1
|
Zhang Z, Argenziano R, Konate A, Shi X, Salazar SA, Cerruti P, Panzella L, Terrasson V, Guénin E. Preparation of chitosan/lignin nanoparticles-based nanocomposite films with high-performance and improved physicochemical properties for food packaging applications. Int J Biol Macromol 2025; 293:139079. [PMID: 39743121 DOI: 10.1016/j.ijbiomac.2024.139079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Chitosan (CH)-based composite films have attracted increasing attention as promising green food packaging materials due to their biodegradability and ease of fabrication. Additionally, lignin (LN) has been widely used as additive for chitosan-based films to improve their physicochemical properties. In this study, a series of composite films made of chitosan nanoparticles (NCH) as a matrix and alkali lignin nanoparticles (LNPs) as functional filler were prepared. The NCH-LNPs composite films exhibited a more uniform appearance and enhanced crystallinity compared to NCH-LN films. The maximum pyrolysis temperature of NCH-LNPs films, determined by TG, reached 309 °C. Moreover, the antioxidant capacity of NCH-LNPs film was 1.5 and 3.4 times higher than those of NCH-LN and NCH films, respectively. The tensile modulus of NCH-LNPs films increased by 8.9 % and 36.5 %, while the tensile strain decreased by 16.0 % and 52.8 % compared to NCH and NCH-LN films, respectively. Finally, the suitability of prepared films for food preservation was studied on grape and cheese samples. The ability of NCH-LNPs films to inhibit lipid peroxidation in cheese was 2 times higher than that of NCH-LN films. These results showed that the improvement of physicochemical properties of NCH-based films by LNPs was significantly higher than that observed with LN.
Collapse
Affiliation(s)
- Zhao Zhang
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France
| | - Rita Argenziano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy
| | - Adama Konate
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France
| | - Xiangru Shi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France
| | - Sarai Agustin Salazar
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy..
| | - Vincent Terrasson
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France.
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France.
| |
Collapse
|
2
|
Ye J, Bounds A, Crumpton M, Long M, McDonough H, Srikhirisawan I, Gao S. Potential Mechanisms of Lactate Dehydrogenase and Bovine Serum Albumin Proteins as Antioxidants: A Mixed Experimental-Computational Study. Biochem Res Int 2025; 2025:9638644. [PMID: 39963554 PMCID: PMC11832265 DOI: 10.1155/bri/9638644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Proteins have shown varying degrees of antioxidant activity. This study examined the potential mechanisms of interactions between proteins and radicals using chemical kinetics and computational methods. The study quantified the antioxidant activity of lactate dehydrogenase (LDH) and bovine serum albumin (BSA) through Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. BSA was about seven times and LDH 12 times more potent as antioxidants for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•-) than they were for peroxyl radicals. According to the evaluation of Trolox equivalents (TE) of 20 proteinogenic amino acids, tryptophan (with a TE value of 101 μmol TE/μmol) exhibited the highest antioxidant activity for ABTS•-, followed by tyrosine (38.7 μmol TE/μmol) and cysteine (30.5 μmol TE/μmol), lysine (0.193 μmol TE/μmol), arginine (0.0325 μmol TE/μmol), valine (0.0280 μmol TE/μmol), histidine (0.00689 μmol TE/μmol), and leucine (0.00560 μmol TE/μmol). The EC50 showed a similar order with a swap between valine and histidine. The antioxidant activity of the amino acids and proteins was temperature dependent. The rate laws, activation energy, and pre-exponential factor A of these reactions provided information on the reaction mechanisms, i.e., a biomolecular elementary step for the reaction of ABTS•- with amino acids tryptophan, tyrosine, cysteine, or protein LDH, and a more complicated mechanism for BSA. The presence of -NH- or hydroxyl groups on aromatic rings enhanced the antioxidant ability of tryptophan and tyrosine. LDH's antioxidant activity did not affect its enzymatic activity, indicating that the radical reaction likely happened on the protein's surface without significantly altering its conformation. The molecular modeling and visualization showed potential reaction sites on the proteins' accessible tryptophan and tyrosine residues. However, the mere surface exposure of tryptophan and tyrosine does not guarantee their antioxidant activities.
Collapse
Affiliation(s)
- Jing Ye
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Amy Bounds
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Madeline Crumpton
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Mallory Long
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Haley McDonough
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Isabella Srikhirisawan
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Shanzhen Gao
- Department of Computer Information Systems, Virginia State University, Petersburg, Virginia, USA
| |
Collapse
|
3
|
Xiao L, Liu J, Hua MZ, Lu X. Rapid determination of total phenolic content and antioxidant capacity of maple syrup using Raman spectroscopy and deep learning. Food Chem 2025; 463:141289. [PMID: 39303472 DOI: 10.1016/j.foodchem.2024.141289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Total phenolic content (TPC) and antioxidant capacity of maple syrup were determined using Raman spectroscopy and deep learning. TPC was determined by Folin-Ciocalteu assay, while the antioxidant capacity was measured by 2,2-diphenyl-1picrylhydrazyl (DPPH) assay, oxygen radical absorbance capacity (ORAC) assay, and ferric reducing antioxidant power (FRAP) assay. A total of 360 spectra were collected from 36 maple syrup samples of different colours (dark, amber, light) by both benchtop and portable Raman spectrometers. These spectra were used to establish predictive models for assessing the antioxidant profiles of maple syrup. Deep learning models developed along with portable Raman spectroscopy exhibited comparable predictive performance to those developed along with benchtop Raman spectroscopy. Base on the spectral dataset collected using portable Raman spectroscopy, the developed deep learning models exhibited low RMSEs (root mean square errors, 7.2-17.9 % of mean reference values), low MAEs (mean absolute errors, 5.2-13.1 % of mean reference values) and high R2 values (>0.88). The results showed a great goodness of fit and accuracy for predicting the antioxidant profiles of maple syrup, indicating the potential of using portable Raman spectrometer for on-site analysis of antioxidant profiles of maple syrup.
Collapse
Affiliation(s)
- Li Xiao
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jinxin Liu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marti Z Hua
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
4
|
Tao HZ, He WB, Ding L, Wen L, Xu Z, Cheng YH, Chen ML. Enrichment of antioxidant peptide from rice protein hydrolysates via rice husk derived biochar. Food Chem 2025; 463:141050. [PMID: 39236384 DOI: 10.1016/j.foodchem.2024.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In this study, rice husk biochar was engineered with abundant iron ion sites to enhance the enrichment of antioxidant peptides from rice protein hydrolysates through metal-chelating interactions. The π-π interactions and metal ion chelation were identified as the primary mechanisms for the enrichment process. Through peptide sequencing, four peptides were identified: LKFL (P1: Leu-Lys-Phe-Leu), QLLF (P2: Gln-Leu-Leu-Phe), WLAYG (P3: Trp-Leu-Ala-Tyr-Gly), and HFCGG (P4: His-Phe-Cys-Gly-Gly). The vitro analysis and molecular docking revealed that peptides P1-P4 possessed remarkable scavenging ability against radicals and Fe2+ chelating ability. Notably, peptide P4 showed radical scavenging activity comparable to glutathione (GSH) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals. Cellular experiments further confirmed that peptide P4 effectively protected HepG2 cells from oxidative stress-induced damage. The modified rice husk biochar proved to be an effective means for enriching rice antioxidant peptides from protein hydrolysates.
Collapse
Affiliation(s)
- Hui-Zhen Tao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Wen-Bin He
- Hunan Provincial Institute of Product and Goods Quality Inspection, Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha, Hunan, China 410007
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Mao-Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| |
Collapse
|
5
|
Billet K, Thibon C, Badet ML, Wirgot N, Noret L, Nikolantonaki M, Gougeon RD. White wines aged in barrels with controlled tannin potential exhibit correlated long-term oxidative stability in bottle. Food Chem X 2024; 24:101907. [PMID: 39525052 PMCID: PMC11547895 DOI: 10.1016/j.fochx.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Chardonnay and Sauvignon blanc wines aged in oak wood barrels with low and medium tannin potentials were discriminated for their abilities to resist against oxidation during bottle storage. The oak wood tannin potential was positively correlated to wines antioxidant capacity after 2 and 4 years of bottle aging. Untargeted molecular analysis revealed that the Sauvignon blanc metabolome was more affected by the tannin potential than the Chardonnay. Supervised statistical analysis highlighted the extensive oak wood contribution to the wine chemical fingerprints. Wines aged in barrel of medium tannin potential were associated with higher concentrations in antioxidant compounds such as dipeptides. Moreover, quantitative differences were observed between oak barrel derived volatile compounds. Sauvignon blanc volatile thiols appeared to decrease during bottle aging, regardless of the oak tannin potential. This study highlights the post bottling positive impact of oak wood barrel aging on wines oxidative stability, related to oak barrel tannin potential.
