1
|
Eckhof P, Márquez K, Kruger J, Nina N, Ramirez-Jara E, Frank J, Jiménez-Aspee F. Bioaccessibility of carotenoids, tocochromanols, and iron from common bean (Phaseolus vulgaris L.) landraces. Food Res Int 2024; 194:114935. [PMID: 39232546 DOI: 10.1016/j.foodres.2024.114935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Common beans (Phaseolus vulgaris L.) are among the most important legumes for human nutrition. The aim of the present study was to characterize the composition and in vitro bioaccessibility of tocochromanols, carotenoids, and iron from 14 different landraces and 2 commercial common bean varieties. Phytic acid, dietary fiber, and total (poly)phenolic content were determined as factors that can modify the bioaccessibility of the studied compounds. Two carotenoids were identified, namely lutein (4.6-315 ng/g) and zeaxanthin (12.2-363 ng/g), while two tocochromanols were identified, namely γ-tocopherol (2.62-18.01 µg/g), and δ-tocopherol (0.143-1.44 µg/g). The iron content in the studied samples was in the range of 58.7-144.2 µg/g. The contents of carotenoids, tocochromanols, and iron differed significantly among the studied samples but were within the ranges reported for commercial beans. After simulated gastrointestinal digestion, the average bioaccessibility of carotenoids was 30 %, for tocochromanols 50 %, and 17 % for iron. High variability in the bioaccessible content yielded by the bean varieties was observed. Dietary fiber, phytic acid and total (poly)phenol contents were negatively correlated with the bioaccessibility of carotenoids, while iron bioaccessibility was negatively correlated with the total (poly)phenol content. The principal component analysis indicated that the bioaccessibility of lutein was the main variable involved in class separations. The composition of the food matrix plays an important role in the bioaccessibility of carotenoids, tocochromanols and iron from cooked beans.
Collapse
Affiliation(s)
- Pia Eckhof
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Katherine Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), Campus Lircay, Talca 3480094, Chile.
| | - Johanita Kruger
- Department of Food Technology, University of Applied Sciences Fulda, Leipzigerstr. 123, 36037 Fulda, Germany.
| | - Nélida Nina
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Campus Lircay, Universidad de Talca, 3480094, Talca, Chile.
| | | | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Felipe Jiménez-Aspee
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Kou F, Wang W, You S, Wei X, Wu X. Preparation and characterization of metal-polyphenol networks encapsulated in sodium alginate microbead hydrogels for catechin and vitamin C delivery. Int J Biol Macromol 2024; 276:133870. [PMID: 39009264 DOI: 10.1016/j.ijbiomac.2024.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
A novel encapsulation system was designed, utilizing sodium alginate (SA) polysaccharide as the matrix and easily absorbed Fe2+ as the metal-organic framework, to construct microbead scaffolds with both high catechins (CA) and vitamin C (Vc) loading and antioxidant properties. The structure of microbead hydrocolloids was investigated using SEM, XPS, FTIR, XRD and thermogravimetry, and the antioxidant activity, in vitro digestion and the release of CA and Vc were evaluated. These results revealed that the microbead hydrocolloids SA-CA-Fe and SA-CA-Vc-Fe exhibited denser and stronger cross-linking structures, and the formation of inter- and intramolecular hydrogen and coordination bonds improved thermal stability. Moreover, SA-CA-Fe (44.9 % DPPH and 47.8 % ABTS) and SA-CA-Vc-Fe (89.9 % DPPH and 89.3 % ABTS) displayed strong antioxidant activity. Importantly, they were non-toxic in Caco2 cells. The SA-CA-Fe and SA-CA-Vc-Fe achieved significantly higher CA (56.9 and 62.7 %, respectively) and Vc (42.2 %) encapsulation efficiency while maintaining higher CA and Vc release in small intestinal environment. These results suggested that SA polysaccharide-based encapsulation system using Fe2+ framework as scaffold had greater potential for delivery and controlled release of CA and Vc than conventional hydrocolloids, which could provide new insights into the construction of high loading, safe, targeted polyphenol delivery system.
Collapse
Affiliation(s)
- Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, South Korea; College of Food Science, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, Daqing 163319, China
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, Daqing 163319, China; School of Forestry, Northeast Forestry University, No.26 Hexing Road, Harbin 150030, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing 163319, China.
| | - Sangguan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, South Korea.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, China.
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
3
|
Moslehi N, van Eekelen M, Velikov KP, Kegel WK. Ferrous Pyrophosphate and Mixed Divalent Pyrophosphates as Delivery Systems for Essential Minerals. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:1388-1401. [PMID: 38934009 PMCID: PMC11197097 DOI: 10.1021/acsfoodscitech.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Poorly water-soluble iron-containing compounds are promising iron fortificants. However, ensuring high bioaccessibility and low reactivity of iron is challenging. We present the potential application of ferrous pyrophosphate (Fe(II)PP) and Fe(II)-containing M2(1-x)Fe2x P2O7 salts (0 < x < 1, M = Ca, Zn, or Mn) for delivery of iron and a second essential mineral (M). After preparation by a facile and environment-friendly coprecipitation method, the salts were investigated for their composition, pH-dependent dissolution, iron-mediated discoloration of a black tea solution, and oxidation of vitamin C. Our results suggest that these salts are possible dual-fortificants with tunable composition that compared to Fe(II)PP (i) show lower (<0.5 mM) and enhanced (to 5 mM) iron dissolution in moderate and gastric pH, respectively, (ii) exhibit less discoloration and dissolved iron in tea when x = 0.470 for M = Ca or Zn and x = 0.086 for M = Mn, and (iii) do not increase the oxidation extent of vitamin C over 48 h when x = 0.06, 0.086, or 0.053 for M = Ca, Zn, or Mn, respectively.
