamic headspace-vacuum transfer in trap extraction followed by gas chromatography coupled with mass spectrometry-olfactometry (DHS-VTT-GC-MS-O) as a screening method for the malty compounds, five compounds (2-methylpropanal, 2- and 3-methylbutanal, and 2- and 3-methylbutan-1-ol) were identified as potential compounds causing the malty aroma in starter culture development and Raclette-type cheeses. Focus on compounds having a predominant sensorial effect (3-methylbutanal and 3-methylbutan-1-ol), spikings of leucine, 13C-labeled leucine, α-ketoisocaproic acid, and α-ketoglutaric acid provided a better understanding of their formation pathway. This study highlighted the discrepancies in the formation of 3-methylbutanal and 3-methylbutan-1-ol between the growth media; namely, despite the presence of free leucine available in MRS and the addition of an excess, no increase of the target compounds was observed. The concentration of these compounds in MRS increased only when α-ketoglutaric acid or α-ketoisocaproic acid was added, and a preference for the pathway to α-hydroxyisocaproic acid instead of 3-methylbutanal was shown. In addition, a formation of 3-methylbutanal when the bacteria were not yet active was observed when spiking α-ketoisocaproic acid, which potentially indicates that this part of the metabolism could take place extracellularly. These results could potentially unveil other, not-yet-identified reactants, directly influencing the production of compounds responsible for the malty aroma in Raclette cheese.
Collapse
Affiliation(s)
- Hélène Yi Meng
- Agroscope, Federal Department of Economic Affairs, Education and Research (EAER), 3003 Bern, Switzerland
| | | | - Pascal Fuchsmann
- Agroscope, Federal Department of Economic Affairs, Education and Research (EAER), 3003 Bern, Switzerland
| | - Sébastien Dubois
- Agroscope, Federal Department of Economic Affairs, Education and Research (EAER), 3003 Bern, Switzerland
| | - Alexandra Baumeyer
- Agroscope, Federal Department of Economic Affairs, Education and Research (EAER), 3003 Bern, Switzerland
| | - Mireille Tena Stern
- Agroscope, Federal Department of Economic Affairs, Education and Research (EAER), 3003 Bern, Switzerland
| | - Ueli von Ah
- Agroscope, Federal Department of Economic Affairs, Education and Research (EAER), 3003 Bern, Switzerland
| |
Collapse
|
13
|
Chen C, Zhou W, Yu H, Yuan J, Tian H. Characterization of major odor‐active compounds responsible for nutty flavor in Cheddar cheese according to Chinese taste. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Chen
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| | - Wenya Zhou
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| | - Haiyan Yu
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| | - Jiajie Yuan
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| | - Huaixiang Tian
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
14
|
Tian H, Sun X, Yu H, Ai L, Chen C. Characterization of the key aroma compounds in Yunnan goat milk cake using a sensory-directed flavor analysis. J Food Sci 2020; 85:3981-3997. [PMID: 33063315 DOI: 10.1111/1750-3841.15490] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
To identify the key aroma compounds in Yunnan goat milk cake, seven varieties of milk cake samples were subjected to sensory analysis and gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), aroma recombination, omission, and addition tests. The GC-MS results revealed 53 compounds with aroma characteristics in all the samples. A further comparison of odor activity values and aroma intensities (AI) revealed 25 of these compounds as the initial key aroma compounds. The contributions of these key aroma compounds to the sensory attributes were determined using a partial least squares regression. Of these compounds, 2-heptanone and 2-nonanone were closely related to the "milky" and "cheesy" attributes and were highly abundant in the samples from Kunming. Fatty acids, including butanoic acid, hexanoic acid, octanoic acid, and decanoic acid, were the most abundant compounds detected in the milk cakes. These fatty acids were closely related to the "rancid" and "animalic (goat)" attributes and were largely detected in the samples from Dali Dengchuan and Dali Xiaguan. Sensory-directed aroma recombination, omission, and addition tests further validated the important contributions of ethyl butyrate, benzaldehyde, 3-methyl-1-butanol, 2-heptanone, hexanoic acid, and octanoic acid to the overall sensory properties. Moreover, ethyl butyrate, benzaldehyde, and 2-heptanone, when added, had evident inhibitory or masking effects on the AI of "sour," "rancid," and "animalic (goat)" attributes. PRACTICAL APPLICATION: Goat milk cake is a popular acid-curd cheese in Yunnan, China, however, our limited knowledge to its key aroma compounds restricts its development and industrial production. In this study, a sensory-directed flavor analysis was used to characterized the key aroma compounds of Yunnan goat milk cake, which will help to enhance our understanding on the flavor profile of Yunnan goat milk cake and provide a reference for optimizing the flavor feature and organoleptic quality of this fresh goat cheese.