Collapse
Affiliation(s)
- Kevin Billet
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| | - Cécile Thibon
- Université de Bordeaux, Bordeaux INP, INRAE, UMR 1366 OENO, ISVV, F-33140 Villenave d'Ornon, France
| | | | - Nolwenn Wirgot
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| | - Laurence Noret
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| | - Maria Nikolantonaki
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| | - Regis D. Gougeon
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| |
Collapse
|
6
|
Przybylska-Balcerek A, Stuper-Szablewska K. Selected Metabolites of Biofunctional Importance from Edible Fruits of Forest Shrubs. Molecules 2024; 30:73. [PMID: 39795130 PMCID: PMC11721371 DOI: 10.3390/molecules30010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
This study focused on determining the content of bioactive compounds in selected fruits of wild shrubs. The plants selected for the study were from the Rosaceae and Adoxaceae families. Particular attention should be paid to the fruits of plants commonly growing in Poland (temperate climate), such as Crataegus monogyna, Sorbus aucuparia, Viburnum opulus, and Sambucus nigra. The study aimed to deepen the knowledge of the content of selected secondary metabolites, such as phenolic acids, flavonoids, flavonoid glycosides, and their antioxidant properties, as well as natural dyes. During this study, chromatographic and spectrophotometric methods were used to determine the quantitative profile of the above-mentioned secondary metabolites of wild plant fruits. The quantitative profile of 16 phenolic acids, 9 flavonoids, 5 organic acids, 13 flavonoid glycosides, and 3 natural dyes was determined. Based on the studies, it was noted that the qualitative and quantitative profile of the bioactive compounds differs not only depending on the species but also on the location where the plant grows. A statistical analysis showed significant differences (p < 0.05) in the content of phenols and flavonoids in fruits collected from different locations. Interestingly, differences were also observed within the species, probably depending on the geographical location and composition of the soil in which the plants were grown.
Collapse
|
7
|
Suhag R, Razem M, Ferrentino G, Morozova K, Zatelli D, Scampicchio M. Real-time monitoring of vegetable oils photo-oxidation kinetics using differential photocalorimetry. Food Chem 2024; 456:140011. [PMID: 38876065 DOI: 10.1016/j.foodchem.2024.140011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
This study introduced differential photocalorimetry (DPC) as a method for real-time monitoring of the photo-oxidation kinetics of vegetable oils. DPC measures the heat flow generated during the oxidation of oils upon light exposure. Experiments conducted with stripped linseed oil (SLSO), an oil depleted from its natural antioxidants, showed no induction time (τ). Conversely, spiking SLSO with increasing concentrations of trans-ferulic acid resulted in an induction time (τ) proportional to the antioxidant concentration (R2 = 0.99). A comparative study among different vegetable oils revealed that rice bran oil exhibited the highest resistant to photo-oxidation, followed by corn, soybean, and sunflower oils. The results are discussed in terms of sample oxidizability and antioxidant efficiency (A.E.), and validated through high-performance liquid chromatography with diode array detection (HPLC-DAD). Furthermore, the measured heat flow enabled the determination of the rates of inhibited (Rinh) and uninhibited (Runi) periods, as well as the rate constant of propagation (kp) and inhibition (kinh) reactions.
Collapse
Affiliation(s)
- Rajat Suhag
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Mutasem Razem
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy.
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | | | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| |
Collapse
|
8
|
Cortés-Avendaño P, Quispe-Roque J, Macavilca EA, Condezo-Hoyos L. High methoxyl pectin grafted onto gallic acid by one- and two-pot redox-pair procedures. Food Chem 2024; 455:139865. [PMID: 38823133 DOI: 10.1016/j.foodchem.2024.139865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
The aim of this research was to graft gallic acid (GA) onto high methoxyl pectin (HMP) through the redox-pair of ascorbic acid (Aa) and hydrogen peroxide (H2O2) with one- and two-pot procedures. The effectiveness of the both procedures and the chemical, physical and antioxidant properties of the obtained HMP-GA were evaluated. HMP-GAone-pot (23.3 ± 0.21 mg GA Equivalent (GAE)/g) and HMP-GAtwo-pot (32.3 ± 0.52 mg GAE/g) were best obtained at H2O2/Aa molar ratio-HMP/GA weight ratio of 9.0-0.5 and 16.0-0.5, respectively. The UV-Vis and FT-IR spectra and along with their derivative and thermal gravimetric analyses, revealed differences between HMP-GAone-pot and HMP-GAtwo-pot. The latter exhibited a greater antioxidant capacity than the former in single electron transfer (ET), hydrogen atom transfer (HAT), and ET-HAT mixed assays. The chemical differences can be attributed to side reactions that may have interfered with the grafting reaction. Consequently, HMP-GA, possessing unique antioxidant and prebiotic properties, can be synthesized through redox-pair procedures.
Collapse
Affiliation(s)
- Paola Cortés-Avendaño
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| | - Jacqueline Quispe-Roque
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| | - Edwin A Macavilca
- Universidad Nacional José Faustino Sánchez Carrión, Departamento Académico de Ingeniería en Industrias Alimentarias, Huacho, Peru
| | - Luis Condezo-Hoyos
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru; Instituto de Investigación de Bioquímica y Biología Molecular, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru.
| |
Collapse
|
9
|
Abualzulof GWA, Scandar S, Varfaj I, Dalla Costa V, Sardella R, Filippini R, Piovan A, Marcotullio MC. The Effect of Maturity Stage on Polyphenolic Composition, Antioxidant and Anti-Tyrosinase Activities of Ficus rubiginosa Desf. ex Vent. Extracts. Antioxidants (Basel) 2024; 13:1129. [PMID: 39334788 PMCID: PMC11429051 DOI: 10.3390/antiox13091129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Ficus spp. are often used as food and in traditional medicine, and their biological activities as anti-inflammatory and diuretic, for wound healing, and as antimicrobial agents have been largely reviewed. The aim of this work was to investigate the polyphenol content and the antioxidant and anti-tyrosinase properties of the extracts from F. rubiginosa, a very poorly explored Ficus species. For this purpose, F. rubiginosa leaves were collected at three different maturity stages (H1, H2, and H3), and the environmentally sustainable methanolic extracts were evaluated for the total phenolic content (TPC), total flavonoid content (TFC), and total catechins content (TCC). The polyphenolic profile was studied using HPLC-UV/DAD and UHPLC-MS, and the antioxidant activity was determined in vitro using DPPH, FRAP, and ABTS assays. The study showed that the H2 extract had higher TPC and TFC values (113.50 mg GA/g and 43.27 mg QE/g, respectively) and significant antioxidant activity. Therefore, the H2 extract was selected to study the anti-tyrosinase activity. The results also showed that H2 was able to bind and inhibit tyrosinase, with rutin being the compound responsible for the measured activity on the enzyme.
Collapse
Affiliation(s)
- Ghaid W. A. Abualzulof
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| | - Samir Scandar
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| | - Vanessa Dalla Costa
- Department of Pharmaceutical Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (V.D.C.); (R.F.)
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| | - Raffaella Filippini
- Department of Pharmaceutical Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (V.D.C.); (R.F.)
| | - Anna Piovan
- Department of Pharmaceutical Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (V.D.C.); (R.F.)
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; (G.W.A.A.); (S.S.); (I.V.); (R.S.)
| |
Collapse
|
10
|
Limsakul S, Monthakantirat O, Chulikhit Y, Maneenet J, Khamphukdee C, Chotritthirong Y, Phasomsap A, Boonyarat C, Daodee S. Optimizing Extraction, Evaluating Antioxidant Activity, and Analyzing Bioactive Compounds in Trikaysornmas Formula. Adv Pharmacol Pharm Sci 2024; 2024:8335536. [PMID: 39328583 PMCID: PMC11424859 DOI: 10.1155/2024/8335536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The Trikaysornmas formula (TKM) represents a prevalent Thai traditional remedy utilized extensively in Thailand. Its traditional uses include appetite enhancement, functions as a nourishing tonic, and exhibits adaptogenic properties. Comprising Aegle marmelos fruit, Nelumbo nucifera stamen, and Jatropha multifida bark, this formula embodies the synergy among these three herbs. The objective of this study was to optimize the extraction method, determine the active compounds in the TKM, and evaluate its antioxidant activity. The optimization of the extraction method for this formula was studied using an experimental design. Phytochemical components such as total phenolics, total flavonoids, total carotenoids, and total alkaloids were assessed utilizing a colorimetric method. Antioxidant activities were assessed through DPPH free radical scavenging, ABTS radical cation decolorization, oxygen radical absorbance capacity, ferric reducing antioxidant power, metal chelating activity, and lipid peroxidation assay. For the analysis of active constituents in the formula, gallic acid, kaempferol-3-o-glucoside, imperatorin, vitexin, and scopoletin, a validated reversed-phase column high-performance liquid chromatography (HPLC) method was developed. The total active contents including phenolic, flavonoid, carotenoid, and alkaloid compounds were found in the formula. The developed HPLC method exhibited reliable results in all validation parameters. TKM demonstrated antioxidant activity in the models used in this research. The findings from this study can serve as valuable tools for standardization and quality control measures. Additionally, they can contribute to maximizing the possibilities inherent in this traditional Thai formulation.