Collapse
Affiliation(s)
- Neshat Moslehi
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michiel van Eekelen
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Krassimir P. Velikov
- Unilever
Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Willem K. Kegel
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Lindqvist-Kreuze H, Bonierbale M, Grüneberg WJ, Mendes T, De Boeck B, Campos H. Potato and sweetpotato breeding at the international potato center: approaches, outcomes and the way forward. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:12. [PMID: 38112758 PMCID: PMC10730645 DOI: 10.1007/s00122-023-04515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Root and tuber crop breeding is at the front and center of CIP's science program, which seeks to develop and disseminate sustainable agri-food technologies, information and practices to serve objectives including poverty alleviation, income generation, food security and the sustainable use of natural resources. CIP was established in 1971 in Peru, which is part of potato's center of origin and diversity, with an initial mandate on potato and expanding to include sweetpotato in 1986. Potato and sweetpotato are among the top 10 most consumed food staples globally and provide some of the most affordable sources of energy and vital nutrients. Sweetpotato plays a key role in securing food for many households in Africa and South Asia, while potato is important worldwide. Both crops grow in a range of conditions with relatively few inputs and simple agronomic techniques. Potato is adapted to the cooler environments, while sweetpotato grows well in hot climates, and hence, the two crops complement each other. Germplasm enhancement (pre-breeding), the development of new varieties and building capacity for breeding and variety testing in changing climates with emphasis on adaptation, resistance, nutritional quality and resource-use efficiency are CIP's central activities with significant benefits to the poor. Investments in potato and sweetpotato breeding and allied disciplines at CIP have resulted in the release of many varieties some of which have had documented impact in the release countries. Partnership with diverse types of organizations has been key to the centers way of working toward improving livelihoods through crop production in the global South.
Collapse
Affiliation(s)
| | - Merideth Bonierbale
- International Potato Center, Lima 12, 1558, Apartado, Peru
- Calle Bolivia, 12 Manilva, 29690, Malaga, Spain
| | | | - Thiago Mendes
- International Potato Center, Lima 12, 1558, Apartado, Peru
| | - Bert De Boeck
- International Potato Center, Lima 12, 1558, Apartado, Peru
| | - Hugo Campos
- International Potato Center, Lima 12, 1558, Apartado, Peru
| |
Collapse
|
5
|
Zhang S, Cheng L, Gong W, Huang J, Peng Z, Meng K, Zhang L, Shu X, Wu D. Comparative studies on physicochemical properties of three potato varieties different in RS2 and RS3 contents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7712-7720. [PMID: 37439262 DOI: 10.1002/jsfa.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND At present, increasing importance has been attracted to healthy food enriched in resistant starch (RS), which has great benefits in health-promoting. Raw potato has rich RS2, whereas most RS2 may become digestible after gelatinization, resulting in few RS being left in processed potato. Breeding potatoes with high RS2 or RS3 or both can meet the demand for various healthy potato products. RESULTS There were apparent discrepancies among three potatoes with contrast RS2 and RS3 content in thermal properties, viscosity and digestibility. ZS-5 had the highest RS2 with 50.17% but the lowest RS3 with 3.31%. Meanwhile, ZS-5 had the largest starch granule, the highest proportion of B3, viscosity and hardness, and the highest digestibility. DN303 with the highest content of RS3 (5.08%) had the lowest hardness and fracturability. MG56-42 with both higher RS2 and RS3 content showed the highest resistance to digestion and moderate hardness and fracturability. CONCLUSION The present study enriches the potential resources and provides a reliable scientific basis for high RS potatoes breeding. The various features of different potatoes make it possible to screen potatoes according to different demands. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siyan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Linrun Cheng
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Wanxin Gong
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jie Huang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Zhangchi Peng
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Kaiwei Meng
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liang Zhang
- Institute of Cop Science, Jinhua Academy of Agriculture and Sciences, Jinhua, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Bijlsma J, Moslehi N, Velikov KP, Kegel WK, Vincken JP, de Bruijn WJC. Reactivity of Fe(III)-containing pyrophosphate salts with phenolics: complexation, oxidation, and surface interaction. Food Chem 2023; 407:135156. [PMID: 36525808 DOI: 10.1016/j.foodchem.2022.135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Mixed pyrophosphate salts with the general formula Ca2(1-x)Fe4x(P2O7)(1+2x) potentially possess less iron-phenolic reactivity compared to ferric pyrophosphate (FePP), due to decreased soluble Fe in the food-relevant pH range 3-7. We investigated reactivity (i.e., complexation, oxidation, and surface interaction) of FePP and mixed salts (with x = 0.14, 0.15, 0.18, and 0.35) in presence of structurally diverse phenolics. At pH 5-7, increased soluble iron from all salts was observed in presence of water-soluble phenolics. XPS confirmed that water-soluble phenolics solubilize iron after coordination at the salt surface, resulting in increased discoloration. However, color changes for mixed salts with x ≤ 0.18 remained acceptable for slightly water-soluble and insoluble phenolics. Furthermore, phenolic oxidation in presence of mixed salts was significantly reduced compared to FePP at pH 6. In conclusion, these mixed Ca-Fe(III) pyrophosphate salts with x ≤ 0.18 can potentially be used in designing iron-fortified foods containing slightly water-soluble and/or insoluble phenolics.