Collapse
Affiliation(s)
- Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xuefeng Sun
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, 201418, China.,Shanghai Research Institute of Fragrance & Flavor Industry, Shanghai, 200232, China
| |
Collapse
|
15
|
Xu Y, Minhazul KAHM, Li X. The occurrence, enzymatic production, and application of ethyl butanoate, an important flavor constituent. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Karim A. H. M. Minhazul
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| |
Collapse
|
16
|
Wang B, Wang J, Xu L, Zhang J, Ai N, Cao Y. Characterization of the key odorants in kurut with aroma recombination and omission studies. J Dairy Sci 2020; 103:4164-4173. [DOI: 10.3168/jds.2019-17521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/21/2020] [Indexed: 11/19/2022]
|
17
|
Khattab AR, Guirguis HA, Tawfik SM, Farag MA. Cheese ripening: A review on modern technologies towards flavor enhancement, process acceleration and improved quality assessment. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Fuchsmann P, Tena Stern M, Bischoff P, Badertscher R, Breme K, Walther B. Development and performance evaluation of a novel dynamic headspace vacuum transfer "In Trap" extraction method for volatile compounds and comparison with headspace solid-phase microextraction and headspace in-tube extraction. J Chromatogr A 2019; 1601:60-70. [PMID: 31178163 DOI: 10.1016/j.chroma.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
Abstract
Headspace in-tube extraction (HS-ITEX) and solid phase microextraction (HS-SPME) sampling, followed by gas chromatography-mass spectrometry (GC-MS), are widely used to analyze volatile compounds in various food matrices. While the extraction efficiency of volatile compounds from foodstuffs is crucial for obtaining relevant results, these efficiency of these extraction methods limited by their long extraction times and requirements for large sample quantity. This study reports on the development and application of a new extraction technique based on HS-ITEX hardware, which improves the extraction rate and capacity by operating under reduced pressure, called Dynamic Headspace Vacuum Transfer In-Trap Extraction (DHS-VTT). The results of the study indicate that DHS-VTT improves the extraction of the target compounds. The area of the mass spectrometer signal for each compound can be up to 450 times more intense than the HS-SPME and HS-ITEX techniques performed in the same experimental conditions of extraction temperature and time. DHS-VTT runs in automated mode, making it possible to work with smaller sample quantity and also favors the HS extraction of all volatile compounds. In addition, the necessary modifications to the installation were cheap and the life of an ITEX trap is up to 10 times longer than an SPME fibre.
Collapse
Affiliation(s)
- Pascal Fuchsmann
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Berne, Switzerland.
| | | | | | | | - Katharina Breme
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Berne, Switzerland
| | - Barbara Walther
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Berne, Switzerland
| |
Collapse
|
19
|
Afshari R, Pillidge CJ, Dias DA, Osborn AM, Gill H. Cheesomics: the future pathway to understanding cheese flavour and quality. Crit Rev Food Sci Nutr 2018; 60:33-47. [DOI: 10.1080/10408398.2018.1512471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roya Afshari
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Daniel A. Dias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - A. Mark Osborn
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
20
|
Lu Y, Nawrath M, Sun J, Liu SQ. Effects of physicochemical parameters on volatile sulphur compound formation from L-methionine catabolism by non-growing cells of Kluyveromyces lactis. AMB Express 2018; 8:109. [PMID: 29971574 PMCID: PMC6029988 DOI: 10.1186/s13568-018-0639-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
The present study investigated for the first time the effects of various physicochemical parameters on the production of volatile sulphur compounds (VSCs) by non-growing cells of Kluyveromyces lactis supplemented with l-methionine. The results showed that the production of VSCs positively correlated with the cell biomass, but it seemed that no clear relationship with l-methionine concentration existed. Temperature and pH significantly affected the formation of VSCs with more production at 30 °C and pH 5, respectively. Nitrogen supplementation (in the form of diammonium phosphate, DAP) repressed the production of VSCs. It is interesting to note that DAP and yeast extract supplementation induced the production of methional, but not Mn2+ supplementation. The presence of Mn2+ improved the production of methionol and dimethyl disulphide, but inhibited the formation of S-methyl thioacetate. The study indicated that optimization of physicochemical conditions and media composition would be crucial for producing l-methionine-derived VSC bioflavor.