Collapse
Affiliation(s)
- Suphatson Limsakul
- Division of Pharmaceutical ChemistryFaculty of Pharmaceutical SciencesKhon Kaen University, Khon Kaen 40002, Thailand
| | - Orawan Monthakantirat
- Division of Pharmaceutical ChemistryFaculty of Pharmaceutical SciencesKhon Kaen University, Khon Kaen 40002, Thailand
| | - Yaowared Chulikhit
- Division of Pharmaceutical ChemistryFaculty of Pharmaceutical SciencesKhon Kaen University, Khon Kaen 40002, Thailand
| | - Juthamart Maneenet
- Natural Drug Discovery LaboratoryInstitute of Natural MedicineUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Charinya Khamphukdee
- Division of Pharmacognosy and ToxicologyFaculty of Pharmaceutical SciencesKhon Kaen University, Khon Kaen 40002, Thailand
| | - Yutthana Chotritthirong
- Division of Pharmaceutical ChemistryFaculty of Pharmaceutical SciencesKhon Kaen University, Khon Kaen 40002, Thailand
| | - Achiraya Phasomsap
- Division of Pharmaceutical ChemistryFaculty of Pharmaceutical SciencesKhon Kaen University, Khon Kaen 40002, Thailand
| | - Chantana Boonyarat
- Division of Pharmaceutical ChemistryFaculty of Pharmaceutical SciencesKhon Kaen University, Khon Kaen 40002, Thailand
| | - Supawadee Daodee
- Division of Pharmaceutical ChemistryFaculty of Pharmaceutical SciencesKhon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Gallo AL, Marfetán JA, Vélez ML. Antioxidant Activities of Exopolysaccharides Extracts from Two Endemic Fungi from Patagonia. Curr Microbiol 2024; 81:361. [PMID: 39287836 DOI: 10.1007/s00284-024-03883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
A great number of free radicals have a negative impact on the human body, and an increased interest in the identification of new natural molecules with antioxidant properties has emerged due to concerns about synthetic antioxidants. Here, the antioxidant effect of four exo-polysaccharides (EPS) extracts obtained from submerged cultivation of Nothophellinus andinopatagonicus and Pseudoinonotus crustosus (N and P, respectively) in two culture media (M1 and M2) at 2 concentrations (100 and 250 µg/ml) was studied; then, its relation with the chemical composition of the EPS was evaluated. To assess the antioxidant activities of the extracts, several in vitro assays were performed: DPPH and ABTS radical scavenging, ferric-reducing antioxidant power, chelating ability on ferrous ions, and inhibition of the lipid peroxidation. The concentrations tested here were much lower than those reported in previous works. Despite variations in chemical composition and monosaccharide profiles among the extracts, all demonstrated antioxidant activity, although the type of activity differed; only P-M1 exhibited a good antioxidant activity across all assays. This extract contained the highest proportion of phenolic compounds, and also displayed the highest radical scavenging activity. Although the utilization of polysaccharides as functional food ingredients remains limited, we propose P-M1 as a promising candidate for a nutraceutical product. Additionally, a formulation could be made with a combination of extracts to create an antioxidant-rich supplement. Additional research is needed to confirm our findings in a cellular environment and to elucidate the mechanisms that drive their antioxidant activities, ultimately facilitating their development and utilization as nutraceutical products.
Collapse
Affiliation(s)
- Ana L Gallo
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Agencia I+D+I), Buenos Aires, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina
| | - Jorge A Marfetán
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María L Vélez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina.
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina.
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Zăgrean-Tuza C, Matei A, Silaghi-Dumitrescu R. A biomimetic assay for antioxidant reactivity, based on liposomes and myoglobin. J Inorg Biochem 2024; 258:112613. [PMID: 38815361 DOI: 10.1016/j.jinorgbio.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Antioxidant assays are typically based on non-physiologically relevant reagents. We describe here a quantitative assay based on the inhibition of the liposome autooxidation in the presence of myoglobin (ILA-Mb), an oxidative process with direct biomedical relevance. Additional advantages of the assay include the use of standard and readily available reagents (lecithin and myoglobin) and the applicability to lipophilic antioxidants. The ILA-Mb assay is based on previously reported qualitative or semi-quantitative ones that employed cytochrome c instead of myoglobin. A number of antioxidants are tested, and their IC50 parameters are discussed and interpreted to involve direct interaction with both myoglobin and the liposomes.
Collapse
Affiliation(s)
- Cezara Zăgrean-Tuza
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Alina Matei
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Liu X, Cui E, Wang M, Zhu Y, Li H, Guo C. Heavy atom-induced quenching of fluorescent organosilicon nanoparticles for iodide sensing and total antioxidant capacity assessment. Anal Bioanal Chem 2024; 416:4409-4415. [PMID: 38864917 DOI: 10.1007/s00216-024-05377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
We present a novel approach for iodide sensing based on the heavy-atom effect to quench the green fluorescent emission of organosilicon nanoparticles (OSiNPs). The fluorescence of OSiNPs was significantly quenched (up to 97.4% quenching efficiency) in the presence of iodide ions (I-) through oxidation by hydrogen peroxide. Therefore, OSiNPs can serve as a fluorescent probe to detect I- with high selectivity and sensitivity. The highly selective response is attributed to the hydrophilic surface enabling good dispersion in aqueous solutions and the lipophilic core allowing the generated liposoluble I2 to approach and quench the fluorescence of OSiNPs. The linear working range for I- was from 0 to 50 μM, with a detection limit of 0.1 μM. We successfully applied this nanosensor to determine iodine content in edible salt. Furthermore, the fluorescent OSiNPs can be utilized for the determination of total antioxidant capacity (TAC). Antioxidants reduce I2 to I-, and the extent of quenching by the remaining I2 on the OSiNPs indicates the TAC level. The responses to ascorbic acid, pyrogallic acid, and glutathione were investigated, and the detection limit for ascorbic acid was as low as 0.03 μM. It was applied to the determination of TAC in ascorbic acid tablets and fruit juices, indicating the potential application of the OSiNP-based I2 sensing technique in the field of food analysis.
Collapse
Affiliation(s)
- Xuan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Enna Cui
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mengxiao Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yujie Zhu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongliang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Chao Guo
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
14
|
Nosrati Gazafroudi K, Mailänder LK, Daniels R, Kammerer DR, Stintzing FC. From Stem to Spectrum: Phytochemical Characterization of Five Equisetum Species and Evaluation of Their Antioxidant Potential. Molecules 2024; 29:2821. [PMID: 38930889 PMCID: PMC11206348 DOI: 10.3390/molecules29122821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Equisetaceae family, commonly known as horsetails, has been of scientific interest for decades due to its status as one of the most ancient extant vascular plant families. Notably, the corresponding species have found their place in traditional medicine, offering a wide array of applications. This study presents a comprehensive phytochemical analysis of polar secondary metabolites within the sterile stems of five distinct Equisetum species using HPLC-DAD-ESI-MSn. For this purpose, fresh plant material was extracted with acetone/water, and the resulting crude extracts were fractionated using dichloromethane, ethyl acetate, and n-butanol, respectively. The results reveal a complex array of compounds, including hydroxycinnamic acids, hydroxybenzoic acids, flavonoids, and other phenolic compounds. In addition, total phenolic contents (Folin-Ciocalteu assay) and antioxidant activities (DPPH assay) of the plant extracts were evaluated using spectrophotometric methods. The present comparative analysis across the five species highlights both shared and species-specific metabolites, providing valuable insights into their chemical diversity and potential pharmacological properties.
Collapse
Affiliation(s)
- Khadijeh Nosrati Gazafroudi
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Lilo K. Mailänder
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Rolf Daniels
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Dietmar R. Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
| | - Florian C. Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
| |
Collapse
|
15
|
Mu D, Zhou L, Shi L, Liu T, Guo Y, Chen H, Luo H, Ma J, Zhang H, Xiong P, Tian L. Quercetin-crosslinked chitosan nanoparticles: a potential treatment for allergic rhinitis. Sci Rep 2024; 14:4021. [PMID: 38369554 PMCID: PMC10874938 DOI: 10.1038/s41598-024-54501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Allergic rhinitis (AR) remains a major health problem worldwide. Compared with traditional oral drugs, nasal administration avoids first-pass metabolism and achieve faster and more effective efficacy. In this study, we used the ion crosslinking method to prepare quercetin-chitosan nasal adaptive nanomedicine (QCS) delivery system and evaluated in the treatment of allergic rhinitis mice models. The obtained positively charged nanoparticles with a particle size of 229.2 ± 0.2 nm have excellent characteristics in encapsulation efficiency (79.604%), drug loading rate (14.068%), drug release (673.068 μg) and stability(> 7 days). Excitingly, QCS treatment significantly reduced the number of sneezing and nasal rubbing events in AR mice, while reducing the levels of inflammatory factors such as immunoglobulin E (IgE), interleukin (IL)-17, tumor necrosis factor (TNF)-α, and (IL)-6 to alleviate AR symptoms. Hematoxylin-eosin (HE) staining also showed the damaged nasal mucosa was improved. These experimental results suggest that QCS can effectively suppress allergic inflammation in a mouse model and hold promise as a therapeutic option for allergic rhinitis.