Collapse
Affiliation(s)
- Judith Bijlsma
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Neshat Moslehi
- Van 't Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Krassimir P Velikov
- Unilever Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, the Netherlands; Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands; Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Willem K Kegel
- Van 't Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Huey SL, Mehta NH, Konieczynski EM, Bhargava A, Friesen VM, Krisher JT, Mbuya MNN, Monterrosa E, Nyangaresi AM, Boy E, Mehta S. Bioaccessibility and bioavailability of biofortified food and food products: Current evidence. Crit Rev Food Sci Nutr 2022; 64:4500-4522. [PMID: 36384354 DOI: 10.1080/10408398.2022.2142762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biofortification increases micronutrient content in staple crops through conventional breeding, agronomic methods, or genetic engineering. Bioaccessibility is a prerequisite for a nutrient to fulfill a biological function, e.g., to be bioavailable. The objective of this systematic review is to examine the bioavailability (and bioaccessibility as a proxy via in vitro and animal models) of the target micronutrients enriched in conventionally biofortified crops that have undergone post-harvest storage and/or processing, which has not been systematically reviewed previously, to our knowledge. We searched for articles indexed in MEDLINE, Agricola, AgEcon, and Center for Agriculture and Biosciences International databases, organizational websites, and hand-searched studies' reference lists to identify 18 studies reporting on bioaccessibility and 58 studies on bioavailability. Conventionally bred biofortified crops overall had higher bioaccessibility and bioavailability than their conventional counterparts, which generally provide more absorbed micronutrient on a fixed ration basis. However, these estimates depended on exact cultivar, processing method, context (crop measured alone or as part of a composite meal), and experimental method used. Measuring bioaccessibility and bioavailability of target micronutrients in biofortified and conventional foods is critical to optimize nutrient availability and absorption, ultimately to improve programs targeting micronutrient deficiency.
Collapse
Affiliation(s)
- Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Program in International Nutrition, Cornell University, Ithaca, New York, USA
- Center for Precision Nutrition and Health, Cornell University, Ithaca, New York, USA
| | - Neel H Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | - Arini Bhargava
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | - Jesse T Krisher
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | - Eva Monterrosa
- Global Alliance for Improved Nutrition, Geneva, Switzerland
| | | | - Erick Boy
- Harvest Plus, International Food Policy Research Institute, Washington, DC, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Program in International Nutrition, Cornell University, Ithaca, New York, USA
- Center for Precision Nutrition and Health, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Thakur N, Raigond P, Jayanty SS, Goel G, Dutt S, Singh B. Compositional Changes in Potato Carbohydrates and Polyphenols during In vitro Gastrointestinal Digestion. STARCH-STARKE 2022. [DOI: 10.1002/star.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nitasha Thakur
- Division of Crop Physiology Biochemistry and Post Harvest Technology ICAR‐Central Potato Research Institute Shimla 171001 India
| | - Pinky Raigond
- Division of Crop Physiology Biochemistry and Post Harvest Technology ICAR‐Central Potato Research Institute Shimla 171001 India
| | - Sastry S. Jayanty
- San Luis Valley Research Center Department of Horticulture and LA Colorado State University USA
| | - Gunjan Goel
- School of Interdisciplinary and Applied Sciences (SIAL) Central University of Haryana Mahendergarh Haryana India
| | - Som Dutt
- Division of Crop Physiology Biochemistry and Post Harvest Technology ICAR‐Central Potato Research Institute Shimla 171001 India
| | - Brajesh Singh
- Division of Crop Physiology Biochemistry and Post Harvest Technology ICAR‐Central Potato Research Institute Shimla 171001 India
| |
Collapse
|
9
|
Zuo TT, Luo FY, He HZ, Jin HY, Sun L, Xing SX, Li B, Gao F, Ma SC, He LC. Novel bioavailability-based risk assessment of Cd in earthworms and leeches utilizing in vitro digestion/Caco-2 and MDCK cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26513-26523. [PMID: 34859344 DOI: 10.1007/s11356-021-16678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/19/2021] [Indexed: 05/27/2023]
Abstract
In the present study, the oral bioavailability of cadmium (Cd) in earthworms and leeches was investigated through in vitro physiologically based extraction test (PBET) digestion/Caco2 and MDKC cell models. We are the first to create an innovative assessment strategy which has capacity to offer a more precise evaluation of Cd-associated health risks in traditional animal medicines (TAMs), by combinational usage of bioavailable Cd levels, the duration and frequency of the exposure to TAMs obtained by questionnaire data, as well as safety factor of TAMs. Our data showed that the percentage of bioavailability for Caco-2 cells in earthworms and leeches ranged from 3.29 to 14.17% and 4.32 to 12.61%, respectively. The percentage of bioavailability of MDCK cells in earthworms and leeches ranged from 4.83 to 15.74% and 6.53 to 15.04%, respectively. After adjusting by the bioavailability of Cd to target hazard quotient (THQ), excitingly, our findings manifested that the health risks induced by the ingestion of earthworms and leeches were acceptable in the clinic. Our key findings suggest that bioavailability characterization cannot be ruled out and health risks should be assessed on the basis of the bioavailable Cd levels rather than total levels. Our novel strategy provides insight into the bio-accumulation of Cd in organisms as well as a more realistic and accurate assessment of Cd-associated health risks in TAMs, with the main purpose of improving public health by scientifically using TAMs.