Collapse
|
21
|
Bertuzzi AS, McSweeney PL, Rea MC, Kilcawley KN. Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese. Compr Rev Food Sci Food Saf 2018; 17:371-390. [DOI: 10.1111/1541-4337.12332] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Andrea S. Bertuzzi
- Teagasc Food Research Centre, Moorepark; Fermoy Co. Cork Ireland P61 C996
- School of Food and Nutritional Science; Univ. College Cork; Ireland T12 R229
| | - Paul L.H. McSweeney
- School of Food and Nutritional Science; Univ. College Cork; Ireland T12 R229
| | - Mary C. Rea
- Teagasc Food Research Centre, Moorepark; Fermoy Co. Cork Ireland P61 C996
- the APC Microbiome Inst; Univ. College Cork; Ireland T12 R229
| | | |
Collapse
|
22
|
Asikin Y, Kusumiyati, Shikanai T, Wada K. Volatile aroma components and MS-based electronic nose profiles of dogfruit ( Pithecellobium jiringa) and stink bean ( Parkia speciosa). J Adv Res 2017; 9:79-85. [PMID: 30046489 PMCID: PMC6057232 DOI: 10.1016/j.jare.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 11/28/2022] Open
Abstract
Dogfruit (Pithecellobium jiringa) and stink bean (Parkia speciosa) are two typical smelly legumes from Southeast Asia that are widely used in the cuisines of this region. Headspace/gas chromatography/flame ionization detection analysis and mass spectrometry (MS)-based electronic nose techniques were applied to monitor ripening changes in the volatile flavor profiles of dogfruit and stink bean. Compositional analysis showed that the ripening process greatly influenced the composition and content of the volatile aroma profiles of these two smelly food materials, particularly their alcohol, aldehyde, and sulfur components. The quantity of predominant hexanal in stink bean significantly declined (P < 0.05) during the ripening process, whereas the major volatile components of dogfruit changed from 3-methylbutanal and methanol in the unripe state to acetaldehyde and ethanol in the ripe bean. Moreover, the amount of the typical volatile flavor compound 1,2,4-trithiolane significantly increased (P < 0.05) in both ripened dogfruit and stink bean from 1.70 and 0.93%, to relative amounts of 19.97 and 13.66%, respectively. MS-based nose profiling gave further detailed differentiation of the volatile profiles of dogfruit and stink bean of various ripening stages through multivariate statistical analysis, and provided discriminant ion masses, such as m/z 41, 43, 58, 78, and 124, as valuable “digital fingerprint” dataset that can be used for fast flavor monitoring of smelly food resources.
Collapse
Affiliation(s)
- Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Kusumiyati
- Faculty of Agriculture, Padjadjaran University, Jalan Raya Bandung-Sumedang KM 21, Jatinangor, West Java 45363, Indonesia
| | - Takeshi Shikanai
- Department of Regional Agricultural Engineering, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Koji Wada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
23
|
Cicchetti E, Vasseur C. Critical comparison of selected olfactometric methods for the determination of impact odorants. Proposal of a new representation of olfactometric results. FLAVOUR FRAG J 2017. [DOI: 10.1002/ffj.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Clémence Vasseur
- Cosmo International Ingredients; 855 av. Maurice Donat 06250 Mougins France
| |
Collapse
|
24
|
The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo Palermitano cheese. Int J Food Microbiol 2017; 259:35-42. [PMID: 28783535 DOI: 10.1016/j.ijfoodmicro.2017.07.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/30/2017] [Indexed: 11/21/2022]
Abstract
The contribution of two starter (Lactobacillus delbrueckii and Streptococcus thermophilus) and nine non-starter (Enterococcus casselliflavus, Enterococcus faecalis, Enterococcus durans, Enterococcus gallinarum, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, Pediococcus acidilactici and Pediococcus pentosaceus) species of lactic acid bacteria (LAB) to the volatile organic compounds (VOCs) of Caciocavallo Palermitano cheese was investigated. The strains used in this study were isolated during the production/ripening of the stretched cheese and tested in a cheese-based medium (CBM). The fermented substrates were analyzed for the growth of the single strains and subjected to the head space solid phase micro-extraction (HS-SPME) and gas chromatography - mass spectrometry (GC-MS). The 11 strains tested were all able to increase their numbers in CBM, even though the development of the starter LAB was quite limited. GC-MS analysis registered 43 compounds including seven chemical classes. A lower diversity of VOCs was registered for the unfermented curd based medium (CuBM) analyzed for comparison. The class of ketones represented a consistent percentage of the VOCs for almost all LAB, followed by alcohols and esters. The volatile profile of Pediococcus acidilactici and Lactobacillus delbrueckii was mainly characterized by 2-butanol, butanoic acid and hexanoic acid and their esters, while that of Lactobacillus casei and Lactobacillus rhamnosus was characterized by 2,3-butanedione and 2-butanone, 3-hydroxy. In order to correlate the VOCs produced by Caciocavallo Palermitano cheeses with those generated by individual LAB, the 4-month ripened cheeses resulting from the dairy process monitored during the isolation of LAB were also analyzed for the volatile chemical fraction and the compounds in common were subjected to a multivariate statistical analysis. The canonical analysis indicated that the VOCs of the ripened cheeses were mainly influenced by E. gallinarum, L. paracasei, L. delbrueckii, L. rhamnosus and L. casei and that 1-hexanol, o-xylene and m-xylene were the cheese VOCs highly correlated with LAB.