Collapse
Affiliation(s)
- Dehong Mu
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Li Zhou
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Lingyu Shi
- Department of Nanchong Vocational College of Science and Technology, Nanchong, 637200, People's Republic of China
| | - Ting Liu
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Ying Guo
- Department of Clinical Medicine School of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Hao Chen
- Department of Clinical Medicine School of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Hongping Luo
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Junhao Ma
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Hui Zhang
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Peizheng Xiong
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| | - Li Tian
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
16
|
Asma U, Bertotti ML, Zamai S, Arnold M, Amorati R, Scampicchio M. A Kinetic Approach to Oxygen Radical Absorbance Capacity (ORAC): Restoring Order to the Antioxidant Activity of Hydroxycinnamic Acids and Fruit Juices. Antioxidants (Basel) 2024; 13:222. [PMID: 38397820 PMCID: PMC10886186 DOI: 10.3390/antiox13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
This study introduces a kinetic model that significantly improves the interpretation of the oxygen radical absorbance capacity (ORAC) assay. Our model accurately simulates and fits the bleaching kinetics of fluorescein in the presence of various antioxidants, achieving high correlation values (R2 > 0.99) with the experimental data. The fit to the experimental data is achieved by optimizing two rate constants, k5 and k6. The k5 value reflects the reactivity of antioxidants toward scavenging peroxyl radicals, whereas k6 measures the ability of antioxidants to regenerate oxidized fluorescein. These parameters (1) allow the detailed classification of cinnamic acids based on their structure-activity relationships, (2) provide insights into the interaction of alkoxyl radicals with fluorescein, and (3) account for the regeneration of fluorescein radicals by antioxidants. The application of the model to different antioxidants and fruit extracts reveals significant deviations from the results of traditional ORAC tests based on the area under the curve (AUC) approach. For example, lemon juice, rich in 'fast' antioxidants such as ascorbic acid, shows a high k5 value, in contrast to its low AUC values. This finding underscores the limitations of the AUC approach and highlights the advantages of our kinetic model in understanding antioxidative dynamics in food systems. This study presents a comprehensive, quantitative, mechanism-oriented approach to assessing antioxidant reactivity, demonstrating a significant improvement in ORAC assay applications.
Collapse
Affiliation(s)
- Umme Asma
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| | - Maria Letizia Bertotti
- Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy;
| | - Simone Zamai
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| | - Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, 40129 Bologna, Italy;
| | - Matteo Scampicchio
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| |
Collapse
|
17
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int J Biol Macromol 2023; 251:125992. [PMID: 37544567 DOI: 10.1016/j.ijbiomac.2023.125992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Lignin, a by-product of processing lignocellulosic materials, has a polyphenolic structure and can be used as an antioxidant directly or synergistically with synthetic types of antioxidants, leading to different applications. Its antioxidant mechanism is mainly related to the production of ROS, but the details need to be further investigated. The antioxidant property of lignin is mainly related to the content of phenolic hydroxyl group, but methoxy, purity will also have an effect on it. In addition, different methods to detect the antioxidant properties of lignin have different advantages and disadvantages. In this paper, the antioxidant mechanism of lignin, the methods to determine the antioxidant activity and the progress of its application in various fields are reviewed. In addition, the current research on the antioxidant properties of lignin and the hot directions are provided, and an outlook on the research into the antioxidant properties of lignin is provided to broaden its potential application areas.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
19
|
Konieczna W, Mierek-Adamska A, Chojnacka N, Antoszewski M, Szydłowska-Czerniak A, Dąbrowska GB. Characterization of the Metallothionein Gene Family in Avena sativa L. and the Gene Expression during Seed Germination and Heavy Metal Stress. Antioxidants (Basel) 2023; 12:1865. [PMID: 37891944 PMCID: PMC10603854 DOI: 10.3390/antiox12101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Metallothioneins (MTs) are a family of small proteins rich in cysteine residues. The sulfhydryl group of metallothioneins can bind to metal ions, maintaining metal homeostasis and protecting the cells from damage caused by toxic heavy metals. Moreover, MTs can function as reactive oxygen species scavengers since cysteine thiols undergo reversible and irreversible oxidation. Here, we identified 21 metallothionein genes (AsMTs) in the oat (Avena sativa L.) genome, which were divided into four types depending on the amino acid sequences of putative proteins encoded by identified genes. Analysis of promoter sequences showed that MTs might respond to a variety of stimuli, including biotic and abiotic stresses and phytohormones. The results of qRT-PCR showed that all four types of AsMTs are differentially expressed during the first 48 hours of seed germination. Moreover, stress induced by the application of zinc, cadmium, and a mixture of zinc and cadmium affects the expression of oat MTs variously depending on the MT type, indicating that AsMT1-4 fulfil different roles in plant cells.
Collapse
Affiliation(s)
- Wiktoria Konieczna
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Natalia Chojnacka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Marcel Antoszewski
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
| |
Collapse
|
20
|
Beltrán SB, Sierra LJ, Fernández-Alonso JL, Romero AK, Martínez JR, Stashenko EE. Antioxidant Properties and Secondary Metabolites Profile of Hyptis colombiana at Various Phenological Stages. Molecules 2023; 28:6767. [PMID: 37836610 PMCID: PMC10574317 DOI: 10.3390/molecules28196767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Hyptis colombiana (Lamiaceae family), a species also treated as Cantinoa colombiana in a recently segregated genus from Hyptis, is a perennial herb or subshrub native to the Andes of northern South America. H. colombiana leaves are commonly used in traditional medicine to treat respiratory and digestive illnesses. In this study, H. colombiana plants at different phenological stages (vegetative, flowering, and post-flowering) were harvested to obtain essential oils (EOs) and extracts (from fresh plant materials or post-distillation waste) whose chemical compositions and antioxidant activities were determined. H. colombiana EOs distilled by microwave-assisted hydrodistillation were analyzed by GC/MS/FID, and hydroalcoholic extracts obtained from fresh plant materials or post-distillation waste were analyzed by UHPLC-ESI+/--Orbitrap-MS. The antioxidant activity was evaluated by the ABTS+• and ORAC assays. The principal compounds found in EOs were sesquiterpene hydrocarbons (65%); specifically, (E)-β-caryophyllene and germacrene D. Pyranone, rosmarinic acid, rutin, and p-hydroxybenzoic acid were the main constituents in H. colombiana extracts. After analyzing the chemical composition and antioxidant activity (ORAC) of EOs and hydroethanolic extracts from flowering H. colombiana plants, minimal variations were found. It is advisable to harvest H. colombiana plants during their flowering stage to acquire EOs and extracts that can be utilized in the agro-industry of EOs and their natural derivatives.
Collapse
Affiliation(s)
- Sheila B. Beltrán
- Centro de Investigación en Biomoléculas-CIBIMOL, Laboratorio de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (S.B.B.); (L.J.S.); (A.K.R.); (J.R.M.)
| | - Lady J. Sierra
- Centro de Investigación en Biomoléculas-CIBIMOL, Laboratorio de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (S.B.B.); (L.J.S.); (A.K.R.); (J.R.M.)
| | | | - Angie K. Romero
- Centro de Investigación en Biomoléculas-CIBIMOL, Laboratorio de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (S.B.B.); (L.J.S.); (A.K.R.); (J.R.M.)
| | - Jairo R. Martínez
- Centro de Investigación en Biomoléculas-CIBIMOL, Laboratorio de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (S.B.B.); (L.J.S.); (A.K.R.); (J.R.M.)
| | - Elena E. Stashenko
- Centro de Investigación en Biomoléculas-CIBIMOL, Laboratorio de Cromatografía y Espectrometría de Masas-CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (S.B.B.); (L.J.S.); (A.K.R.); (J.R.M.)
| |
Collapse
|
21
|
Abu El Wafa S, A. Seif-Eldein N, Anwar Aly Taie H, Marzouk M. Coccoloba uvifera Leaves: Polyphenolic Profile, Cytotoxicity, and Antioxidant Evaluation. ACS OMEGA 2023; 8:32060-32066. [PMID: 37692217 PMCID: PMC10483514 DOI: 10.1021/acsomega.3c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
This study aimed to investigate the chemical composition of Coccoloba uvifera leaves and evaluate the antioxidant and antitumor effects of the total extract and its major metabolites. Four assays were used to determine the antioxidant activity, including radical scavenging abilities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), radical cation, and ferric-reducing power. Additionally, vincristine was used as a reference medication to examine the anticancer activity on Ehrlich aesthete carcinoma cells (EACC). Nine compounds were isolated from C. uvifera leaves aqueous methanol extract. Their structures were identified as gallic acid (1), methyl gallate (2), protocatechuic acid methyl ester (3), protocatechuic acid (4), quercetin 3-O-β-d-glucopyranoside (isoquercitrin, 5), kaempferol 3-O-β-D-neohespridoside (6), myricitrin 4″-O-gallate (7), myricetin 3-O-β-d-glucopyranoside (8), and myricetin 3-O-arabinopyranoside (9). The majority possess noticeable antioxidant and antitumor properties. However, compounds 1, 5, 4, 2, and 7 displayed a strong antioxidant potential in terms of DPPH radical scavenging activity, with values of 85.72 ± 0.30, 82.16 ± 0.20, 81.34 ± 0.20, 79.62 ± 0.29, and 79.34 ± 0.20%, respectively. Compounds 4, 1, 5, 7, and 2 revealed high reducing power activity, with respective values of 1.348 ± 0.043, 1.303 ± 0.011, 1.154 ± 0.020, 1.058 ± 0.032, and 1.056 ± 0.019. Compounds 4 and 1 showed the highest ABTS radical scavenging capabilities (91.90 ± 0.24 and 91.83 ± 0.74%) and ferric-reducing power ability (1979 ± 14.53 and 1965 ± 26.86 μmol Trolox/100 g, respectively). Compound 4 has the highest level of cytotoxicity, resulting in 78.710.21% dead cells.