Collapse
Affiliation(s)
- Tian-Tian Zuo
- School of Pharmacy, Xi' an Jiaotong University, Xi'an, 710061, China
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Fei-Ya Luo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Huai-Zhen He
- School of Pharmacy, Xi' an Jiaotong University, Xi'an, 710061, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Lei Sun
- School of Pharmacy, Xi' an Jiaotong University, Xi'an, 710061, China
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Shu-Xia Xing
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Bo Li
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Fei Gao
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China.
| | - Lang-Chong He
- School of Pharmacy, Xi' an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
10
|
Sun B, Tan B, Sun N, Huang P, Hong J, Li C, Yang W. Effect of ascorbic acid and citric acid on bioavailability of iron from Tegillarca granosa via an in vitro digestion/Caco-2 cell culture system. Food Funct 2021; 12:11491-11502. [PMID: 34700336 DOI: 10.1039/d1fo01650d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron deficiency anaemia (IDA) has been receiving worldwide attention. Developing safe and effective iron supplements is of great significance for IDA treatment. Tegillarca granosa (T. granosa), a traditional aquaculture bivalve species in China, is considered to be an excellent source of micronutrients, but the distribution and bioavailability of these minerals have yet to be investigated. The present research was conducted to determine the contents and in vitro enzymatic digestibility of minerals in T. granosa, using beef and wheat flour as reference foods. Meanwhile, two iron-binding proteins, hemoglobin and ferritin, were extracted from T. granosa, and their structures, iron accessibility and bioavailability were investigated. Moreover, the effects of ascorbic acid (AA) and citric acid (CA), two commonly applied dietary factors, on these parameters were evaluated. Our results indicated that the mineral levels varied significantly among different food matrices, with T. granosa showing the highest contents of the tested elements. Comparison of iron absorption of meat versus wheat flour and hemoglobin versus ferritin confirmed that heme iron exhibited higher bioavailability than non-heme iron. The addition of the two organic acids notably enhanced the cellular iron uptake of T. granosa-derived proteins. This could be because AA/CA weakened hydrogen bonds within proteins and caused disordered secondary structures, thereby improving their enzymatic digestibility and releasing more soluble iron to be available for absorption. The results of this study provided a basis for the development of T. granosa-derived protein-based iron supplements, promoting the diverse utilization of marine aquatic resources.
Collapse
Affiliation(s)
- Bolun Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
| | - Beibei Tan
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
| | - Nan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
| | - Ping Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
| | - Jingxia Hong
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China. .,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China. .,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Singh B, Goutam U, Kukreja S, Sharma J, Sood S, Bhardwaj V. Potato biofortification: an effective way to fight global hidden hunger. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2297-2313. [PMID: 34744367 PMCID: PMC8526655 DOI: 10.1007/s12298-021-01081-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 06/03/2023]
Abstract
Hidden hunger is leading to extensive health problems in the developing world. Several strategies could be used to reduce the micronutrient deficiencies by increasing the dietary uptake of essential micronutrients. These include diet diversification, pharmaceutical supplementation, food fortification and crop biofortification. Among all, crop biofortification is the most sustainable and acceptable strategy to overcome the global issue of hidden hunger. Since most of the people suffering from micronutrient deficiencies, have monetary issues and are dependent on staple crops to fulfil their recommended daily requirements of various essential micronutrients. Therefore, increasing the micronutrient concentrations in cost effective staple crops seems to be an effective solution. Potato being the world's most consumed non-grain staple crop with enormous industrial demand appears to be an ideal candidate for biofortification. It can be grown in different climatic conditions, provide high yield, nutrition and dry matter in lesser time. In addition, huge potato germplasm have natural variations related to micronutrient concentrations, which can be utilized for its biofortification. This review discuss the current scenario of micronutrient malnutrition and various strategies that could be used to overcome it. The review also shed a light on the genetic variations present in potato germplasm and suggest effective ways to incorporate them into modern high yielding potato varieties.