Collapse
|
25
|
Kiss L, Holmes S, Chou CE, Dong X, Ross J, Brown D, Mendenhall B, Coronado V, De Silva D, Rockwood GA, Petrikovics I, Thompson DE. Method development for detecting the novel cyanide antidote dimethyl trisulfide from blood and brain, and its interaction with blood. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:149-157. [PMID: 28110144 DOI: 10.1016/j.jchromb.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 12/15/2022]
Abstract
The antidotal potency of dimethyl trisulfide (DMTS) against cyanide poisoning was discovered and investigated in our previous studies. Based on our results it has better efficacy than the Cyanokit and the Nithiodote therapies that are presently used against cyanide intoxication in the US. Because of their absence in the literature, the goal of this work was to develop analytical methods for determining DMTS from blood and brain that could be employed in future pharmacokinetic studies. An HPLC-UV method for detection of DMTS from blood, a GC-MS method for detection of DMTS from brain, and associated validation experiments are described here. These analytical methods were developed using in vitro spiking of brain and blood, and are suitable for determining the in vivo DMTS concentrations in blood and brain in future pharmacokinetic and distribution studies. An important phenomenon was observed in the process of developing these methods. Specifically, recoveries from fresh blood spiked with DMTS were found to be significantly lower than recoveries from aged blood spiked in the same manner with DMTS. This decreased DMTS recovery from fresh blood is important, both because of the role it may play in the antidotal action of DMTS in the presence of cyanide, and because it adds the requirement of sample stabilization to the method development process. Mitigation procedures for stabilizing DMTS samples in blood are reported.
Collapse
Affiliation(s)
- Lóránd Kiss
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Secondra Holmes
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Ching-En Chou
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Xinmei Dong
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - James Ross
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Denise Brown
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Brooke Mendenhall
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Valerie Coronado
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Deepthika De Silva
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - Gary A Rockwood
- U.S. Army Medical Research Institute of Chemical Defense, 2900 Rickets Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Ilona Petrikovics
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA
| | - David E Thompson
- Department of Chemistry, Sam Houston State University, PO Box 2117, Huntsville, TX, 77341, USA.
| |
Collapse
|
26
|
Rockwood GA, Thompson DE, Petrikovics I. Dimethyl trisulfide: A novel cyanide countermeasure. Toxicol Ind Health 2016; 32:2009-2016. [PMID: 26939832 DOI: 10.1177/0748233715622713] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present studies, the in vitro and in vivo efficacies of a novel cyanide countermeasure, dimethyl trisulfide (DMTS), were evaluated. DMTS is a sulfur-based molecule found in garlic, onion, broccoli, and similar plants. DMTS was studied for effectiveness as a sulfur donor-type cyanide countermeasure. The sulfur donor reactivity of DMTS was determined by measuring the rate of the formation of the cyanide metabolite thiocyanate. In experiments carried out in vitro in the presence of the sulfurtransferase rhodanese (Rh) and at the experimental pH of 7.4, DMTS was observed to convert cyanide to thiocyanate with greater than 40 times higher efficacy than does thiosulfate, the sulfur donor component of the US Food and Drug Administration-approved cyanide countermeasure Nithiodote® In the absence of Rh, DMTS was observed to be almost 80 times more efficient than sodium thiosulfate in vitro The fact that DMTS converts cyanide to thiocyanate more efficiently than does thiosulfate both with and without Rh makes it a promising sulfur donor-type cyanide antidote (scavenger) with reduced enzyme dependence in vitro The therapeutic cyanide antidotal efficacies for DMTS versus sodium thiosulfate were measured following intramuscular administration in a mouse model and expressed as antidotal potency ratios (APR = LD50 of cyanide with antidote/LD50 of cyanide without antidote). A dose of 100 mg/kg sodium thiosulfate given intramuscularly showed only slight therapeutic protection (APR = 1.1), whereas the antidotal protection from DMTS given intramuscularly at the same dose was substantial (APR = 3.3). Based on these data, DMTS will be studied further as a promising next-generation countermeasure for cyanide intoxication.
Collapse
Affiliation(s)
- Gary A Rockwood
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - David E Thompson
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Ilona Petrikovics
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|