Collapse
Affiliation(s)
- Salwa
A. Abu El Wafa
- Pharmacognosy
and Medicinal Plants Department, Faculty
of Pharmacy (Girls), Al-Azhar University, Cairo 4450113, Egypt
| | - Noha A. Seif-Eldein
- Pharmacognosy
and Medicinal Plants Department, Faculty
of Pharmacy (Girls), Al-Azhar University, Cairo 4450113, Egypt
| | - Hanan Anwar Aly Taie
- Plant
Biochemistry Department, Agricultural and Biology Research Institute, National Research Centre, 33 El-Bohouth Street (Former El-Tahrir Street), Dokki, Cairo 12622, Egypt
| | - Mohamed Marzouk
- Chemistry
of Tanning Materials and Leather Technology Department, Chemical Industries
Research Institute, National Research Centre, 33 El-Bohouth Street (Former El-Tahrir
Street), Dokki, Cairo 12622, Egypt
| |
Collapse
|
22
|
Gerasimova E, Salimgareeva E, Magasumova D, Ivanova A. Kinetic Potentiometry as a Method for Studying the Interactions of Antioxidants with Peroxyl Radicals. Antioxidants (Basel) 2023; 12:1608. [PMID: 37627605 PMCID: PMC10451547 DOI: 10.3390/antiox12081608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This work presents a new method using kinetic potentiometry to study the thermodynamic and kinetic parameters of the reactions of antioxidants with peroxyl radicals. The rate constants of the reaction of antioxidants with radicals have been determined, and the groups of "fast" and "slow" antioxidants have been conventionally distinguished. Fast antioxidants include ascorbic, uric, gallic, chlorogenic, caffeic acids, glutathione, L-cysteine, and catechol with constant values from (1.05-9.25) × 103 M·s-1; "slow" antioxidants are α-tocopherol (in aqueous media), ionol, 2,6-ditretbutylphenol, and compounds of the azoloazine series, modified with polyphenolic fragments, with constant values from (4.00-8.50) × 102 M·s-1. It is shown that the value of the rate constant is directly related to the type of kinetic dependence of the potential recorded when an antioxidant is introduced into the solution of the radical initiator. It is shown that the method with the determination of the induction period is difficult in the study of "slow" antioxidants. It has been established that the area above the curve of the kinetic dependence Exp(∆E) is directly related to the amount of inhibited peroxyl radicals and can be used to assess the inhibitory properties of an antioxidant from a thermodynamic point of view. "Fixed time method" and "Initial rate method" were used. Positive correlations between the described method have been established. The utility of the parameter of the area above the curve of the kinetic dependence Exp(∆E) in the study of objects of complex composition is shown.
Collapse
Affiliation(s)
| | | | | | - Alla Ivanova
- Analytical Chemistry Department, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia; (E.G.); (E.S.); (D.M.)
| |
Collapse
|
23
|
Verma J, Attri S, Arora S, Manhas RK. Antioxidant and chemoprotective potential of Streptomyces levis strain isolated from human gut. AMB Express 2023; 13:69. [PMID: 37418125 PMCID: PMC10328884 DOI: 10.1186/s13568-023-01570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
In the current study, Streptomyces levis strain HFM-2 has been isolated from healthy human gut. Streptomyces sp. HFM-2 was identified based on the polyphasic approach that included cultural, morphological, chemotaxonomical, phylogenetic, physiological, and biochemical characteristics. 16S rRNA gene sequence of strain HFM-2 exhibited 100% similarity with Streptomyces levis strain 15423 (T). The EtOAc extract of Streptomyces levis strain HFM-2 showed potential antioxidant activity, along with 69.53 ± 0.19%, 64.76 ± 0.13%, and 84.82 ± 0.21% of scavenging activity for ABTS, DPPH, and superoxide radicals, respectively at 600 µg/mL. The IC50 values i.e. 50% scavenging activity for DPPH, ABTS, and superoxide radicals were achieved at 497.19, 388.13, and 268.79 (µg/mL), respectively. The extract's reducing power and total antioxidant capacity were determined to be 856.83 ± 0.76 and 860.06 ± 0.01 µg AAE/mg of dry extract, respectively. In addition, the EtOAc extract showed protection against DNA damage from oxidative stress caused by Fenton's reagent, and cytotoxic activity against HeLa cervical cancer, Skin (431) cancer, Ehrlich-Lettre Ascites-E (EAC) carcinoma, and L929 normal cell lines. The IC50 values against HeLa, 431 skin, and EAC carcinoma cell lines were found to be 50.69, 84.07, and 164.91 µg/mL, respectively. The EtOAc extract showed no toxicity towards L929 normal cells. In addition, flow cytometric analysis exhibited reduced mitochondrial membrane potential (MMP), and enhanced levels of reactive oxygen species (ROS). The EtOAc extract was chemically analyzed using GCMS to determine the components executing its bioactivities.
Collapse
Affiliation(s)
- Jaya Verma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
24
|
Semwogerere F, Chikwanha OC, Katiyatiya CLF, Marufu MC, Mapiye C. Bioavailability of bioactive phytochemicals in selected tissues and excreta from goats fed hempseed cake (Cannabis sativa L.) finisher diets. Trop Anim Health Prod 2023; 55:262. [PMID: 37407730 PMCID: PMC10322766 DOI: 10.1007/s11250-023-03676-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Hempseeds are rich in bioactive phytochemicals, yet little is known about their bioavailability in tissues and excreta of animals fed hemp seed cake. The study evaluated the bioactive phytochemicals and their antioxidant activity in the blood, liver, meat, feces, and urine from goats fed finishing diets containing graded inclusions of hempseed cake (HSC). Twenty-five wether goats (26.8 ± 2.9 kg) of 4-5 months were randomly allocated to five experimental diets containing increasing levels of HSC (0, 25, 50, 75, 100 g/kg DM) substituted for soybean meal (SBM) as the main protein source. Goats were allowed for period of 21 days for adaptation, and blood, fecal, and urine samples were collected on the 28th day of the experiment. The liver and right longissimus thoracis et lumborum were respectively collected at 60 min and 24 h after slaughter. Linear increases (P ≤ 0.05) in blood, liver, and urine magnesium; fecal manganese; and fecal copper were observed with increasing HSC inclusion in the diet. Liver and fecal selenium exhibited a decreasing linear trend (P ≤ 0.05) with HSC increment in diets. Diet did not affect (P > 0.05) meat and urine mineral contents, except urine magnesium. The 2,2-diphenyl-1-picrylhydrazyl, and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) of the blood, liver, and meat linearly increased (P ≤ 0.05) with dietary inclusion of HSC. Blood and liver ferric reducing antioxidant power quadratically increased (P ≤ 0.05) with HSC inclusion reaching a maximum at 50 g/kg dry matter. Current results suggest that inclusion of HSC up to 100 g/kg substituting SBM in goat diets can improve bioavailability of bioactive phytochemicals in the blood, liver, and meat.
Collapse
Affiliation(s)
- Farouk Semwogerere
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Chenaimoyo L F Katiyatiya
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Munyaradzi C Marufu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
25
|
Aoudeh E, Oz E, Oz F. Effect of beef patties fortification with black garlic on the polycyclic aromatic hydrocarbons (PAHs) content and toxic potency. Food Chem 2023; 428:136763. [PMID: 37421662 DOI: 10.1016/j.foodchem.2023.136763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Nine different black garlic samples aged at varying temperatures and durations were added to the patties at 0.5% and 1% ratios and compared with raw garlic in terms of polycyclic aromatic hydrocarbons (PAHs) formation. The results showed that black garlic caused a reduction in the patties' content of ∑PAH8 by 38.17% to 94.12% compared to raw garlic, with the highest reduction percent in the patties fortified with 1% black garlic aged at 70 °C for 45 days. Beef patties fortified with black garlic reduced human exposure to PAHs from beef patties (from 1.66E to 01 to 6.04E-02 ng-TEQBaP kg-1 bw per day). The negligible cancer risk associated with exposure to PAHs through the consumption of beef patties was confirmed by very low ILCR (incremental lifetime cancer risk) values of 5.44E-14 and 4.75E-12. Finally, patty fortification with black garlic could be suggested as an effective way to reduce PAHs formation and exposure from patties.
Collapse
Affiliation(s)
- Eyad Aoudeh
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye.
| |
Collapse
|
26
|
Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int J Mol Sci 2023; 24:10978. [PMID: 37446156 DOI: 10.3390/ijms241310978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the physiological role of oxidant molecules, oxidative stress (OS) could underlie several human diseases. When the levels of antioxidants are too low or too high, OS occurs, leading to damage at the molecular, tissue and cellular levels. Therefore, antioxidant compounds could represent a way to modulate OS and/or to maintain proper redox balance. This review provides an overview of the methods available to assess total antioxidant capacity (TAC) in biological systems to elucidate the correct terminology and the pathophysiological roles. The clinical context is fundamental to obtain a correct interpretation of TAC. Hence, we discuss metabolic syndrome and infertility, two clinical conditions that involve OS, including the potential prognostic role of TAC evaluation in monitoring antioxidant supplementation. This approach would provide more personalised and precise therapy.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
| | - Elisabetta Meucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
| | - Bianca Maria Ricerca
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
27
|
Kavčič H, Jug U, Mavri J, Umek N. Antioxidant activity of lidocaine, bupivacaine, and ropivacaine in aqueous and lipophilic environments: an experimental and computational study. Front Chem 2023; 11:1208843. [PMID: 37408557 PMCID: PMC10318152 DOI: 10.3389/fchem.2023.1208843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: Local anesthetics are widely recognized pharmaceutical compounds with various clinical effects. Recent research indicates that they positively impact the antioxidant system and they may function as free radical scavengers. We hypothesize that their scavenging activity is influenced by the lipophilicity of the environment. Methods: We assessed the free radical scavenging capacity of three local anesthetics (lidocaine, bupivacaine, and ropivacaine) using ABTS, DPPH, and FRAP antioxidant assays. We also employed quantum chemistry methods to find the most probable reaction mechanism. The experiments were conducted in an aqueous environment simulating extracellular fluid or cytosol, and in a lipophilic environment (n-octanol) simulating cellular membranes or myelin sheets. Results: All local anesthetics demonstrated ABTS˙+ radical scavenging activity, with lidocaine being the most effective. Compared to Vitamin C, lidocaine exhibited a 200-fold higher half-maximal inhibitory concentration. The most thermodynamically favorable and only possible reaction mechanism involved hydrogen atom transfer between the free radical and the -C-H vicinal to the carbonyl group. We found that the antioxidant activity of all tested local anesthetics was negligible in lipophilic environments, which was further confirmed by quantum chemical calculations. Conclusion: Local anesthetics exhibit modest free radical scavenging activity in aqueous environments, with lidocaine demonstrating the highest activity. However, their antioxidant activity in lipophilic environments, such as cellular membranes, myelin sheets, and adipose tissue, appears to be negligible. Our results thus show that free radical scavenging activity is influenced by the lipophilicity of the environment.