Collapse
Affiliation(s)
- Baljeet Singh
- Division of Crop Improvement and Seed Technology, Central Potato Research Institute, Shimla, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Umesh Goutam
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Sarvjeet Kukreja
- Department of Agronomy, Lovely Professional University, Phagwara, India
| | - Jagdev Sharma
- Division of Crop Production, Central Potato Research Institute, Shimla, India
| | - Salej Sood
- Division of Crop Improvement and Seed Technology, Central Potato Research Institute, Shimla, India
| | - Vinay Bhardwaj
- Division of Crop Improvement and Seed Technology, Central Potato Research Institute, Shimla, India
| |
Collapse
|
12
|
Gannon BM, Glahn RP, Mehta S. Iron Bioavailability from Multiple Biofortified Foods Using an In Vitro Digestion, Caco-2 Assay for Optimizing a Cyclical Menu for a Randomized Efficacy Trial. Curr Dev Nutr 2021; 5:nzab111. [PMID: 34604692 PMCID: PMC8483813 DOI: 10.1093/cdn/nzab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Inadequate nutritional status contributes to substantial losses in human health and productivity globally. A multiple biofortified food crop trial targeting iron, zinc, and vitamin A deficiencies among young children and their breastfeeding mothers is being conducted in India. OBJECTIVE We sought to determine the relative iron bioavailability from biofortified and conventional crops and crop combinations representative of a cyclical menu using crops targeted for inclusion in the feeding trial. METHODS Crops were procured from India, cooked, freeze-dried, and analyzed with an established in vitro digestion/Caco-2 iron bioavailability assay using a fixed sample weight. Crop proportions representative of meals planned for the human study were determined and combined such that samples included either all biofortified or all control crops. Crops were analyzed as single crops (n = 4) or crop combinations (n = 7) by variety (biofortified or control) in triplicate. The primary outcome was iron uptake measured by Caco-2 ferritin production normalized to total Caco-2 protein (nanograms of ferritin/milligrams of cell protein) analyzed for effects of crop variety and crop proportion using generalized linear models. RESULTS Biofortified pearl millet alone demonstrated higher iron uptake than conventional varieties (5.01 ± 1.66 vs. 2.17 ± 0.96; P = 0.036). Addition of sweet potato or sweet potato + pulse improved iron uptake for all proportions tested in control varieties and select proportions for biofortified varieties (P ≤ 0.05). Two multiple crop combinations demonstrated modestly higher iron uptake from biofortified crops. CONCLUSIONS Optimizing total iron delivery should consider matrix effects, processing, and promoters/inhibitors of iron absorption in addition to total iron concentration. Future directions include evaluating recipes as prepared for consumption and comparison against human iron bioavailability studies.
Collapse
Affiliation(s)
- Bryan M Gannon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| | - Raymond P Glahn
- USDA, Agricultural Research Service, Robert Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Peña C, Palomeque L, Restrepo‐Sánchez L, Kushalappa A, Mosquera T, Narváez‐Cuenca C. Variation of mineral contents with nutritional interest in a collection of
Solanum tuberosum
group Phureja tubers. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Clara Peña
- Departamento de Química Universidad Nacional de Colombia sede Bogotá, Edificio 451 Bogotá Colombia
| | - Liliam Palomeque
- Departamento de Química Universidad Nacional de Colombia sede Bogotá, Edificio 451 Bogotá Colombia
| | | | - Ajjamada Kushalappa
- Plant Science Department McGill University Sainte‐Anne‐de‐Bellevue QC H9X3V9 Canada
| | - Teresa Mosquera
- Departamento de Agronomía Facultad de Ciencias Agrarias Universidad Nacional de Colombia sede Bogotá, Edificio 500 Bogotá Colombia
| | | |
Collapse
|
14
|
The Bioaccessibility of Phenolics, Flavonoids, Carotenoids, and Capsaicinoid Compounds: A Comparative Study of Cooked Potato Cultivars Mixed with Roasted Pepper Varieties. Foods 2021; 10:foods10081849. [PMID: 34441626 PMCID: PMC8391173 DOI: 10.3390/foods10081849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
An in vitro method was used to assess the bioaccessibility of phenolics, flavonoids, carotenoids, and capsaicinoid compounds in different cooked potatoes mixed with roasted peppers (Capsicum annuum), Joe Parker (JP, hot), and Sweet Delilah (SD, sweet). The present study identified differences in the bioaccessibility of bioactive compounds among the potato cultivars (Solanum tuberosum) Purple Majesty (PM; purple flesh), Yukon Gold (YG; yellow flesh), Rio Grande Russet (RG; white flesh) and a numbered selection (CO 97226-2R/R (R/R; red flesh)). The bioactive compounds and capsaicinoid compounds in potatoes and peppers were estimated before and after in vitro digestion. Before digestion, the total phenolic content of potato cultivars mixed with JP was in the following order: R/R > PM > YG > RG. The highest levels of carotenoids were 194.34 µg/g in YG and 42.92 µg/g in the RG cultivar when mixed with roasted JP. The results indicate that the amount of bioaccessible phenolics ranged from 485 to 252 µg/g in potato cultivars mixed with roasted JP. The bioaccessibility of flavonoids ranged from 185.1 to 59.25 µg/g. The results indicate that the YG cultivar mixed with JP and SD showed the highest phenolic and carotenoid bioaccessibility. In contrast, the PM mixed with JP and SD contained the lowest phenolic and carotenoid bioaccessibility. Our results indicate that the highest flavonoid bioaccessibility occurred in R/R mixed with roasted JP and SD. The lowest flavonoids bioaccessibility occurred in PM and the RG. The maximum bioaccessible amount of capsaicin was observed in YG mixed with JP, while the minimum bioaccessibility was observed with PM.