Collapse
Affiliation(s)
- H. Kavčič
- Clinical Department for Anesthesiology and Surgical Intensive Therapy, University Medical Center Ljubljana, Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - U. Jug
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - J. Mavri
- Laboratory of Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
| | - N. Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Wu N, Lu C, Wang Y, Liu L, Lu D, Zhou Y, He M, Zhang X, Song G. Semiconducting Polymer Nanoparticles-Manganese Based Chemiluminescent Platform for Determining Total Antioxidant Capacity in Diabetic Mice. Anal Chem 2023; 95:6603-6611. [PMID: 37043629 DOI: 10.1021/acs.analchem.2c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The total antioxidant capacity (TAC) is a key indicator of the body's resistance to oxidative stress injury in diabetic patients. The measurement of TAC is important for effectively evaluating the redox state to prevent and control the occurrence of diabetes complications. However, there is a lack of a simple, convenient, and reliable method to detect the total antioxidant capacity in diabetes. Herein, we design a novel chemiluminescent platform based on semiconducting polymer nanoparticles-manganese (SPNs-MnVII) to detect the total antioxidant capacity of urine in diabetic mice. We synthesize semiconducting polymer nanoparticles with four different structures and discover the ability of MnVII to produce singlet oxygen (1O2) that is employed to excite thiophene-based SPNs (PFODBT) to emit near-infrared chemiluminescence. Notably, the chemiluminescent intensity has a good linear relationship with the concentration of MnVII (detection limit: 2.8 μM). Because antioxidants (e.g., glutathione or ascorbic acid) can react with MnVII, such a chemiluminescent tool of SPNs (PFODBT)-MnVII can detect the glutathione or ascorbic acid with a larger responsive range. Furthermore, the total antioxidant capacity of urine from mice is evaluated via SPNs (PFODBT)-MnVII, and there are statistically significant differences between diabetic and healthy mice. Thus, this new chemiluminescent platform of SPNs (PFODBT)-MnVII is convenient, efficient, and sensitive, which is promising for monitoring antioxidant therapy of diabetes.
Collapse
Affiliation(s)
- Na Wu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liuhui Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dingyou Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying Zhou
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Min He
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
Mijatović A, Gligorijević N, Ćoćić D, Spasić S, Lolić A, Aranđelović S, Nikolić M, Baošić R. In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge. J Inorg Biochem 2023; 244:112224. [PMID: 37080139 DOI: 10.1016/j.jinorgbio.2023.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
The biological activity of six structurally similar tetradentate Schiff base copper(II) complexes, namely [Cu(ethylenediamine-bis-acetylacetonate)] (CuAA) and five derivatives where two methyl groups are replaced by phenyl, (CuPP), CF3 (CuTT) or by mixed groups CH3/CF3 (CuAT), Ph/CF3 (CuPT), and Ph/CH3 (CuAP) has been investigated. The set of antioxidant assays was performed, and the results were expressed as IC50 and EC50 values. The series of complexes showed interesting bioactivity and were investigated for the determination of antioxidant, antifungal, antimicrobial, and cytotoxic activity. A significant antioxidant behavior was exhibited by complex CuAA, greater than Trolox in the Oxygen Radical Absorbance Capacity (ORAC) assay. Antibacterial assay over Gram-positive and Gram-negative pathogenic bacterial strains and some fungal pathogens were studied. Antiproliferative activity of complexes in two human tumor cell lines, breast adenocarcinoma MCF-7, colon adenocarcinoma LS-174, and normal fibroblast cells-MRC-5, examined the effect on cell cycle progression. The significant cytotoxic potential, comparable to cisplatin cytotoxicity, was determined in human breast cancer cell line-MCF-7 with IC50 values being 17.53-31.40 μM and human colon cancer cell line-LS-174 with IC50 values being 15.22-23.92 μM. All tested compounds showed nearly twice more selectivity toward cancer cell lines than normal cells. The interactions of complexes with human serum albumin (HSA), the most prominent protein in plasma, were investigated using spectroscopic fluorescence techniques. The complexes bind to human serum albumin at multiple sites (n = 0.2-1.9), displaying a moderate binding constant Ka = 4.1-12.4 × 104 M-1. The molecular docking experiment effectively showed complex binding to HSA and DNA molecular fragments.
Collapse
Affiliation(s)
- Aleksandar Mijatović
- University of Belgrade, Faculty of Mining and Geology, Đušina 7, Belgrade 11000, Serbia
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Pasterova 14, Belgrade 11000, Serbia
| | - Dušan Ćoćić
- Faculty of Science, University of Kragujevac, Department of Chemistry, Radoja Domanovića 12, Kragujevac 34000, Serbia
| | - Snežana Spasić
- Institute of Chemistry, Technology, and Metallurgy, Department of Chemistry, Njegoševa 12, Belgrade 11000, Serbia
| | - Aleksandar Lolić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia.
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Pasterova 14, Belgrade 11000, Serbia
| | - Milan Nikolić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia
| | - Rada Baošić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia
| |
Collapse
|
30
|
Goutzourelas N, Kevrekidis DP, Barda S, Malea P, Trachana V, Savvidi S, Kevrekidou A, Assimopoulou AN, Goutas A, Liu M, Lin X, Kollatos N, Amoutzias GD, Stagos D. Antioxidant Activity and Inhibition of Liver Cancer Cells' Growth of Extracts from 14 Marine Macroalgae Species of the Mediterranean Sea. Foods 2023; 12:foods12061310. [PMID: 36981236 PMCID: PMC10048654 DOI: 10.3390/foods12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Macroalgae exhibit beneficial bioactivities for human health. Thus, the aim of the present study was to examine the antioxidant and anticancer potential of 14 macroalgae species' extracts, namely, Gigartina pistillata, Gigartina teedei, Gracilaria gracilis, Gracilaria sp., Gracilaria bursa pastoris, Colpomenia sinuosa, Cystoseira amentacea, Cystoseira barbata, Cystoseira compressa, Sargassum vulgare, Padina pavonica, Codium fragile, Ulva intestinalis, and Ulva rigida, from the Aegean Sea, Greece. The antioxidant activity was assessed using DPPH, ABTS•+, •OH, and O2•- radicals' scavenging assays, reducing power (RP), and protection from ROO•-induced DNA plasmid damage assays. Moreover, macroalgae extracts' total polyphenol contents (TPCs) were assessed. Extracts' inhibition against liver HepG2 cancer cell growth was assessed using the XTT assay. The results showed that G. teedei extract's IC50 was the lowest in DPPH (0.31 ± 0.006 mg/mL), ABTS•+ (0.02 ± 0.001 mg/mL), •OH (0.10 ± 0.007 mg/mL), O2•- (0.05 ± 0.003 mg/mL), and DNA plasmid breakage (0.038 ± 0.002 mg/mL) and exhibited the highest RP (RP0.5AU 0.24 ± 0.019 mg/mL) and TPC (12.53 ± 0.88 mg GAE/g dw). There was also a significant correlation between antioxidant activity and TPC. P. pavonica (IC50 0.93 ± 0.006 mg/mL) exhibited the highest inhibition against HepG2 cell growth. Conclusively, some of the tested extracts exhibited significant chemopreventive properties, and so they may be used for food products.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sofia Barda
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Stavroula Savvidi
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Alkistis Kevrekidou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Grigorios D Amoutzias
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
31
|
Julai K, Sridonpai P, Ngampeerapong C, Tongdonpo K, Suttisansanee U, Kriengsinyos W, On-Nom N, Tangsuphoom N. Effects of Extraction and Evaporation Methods on Physico-Chemical, Functional, and Nutritional Properties of Syrups from Barhi Dates (Phoenix dactylifera L.). Foods 2023; 12:foods12061268. [PMID: 36981193 PMCID: PMC10048268 DOI: 10.3390/foods12061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Date fruits (Phoenix dactylifera L.) are rich in sugar and also contain a substantial amount of phenolic compounds. Therefore, date fruits can be used to produce an alternative sweetener, having lower glycemic index than sucrose. This study investigated the effects of extraction and evaporation methods on various properties of the syrups prepared from Barhi dates. Extraction of date juice with the aid of pectinase or cellulase significantly enhanced the production yield, total phenolic content, and antioxidant activities determined by Ferric Reducing Antioxidant Power and Oxygen Radical Absorbance Capacity assays. Syrups prepared without enzyme application had about 6–7 times higher apparent viscosity than those prepared from the enzyme-assisted extracted juices. Vacuum evaporation produced syrups with significantly lighter color and inferior antioxidant properties than open heating. Properties of date syrups prepared with or without enzyme-assisted extraction followed by open heat evaporation were not different. They had a glucose-to-fructose ratio close to 1:1, received good sensory acceptability scores of above 6 on a 9-point hedonic scale, contained a safe level (<40 mg/kg) of 5-hydroxymethyl-2-furfuraldehyde, and exhibited similar glass transition and melting temperatures; while a greater inhibition on α-amylase activity was observed in syrups obtained from enzyme-assisted extraction. The in vivo glycemic measurement revealed that the syrup prepared with the aid of Pectinex and open heating was classified as low glycemic index (GI = 55) and medium glycemic load (GL = 11). Thus, enzyme-assisted extraction of date juice using Pectinex could be used to produce a healthy natural sweetener from low quality date fruits.
Collapse
Affiliation(s)
- Kanokporn Julai
- Master of Science Program in Food Science for Nutrition (International Program), Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Pimnapanut Sridonpai
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Chitraporn Ngampeerapong
- Food Science and Technology Division, Faculty of Engineering and Agro-Industry, Maejo University, Nong Han, San Sai, Chiang Mai 50290, Thailand
| | - Karaked Tongdonpo
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Wantanee Kriengsinyos
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Nattira On-Nom
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Nattapol Tangsuphoom
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-2800-3800
| |
Collapse
|
32
|
Nerurkar PV, Yokoyama J, Ichimura K, Kutscher S, Wong J, Bittenbender HC, Deng Y. Medium Roasting and Brewing Methods Differentially Modulate Global Metabolites, Lipids, Biogenic Amines, Minerals, and Antioxidant Capacity of Hawai'i-Grown Coffee ( Coffea arabica). Metabolites 2023; 13:412. [PMID: 36984852 PMCID: PMC10051321 DOI: 10.3390/metabo13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In the United States, besides the US territory Puerto Rico, Hawai'i is the only state that grows commercial coffee. In Hawai'i, coffee is the second most valuable agricultural commodity. Health benefits associated with moderate coffee consumption, including its antioxidant capacity, have been correlated to its bioactive components. Post-harvest techniques, coffee variety, degree of roasting, and brewing methods significantly impact the metabolites, lipids, minerals, and/or antioxidant capacity of brewed coffees. The goal of our study was to understand the impact of roasting and brewing methods on metabolites, lipids, biogenic amines, minerals, and antioxidant capacity of two Hawai'i-grown coffee (Coffea arabica) varieties, "Kona Typica" and "Yellow Catuai". Our results indicated that both roasting and coffee variety significantly modulated several metabolites, lipids, and biogenic amines of the coffee brews. Furthermore, regardless of coffee variety, the antioxidant capacity of roasted coffee brews was higher in cold brews. Similarly, total minerals were higher in "Kona Typica" cold brews followed by "Yellow Catuai" cold brews. Hawai'i-grown coffees are considered "specialty coffees" since they are grown in unique volcanic soils and tropical microclimates with unique flavors. Our studies indicate that both Hawai'i-grown coffees contain several health-promoting components. However, future studies are warranted to compare Hawai'i-grown coffees with other popular brand coffees and their health benefits in vivo.
Collapse
Affiliation(s)
- Pratibha V. Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jennifer Yokoyama
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Kramer Ichimura
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Shannon Kutscher
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jamie Wong
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Harry C. Bittenbender
- Department of Tropical Plant and Soil Sciences (TPSS), CTAHR, UHM, Honolulu, HI 96822, USA
| | - Youping Deng
- Bioinformatics Core, Departmentt of Quantitative Health Sciences, University of Hawai‘i Cancer Center (UHCC), John A. Burns School of Medicine (JABSOM), UHM, Honolulu, HI 96813, USA
| |
Collapse
|
33
|
Rohman R, Nath R, Kar R. Revisiting the Hydrogen Atom Transfer Reactions through a Simple and Accurate Theoretical Model: Role of Hydrogen Bond Energy in Polyphenolic Antioxidants. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
34
|
Deng W, Chen Y, Sun X, Wang L. AODB: A comprehensive database for antioxidants including small molecules, peptides and proteins. Food Chem 2023; 418:135992. [PMID: 37001349 DOI: 10.1016/j.foodchem.2023.135992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Antioxidants are widely used in the fields of food, medicine, nutraceuticals, and cosmetics. Given their important roles in promoting and maintaining human health, a large number of antioxidants have been reported. Some antioxidant-related databases have been developed; however, the annotation of antioxidants and related information stored in existing databases is incomplete and requires more efficient retrieval methods. This study aimed to develop a manually curated comprehensive antioxidant database (AODB). Currently, it stores 56,666 small molecules tested for antioxidant activity, 1480 antioxidant peptides, and 998 antioxidant proteins, including their structures, names, antioxidant assay records, computable physicochemical and ADMET properties, and sources. AODB supports text search and mining, 2D and 3D chemical structure search, and BLAST-based protein sequence search, enabling users to retrieve antioxidant data quickly and easily. AODB, as a one-stop antioxidant database, can facilitate the exploration of antioxidants and potential applications. AODB is publicly available and updated annually at https://aodb.idruglab.cn/.
Collapse
|
35
|
El-Sayed MH, Alshammari FA, Sharaf MH. Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens. J Microbiol Biotechnol 2023; 33:61-74. [PMID: 36597590 PMCID: PMC9896001 DOI: 10.4014/jmb.2211.11026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 μg/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis( 3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 μg/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Science and Arts, Northern Border University, Saudi Arabia,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt,Corresponding author Phone: +20 111 91 070 44 E-mail:
| | - Fahdah A. Alshammari
- Department of Biology, College of Science and Arts, Northern Border University, Saudi Arabia
| | - Mohammed H. Sharaf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
36
|
Charlton NC, Mastyugin M, Török B, Török M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023; 28:molecules28031057. [PMID: 36770724 PMCID: PMC9920158 DOI: 10.3390/molecules28031057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed on changing major physicochemical parameters, including log p, bond dissociation energy, ionization potential, and others which result in improved antioxidant activity.
Collapse
|
37
|
Oxidative Stress and Antioxidants-A Critical Review on In Vitro Antioxidant Assays. Antioxidants (Basel) 2022; 11:antiox11122388. [PMID: 36552596 PMCID: PMC9774584 DOI: 10.3390/antiox11122388] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022] Open
Abstract
Antioxidants have been widely studied in the fields of biology, medicine, food, and nutrition sciences. There has been extensive work on developing assays for foods and biological systems. The scientific communities have well-accepted the effectiveness of endogenous antioxidants generated in the body. However, the health efficacy and the possible action of exogenous dietary antioxidants are still questionable. This may be attributed to several factors, including a lack of basic understanding of the interaction of exogenous antioxidants in the body, the lack of agreement of the different antioxidant assays, and the lack of specificity of the assays, which leads to an inability to relate specific dietary antioxidants to health outcomes. Hence, there is significant doubt regarding the relationship between dietary antioxidants to human health. In this review, we documented the variations in the current methodologies, their mechanisms, and the highly varying values for six common food substrates (fruits, vegetables, processed foods, grains, legumes, milk, and dairy-related products). Finally, we discuss the strengths and weaknesses of the antioxidant assays and examine the challenges in correlating the antioxidant activity of foods to human health.
Collapse
|
38
|
Gerasimova EL, Gazizullina EG, Igdisanova DI, Sidorova LP, Tseitler TA, Emelianov VV, Chupakhin ON, Ivanova AV. Antioxidant properties of 2,5-substituted 6H-1,3,4-thiadiazines promising for experimental therapy of diabetes mellitus. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
39
|
Timoszyk A, Grochowalska R. Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants. Pharmaceutics 2022; 14:pharmaceutics14122599. [PMID: 36559093 PMCID: PMC9784296 DOI: 10.3390/pharmaceutics14122599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, the biosynthesis of gold nanoparticles (AuNPs) has been widely studied and described. In the age of bacterial drug resistance, an intensive search for new agents with antibacterial properties or a new form of antibiotics with effective action is necessary. As a result, the antibacterial activity of AuNPs functionalized with natural compounds is being investigated more frequently. AuNPs biosynthesized with plant extract or functionalized with bioactive compounds isolated from plants could be particularly useful for pharmaceutical applications. The biosynthesized AuNPs are stabilized by an envelope, which may consist of flavonoids, phenolic acids, lipids and proteins as well as carbohydrates and vitamins. The composition of the natural coating affects the size, shape and stability of the AuNPs and is also responsible for interactions with the bacterial cell wall. Recently, several mechanisms of AuNP interactions with bacterial cells have been identified. Nevertheless, they are not yet well understood, due to the large diversity of plants and biosynthesized AuNPs. Understanding the antibacterial mechanisms allows for the creation of pharmaceutical formulations in the most useful form. Utilizing AuNPs functionalized with plant compounds as antibacterial agents is still a new concept. However, the unique physicochemical and biological properties of AuNPs emphasises their potential for a broad range of applications in the future.