Collapse
|
15
|
Wang L, Wang L, Su C, Wen C, Gong Y, You Y, Zhao J, Han Y, Song S, Xiao H. Characterization and digestion features of a novel polysaccharide-Fe(III) complex as an iron supplement. Carbohydr Polym 2020; 249:116812. [DOI: 10.1016/j.carbpol.2020.116812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
|
16
|
Jongstra R, Mwangi MN, Burgos G, Zeder C, Low JW, Mzembe G, Liria R, Penny M, Andrade MI, Fairweather-Tait S, Zum Felde T, Campos H, Phiri KS, Zimmermann MB, Wegmüller R. Iron Absorption from Iron-Biofortified Sweetpotato Is Higher Than Regular Sweetpotato in Malawian Women while Iron Absorption from Regular and Iron-Biofortified Potatoes Is High in Peruvian Women. J Nutr 2020; 150:3094-3102. [PMID: 33188398 PMCID: PMC7726126 DOI: 10.1093/jn/nxaa267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sweetpotato and potato are fast-maturing staple crops and widely consumed in low- and middle-income countries. Conventional breeding to biofortify these crops with iron could improve iron intakes. To our knowledge, iron absorption from sweetpotato and potato has not been assessed. OBJECTIVE The aim was to assess iron absorption from regular and iron-biofortified orange-fleshed sweetpotato in Malawi and yellow-fleshed potato and iron-biofortified purple-fleshed potato in Peru. METHODS We conducted 2 randomized, multiple-meal studies in generally healthy, iron-depleted women of reproductive age. Malawian women (n = 24) received 400 g regular or biofortified sweetpotato test meals and Peruvian women (n = 35) received 500 g regular or biofortified potato test meals. Women consumed the meals at breakfast for 2 wk and were then crossed over to the other variety. We labeled the test meals with 57Fe or 58Fe and measured cumulative erythrocyte incorporation of the labels 14 d after completion of each test-meal sequence to calculate iron absorption. Iron absorption was compared by paired-sample t tests. RESULTS The regular and biofortified orange-fleshed sweetpotato test meals contained 0.55 and 0.97 mg Fe/100 g. Geometric mean (95% CI) fractional iron absorption (FIA) was 5.82% (3.79%, 8.95%) and 6.02% (4.51%, 8.05%), respectively (P = 0.81), resulting in 1.9-fold higher total iron absorption (TIA) from biofortified sweetpotato (P < 0.001). The regular and biofortified potato test meals contained 0.33 and 0.69 mg Fe/100 g. FIA was 28.4% (23.5%, 34.2%) from the regular yellow-fleshed and 13.3% (10.6%, 16.6%) from the biofortified purple-fleshed potato meals, respectively (P < 0.001), resulting in no significant difference in TIA (P = 0.88). CONCLUSIONS FIA from regular yellow-fleshed potato was remarkably high, at 28%. Iron absorbed from both potato test meals covered 33% of the daily absorbed iron requirement for women of reproductive age, while the biofortified orange-fleshed sweetpotato test meal covered 18% of this requirement. High polyphenol concentrations were likely the major inhibitors of iron absorption. These trials were registered at www.clinicaltrials.gov as NCT03840031 (Malawi) and NCT04216030 (Peru).
Collapse
Affiliation(s)
| | - Martin N Mwangi
- Training and Research Unit of Excellence (TRUE), College of Medicine, University of Malawi, Blantyre, Malawi
| | - Gabriela Burgos
- Genetics, Genomics, and Crop Improvement Program, International Potato Center, Lima, Peru
| | - Christophe Zeder
- ETH Zürich, Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Jan W Low
- International Potato Center, Nairobi, Kenya
| | - Glory Mzembe
- Training and Research Unit of Excellence (TRUE), College of Medicine, University of Malawi, Blantyre, Malawi
| | - Reyna Liria
- Instituto de Investigación Nutricional, Lima, Peru
| | - Mary Penny
- Instituto de Investigación Nutricional, Lima, Peru
| | | | | | - Thomas Zum Felde
- Genetics, Genomics, and Crop Improvement Program, International Potato Center, Lima, Peru
| | - Hugo Campos
- Genetics, Genomics, and Crop Improvement Program, International Potato Center, Lima, Peru
| | - Kamija S Phiri
- Training and Research Unit of Excellence (TRUE), College of Medicine, University of Malawi, Blantyre, Malawi
| | - Michael B Zimmermann
- ETH Zürich, Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Rita Wegmüller
- ETH Zürich, Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, Department of Health Sciences and Technology, Zurich, Switzerland,GroundWork, Fläsch, Switzerland
| |
Collapse
|
17
|
Andreo-Martínez P, Ortiz-Martínez VM, García-Martínez N, López PP, Quesada-Medina J, Cámara MÁ, Oliva J. A descriptive bibliometric study on bioavailability of pesticides in vegetables, food or wine research (1976-2018). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103374. [PMID: 32272369 DOI: 10.1016/j.etap.2020.103374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 05/26/2023]
Abstract
A bibliometric analysis based on the Web of Science© (WOS) database was performed on bioavailability of pesticides in vegetables, food or wine related studies published from inception to 2018. A total of 1202 articles were subjected to examination. The results reveal that yearly production of scientific articles increased steadily. Journal and institution production, and author's keywords frequencies followed the Lotka's Law. Khan SU and White JC were the most productive authors. The most productive journals were Journal of Agricultural and Food Chemistry (55), and Journal of Ethnopharmacology (48), and the most common WOS subject category was Pharmacology & Pharmacy (419). USA (h-index of 40) produced 21.7 % of all articles, closely followed by China (20.6 %). Chinese Academy of Sciences (34) was the most productive research institutions. Finally, current and future trends in this area should focus on keywords such as pharmacokinetics, curcumin, in-vitro, nanoparticles, oral (bioavailability) and cell.
Collapse
Affiliation(s)
- Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain; Department of Chemical Engineering, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain.
| | - Víctor Manuel Ortiz-Martínez
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - Nuria García-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain; Department of Chemical Engineering, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - Pablo Pagán López
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - Joaquín Quesada-Medina
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - Miguel Ángel Cámara
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - José Oliva
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| |
Collapse
|
18
|
Samaniego I, Espin S, Cuesta X, Arias V, Rubio A, Llerena W, Angós I, Carrillo W. Analysis of Environmental Conditions Effect in the Phytochemical Composition of Potato ( Solanum tuberosum) Cultivars. PLANTS 2020; 9:plants9070815. [PMID: 32610590 PMCID: PMC7412447 DOI: 10.3390/plants9070815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Crop productivity and food quality are affected by environmental conditions. The objective of this work was to evaluate the effect of the environment on the concentration of phytochemical components in several potato (Solanum tuberosum) cultivars. The content of vitamin C (ascorbic acid, AA), the total carotenoids content (TCC), the total polyphenols content (TPC), and the total anthocyanins content (TAC) of 11 potatoes varieties grown in Ecuador (Cutuglahua, Pujilí, and Pilahuín) was measured by the spectrophotometric method. The antioxidant capacity (AC) of potato cultivars was evaluated by the ABTS method. The AA concentration ranged between 12.67 to 39.49 mg/100g fresh weight (FW), the TCC ranged between 50.00 and 1043.50 μg/100g FW, the TPC ranged between 0.41 and 3.25 g of gallic acid equivalents (GAE)/kg dry weight (DW), the TAC ranged between 2.74 and 172.53 μg/g FW and finally the AC ranged between 36.80 and 789.19 μg of trolox equivalents (TE)/g FW. Genotypes (G), location (L), and interaction (G x L) were significant at p < 0.01. The genotype (G) showed a greater variation in the phytochemical contents. AA and TPC showed the highest correlation with the AC. A selection of genotypes with these characteristics can be used to develop germplasms with a high AC.
Collapse
Affiliation(s)
- Iván Samaniego
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Susana Espin
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Xavier Cuesta
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Verónica Arias
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Armando Rubio
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Wilma Llerena
- Facultad de Ciencias Pecuarias, Ingeniería en Alimentos, Universidad Técnica Estatal de Quevedo, Km 7 1/2 vía Quevedo-El Empalme, Los Ríos 120313, Ecuador;
| | - Ignacio Angós
- Departamento de Agronomía, Biotecnología y Alimentación, Edificio Los Olivos, Campus Arrosadia, Universidad Pública de Navarra (UPNA), Pamplona 31006, Espana;
| | - Wilman Carrillo
- Department of Research, Universidad Técnica de Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador
- Correspondence: ; Tel.: +593-980288016
| |
Collapse
|
19
|
Drapal M, Lindqvist-Kreuze H, Mihovilovich E, Aponte M, Bonierbale M, Fraser PD. Cooking dependent loss of metabolites in potato breeding lines and their wild and landrace relatives. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Thakur N, Raigond P, Singh Y, Mishra T, Singh B, Lal MK, Dutt S. Recent updates on bioaccessibility of phytonutrients. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Broad RC, Bonneau JP, Beasley JT, Roden S, Sadowski P, Jewell N, Brien C, Berger B, Tako E, Glahn RP, Hellens RP, Johnson AAT. Effect of Rice GDP-L-Galactose Phosphorylase Constitutive Overexpression on Ascorbate Concentration, Stress Tolerance, and Iron Bioavailability in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:595439. [PMID: 33343598 PMCID: PMC7744345 DOI: 10.3389/fpls.2020.595439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/16/2020] [Indexed: 05/12/2023]
Abstract
Ascorbate (vitamin C) is an essential multifunctional molecule for both plants and mammals. In plants, ascorbate is the most abundant water-soluble antioxidant that supports stress tolerance. In humans, ascorbate is an essential micronutrient and promotes iron (Fe) absorption in the gut. Engineering crops with increased ascorbate levels have the potential to improve both crop stress tolerance and human health. Here, rice (Oryza sativa L.) plants were engineered to constitutively overexpress the rice GDP-L-galactose phosphorylase coding sequence (35S-OsGGP), which encodes the rate-limiting enzymatic step of the L-galactose pathway. Ascorbate concentrations were negligible in both null segregant (NS) and 35S-OsGGP brown rice (BR, unpolished grain), but significantly increased in 35S-OsGGP germinated brown rice (GBR) relative to NS. Foliar ascorbate concentrations were significantly increased in 35S-OsGGP plants in the vegetative growth phase relative to NS, but significantly reduced at the reproductive growth phase and were associated with reduced OsGGP transcript levels. The 35S-OsGGP plants did not display altered salt tolerance at the vegetative growth phase despite having elevated ascorbate concentrations. Ascorbate concentrations were positively correlated with ferritin concentrations in Caco-2 cells - an accurate predictor of Fe bioavailability in human digestion - exposed to in vitro digests of NS and 35S-OsGGP BR and GBR samples.
Collapse
Affiliation(s)
- Ronan C. Broad
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Ronan C. Broad,
| | - Julien P. Bonneau
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jesse T. Beasley
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Sally Roden
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nathaniel Jewell
- Australian Plant Phenomics Facility and School for Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Chris Brien
- Australian Plant Phenomics Facility and School for Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Bettina Berger
- Australian Plant Phenomics Facility and School for Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Raymond P. Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, United States
| | - Roger P. Hellens
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | | |
Collapse
|
22
|
O'Flaherty EAA, Tsermoula P, O'Neill EE, O'Brien NM. Co‐products of beef processing enhance non‐haem iron absorption in an
in vitro
digestion/caco‐2 cell model. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Paraskevi Tsermoula
- School of Food and Nutritional Sciences University College Cork Western Road Cork T12 YN60 Ireland
| | - Eileen E. O'Neill
- School of Food and Nutritional Sciences University College Cork Western Road Cork T12 YN60 Ireland
| | - Nora M. O'Brien
- School of Food and Nutritional Sciences University College Cork Western Road Cork T12 YN60 Ireland
| |
Collapse
|
23
|
Farquhar MJ, McCluskey E, Staunton R, Hughes KR, Coltherd JC. Characterisation of a canine epithelial cell line for modelling the intestinal barrier. Altern Lab Anim 2018; 46:115-132. [PMID: 30022673 DOI: 10.1177/026119291804600304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Little is known about how food interacts with the intestinal epithelium during the digestion process. However, it is known that ingredients in food can modulate the intestinal barrier, and have the potential to disrupt homeostasis of the gut. Here, we characterise a conditionally immortalised canine intestinal epithelial cell (cIEC) line for use in in vitro assays, to assess the effect of food ingredients on intestinal barrier function, permeability, cell health, and inflammation. Microscopy and flow cytometry confirmed that cIECs had a phenotype consistent with those of epithelial origin, and were able to differentiate to mature enterocytes. The cIECs also formed a monolayer when grown on Transwell® inserts, producing functional tight junctions between the cells. In contrast to the human-derived Caco-2 cell line, transepithelial electrical resistance (TEER) was increased in cIECs in response to two different raw ingredients. The exposure of cIECs to known inflammatory stimuli and raw ingredients induced the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-?B). This work demonstrates the value of a unique cIEC in vitro model to study the effects of food ingredients on canine intestinal function and health, and supports continued efforts to reduce and refine the use of animals in scientific research.
Collapse
Affiliation(s)
| | - Emma McCluskey
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | - Ruth Staunton
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | - Kevin R Hughes
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | | |
Collapse
|
24
|
Sosa P, Guild G, Burgos G, Bonierbale M, zum Felde T. Potential and application of X-ray fluorescence spectrometry to estimate iron and zinc concentration in potato tubers. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Cai X, Chen X, Yin N, Du H, Sun G, Wang L, Xu Y, Chen Y, Cui Y. Estimation of the bioaccessibility and bioavailability of Fe, Mn, Cu, and Zn in Chinese vegetables using the in vitro digestion/Caco-2 cell model: the influence of gut microbiota. Food Funct 2018; 8:4592-4600. [PMID: 29236119 DOI: 10.1039/c7fo01348e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The influence of the human gut microbiota on the bioaccessibility and bioavailability of trace elements in vegetables has barely been studied. An in vitro digestion model combining the physiologically based extraction test (PBET) and the Simulator of Human Intestinal Microbial Ecosystem (SHIME) was applied. Results showed that the gut microbiota increased the bioaccessibility of iron (Fe) in ten test vegetables by 1.3-1.8 times, but reduced the bioaccessibility of manganese (Mn), copper (Cu), and zinc (Zn) in vegetables in the colon phase by 3.7% to 89.6%, 24.8% to 100.0%, and 59.9% to 100.0%, respectively. Using the Caco-2 cell model to simulate the human absorption process, the bioavailable contents and the bioavailability of the trace elements were further determined. Swamp cabbage was the best source of Fe and Cu; spinach and lettuce provided the highest amounts of bioavailable Mn and Zn, respectively. Referring to the daily reference intakes of trace elements, the obtained data provide a scientific basis for both reasonable ingestion of vegetables in diets and diversification of diets.
Collapse
Affiliation(s)
- Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Andre CM, Burgos G, Ziebel J, Guignard C, Hausman JF, Felde TZ. In vitro iron bioaccessibility and uptake from orange-fleshed sweet potato ( Ipomoea batatas (L.) Lam.) clones grown in Peru. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Bohn T, Carriere F, Day L, Deglaire A, Egger L, Freitas D, Golding M, Le Feunteun S, Macierzanka A, Menard O, Miralles B, Moscovici A, Portmann R, Recio I, Rémond D, Santé-Lhoutelier V, Wooster TJ, Lesmes U, Mackie AR, Dupont D. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit Rev Food Sci Nutr 2017; 58:2239-2261. [DOI: 10.1080/10408398.2017.1315362] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- T. Bohn
- Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - L. Day
- Agresearch, Palmerston North, New Zealand
| | | | - L. Egger
- Agroscope, Institute for Food Sciences, Bern, Switzerland
| | | | - M. Golding
- Massey University, Palmerston North, New Zealand
| | | | | | | | | | - A. Moscovici
- Technion—Israel Institute of Technology, Haifa, Israel
| | - R. Portmann
- Agroscope, Institute for Food Sciences, Bern, Switzerland
| | | | | | | | - T. J. Wooster
- Nestlé Research Centre, Nestec S.A., Lausanne, Switzerland
| | - U. Lesmes
- Technion—Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|