Collapse
Affiliation(s)
- Anna Timoszyk
- Laboratory of Biophysics, Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
- Correspondence:
| | - Renata Grochowalska
- Laboratory of Biochemistry and Cell Biology, Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| |
Collapse
|
40
|
Castiglioni S, Stefano M, Astolfi P, Pisani M, Carloni P. Characterisation of Bee Pollen from the Marche Region (Italy) According to the Botanical and Geographical Origin with Analysis of Antioxidant Activity and Colour, Using a Chemometric Approach. Molecules 2022; 27:7996. [PMID: 36432097 PMCID: PMC9692707 DOI: 10.3390/molecules27227996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Attempts have often been made to isolate and characterise monofloral pollens to correlate nutritional with botanical properties. Nevertheless, pollen harvested in a particular area that can have a high biodiversity could have healthier properties. In addition, the analysis of the pollen's botanical composition can be important for characterising the typical flora of a specific geographical area. On this basis, various pollens collected in different locations of the Marche region (Italy) and in different harvesting periods were analyzed for botanical composition and antioxidant (total phenolic content, ABTS, DPPH and ORAC tests), granulometry and colour (CIE L*a*b*) properties to evaluate the biodiversity of pollen sources within a particular geographical area and to correlate this to the nutraceutical characteristics. Antioxidant activity results showed values generally higher than those of monofloral pollens harvested in the same areas but manually separated according to colour, shape and size. This suggests that even the floral species present in low percentages may have an influence on the nutraceutical properties of these products. The multivariate statistical elaboration of the obtained results permitted the separation of samples containing a prevalent botanical species and the grouping of all the samples into separate clusters corresponding to different areas of Marche.
Collapse
Affiliation(s)
- Sara Castiglioni
- Department of Agricultural, Food and Environmental Sciences—D3A, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Mariassunta Stefano
- Amap Marche Agricoltura Pesca—Agenzia per l’Innovazione nel Settore Agroalimentare e della Pesca, Centro Agrochimico Regionale, I-60035 Jesi, Italy
| | - Paola Astolfi
- Department of Materials, Environmental Sciences and Urban Planning—SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Michela Pisani
- Department of Materials, Environmental Sciences and Urban Planning—SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences—D3A, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| |
Collapse
|
41
|
Tong SC, Siow LF, Tang TK, Lee YY. Plant-based milk: unravel the changes of the antioxidant index during processing and storage - a review. Crit Rev Food Sci Nutr 2022; 64:4603-4621. [PMID: 36377721 DOI: 10.1080/10408398.2022.2143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a nutrient rich emulsion extracted from plant materials, plant-based milk (PBM) has been the latest trend and hot topic in the food industry due to the growing awareness of consumers toward plant-based products in managing the environmental (carbon footprint and land utility), ethical (animal well-fare) and societal (health-conscious) issues. There have been extensive studies and reviews done to discuss the distinct perspective of PBM including its production, health effects and market acceptance. However, not much has been emphasized on the valuable antioxidants present in PBM which is one of the attributes making them stand apart from dairy milk. The amounts of antioxidants in PBM are important. They offered tremendous health benefits in maintaining optimum health and reducing the risk of various health disorders. Therefore, enhancing the extraction of antioxidants and preserving their activity during production and storage is important. However, there is a lack of a comprehensive review of how these antioxidants changes in response to different processing steps involved in PBM production. Presumably, antioxidants in PBM could be potentially lost due to thermal degradation, oxidation or leaching into processing water. Hence, this paper aims to fill the gaps by addressing an extensive review of how different production steps (germination, roasting, soaking, blanching, grinding and filtration, and microbial inactivation) affect the antioxidant content in PBM. In addition, the effect of different microbial inactivation treatments (thermal or non-thermal processing) on the alteration of antioxidant in PBM was also highlighted. This paper can provide useful insight for the industry that aims in selecting suitable processing steps to produce PBM products that carry with them a health declaration.
Collapse
Affiliation(s)
- S C Tong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - L F Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - T K Tang
- School of Food Studies and Gastronomy, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Y Y Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
- Monash-Industry Plant Oils Research Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
42
|
Adebayo AA, Oboh G, Ademosun AO. Almond and date fruits enhance antioxidant status and have erectogenic effect: Evidence from in vitro and in vivo studies. J Food Biochem 2022; 46:e14255. [PMID: 35644948 DOI: 10.1111/jfbc.14255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022]
Abstract
This study was designed to investigate the efficacies of almond and date fruits on redox imbalance and enzymes relevant to the pathogenesis of erectile dysfunction. The total polyphenol contents, ferric reducing antioxidant power, and vitamin C content were determined spectrophotometrically. Phenolic and amino acid compositions were quantified using HPLC; meanwhile, the antioxidant activities were determined using DPPH, ABTS, FRAP, and metal chelation. Also, the effect of almond and date extract on advanced glycated end-products (AGEs) formation, arginase, and phosphodiesterase-5 activities was evaluated in vitro. Thereafter, the influence of almond and date supplemented diets on copulatory behaviors in normal rats was assessed, followed by arginase and phosphodiesterase-5 activities determination in vivo. The results revealed that date and almond extracts exerted antioxidant properties, prevented AGEs formation in vitro, and inhibited arginase and phosphodiesterase-5 activities in vitro and in vivo. Besides, almond and date supplemented diets significantly enhance sexual behaviors in normal rats when compared with the control. Among the active compounds identified were gallic acid, ellagic acid, quercetin, and rutin. All the 20 basic amino acids were identified. Given the aforementioned, date and almond could represent a reliable source of functional foods highly rich in compounds with antioxidant activity, and arginase and PDE-5 inhibitory properties. PRACTICAL APPLICATIONS: Fruits are essential part of the human diet that furnish the body with important nutrients. Despite the crucial roles of fruits in human diets, some fruits like almond and date are underutilized among Nigerians. However, we characterized the important compounds present in these fruits and how their presence contributes to the biological activities of the fruits. Finally, we relate the chemical composition and the observed biological activities to the overall health and wellness of the consumers.
Collapse
Affiliation(s)
- Adeniyi A Adebayo
- Functional Foods and Nutraceutical Research Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria.,Chemical Sciences Department (Biochemistry Option), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Research Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
43
|
Anju T, Prabhakar P, Sreedharan S, Kumar A. Nutritional, antioxidant and dietary potential of some traditional leafy vegetables used in ethnic culinary preparations. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Poliński S, Topka P, Tańska M, Kowalska S, Czaplicki S, Szydłowska-Czerniak A. Effect of Grinding Process Parameters and Storage Time on Extraction of Antioxidants from Ginger and Nutmeg. Molecules 2022; 27:7395. [PMID: 36364222 PMCID: PMC9654629 DOI: 10.3390/molecules27217395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/10/2024] Open
Abstract
The aim of this study was to optimize the grinding process parameters (mesh size of grinder sieve (X1), the peripheral velocity of the grinding wheels (X2)), and the storage time (X3) of ground ginger rhizome and nutmeg to obtain ethanol and ethanol-water extracts with improved antioxidant properties. The optimal conditions were estimated using response surface methodology (RSM) based on a three-variable Box-Behnken design (BBD) in order to maximize the antioxidant capacity (AC) determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, and the total phenolic content (TPC) was determined by the Folin-Ciocalteu (F-C) method in spice extracts. Additionally, the phenolic acid profiles in extracts from optimized conditions were analyzed using ultra-performance liquid chromatography (UPLC). It was found that the optimal preparation conditions for antioxidant extraction were dependent on the spice source and solvent type. The best antioxidant properties in nutmeg extracts were achieved for X1 = 1.0 mm, X2 = 40-41 Hz and X3 = 7 days, whereas the optimized parameters for ginger extracts were more varied (1.0-2.0 mm, 43-50 Hz and 1-9 days, respectively). The ginger extracts contained 1.5-1.8 times more phenolic acids, and vanillic, ferulic, gallic, and p-OH-benzoic acids were dominant. In contrast, the nutmeg extracts were rich in protocatechuic, vanillic, and ferulic acids.
Collapse
Affiliation(s)
- Szymon Poliński
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Confectionery Factory “Kopernik” S.A., 87-100 Toruń, Poland
| | - Patrycja Topka
- Confectionery Factory “Kopernik” S.A., 87-100 Toruń, Poland
- Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Małgorzata Tańska
- Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Sylwia Kowalska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Sylwester Czaplicki
- Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
45
|
Combination of Screen-Printed Carbon Electrode and Molecularly Imprinted Polymers for the Selective Determination of Phenolic Compounds in Wine. Antioxidants (Basel) 2022; 11:antiox11102036. [PMID: 36290759 PMCID: PMC9598643 DOI: 10.3390/antiox11102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeic acid (CA) is an efficient antioxidant found in wine and in plants and can be extracted from the by-products of the food industry. A molecularly imprinted polymer specific to caffeic acid (CA-MIP) was prepared by radical polymerization using N-phenylacrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, and azobisisobutyronitrile as the initiator, in the presence of CA as the template molecule. The rebinding activities between the polymers and CA were promoted by an indirect method and characterized by cyclic voltammetry (CV) using a screen-printed carbon electrode (SPCE). It is a fast method, which only requires simple and portable instrumentation. The polymer showed a high selectivity toward CA and a good repeatability. CA-MIP was then applied in wine samples spiked with CA, and the results were compared to those obtained by a chromatographic method. With a limit of detection of 0.06 mM in wine, the recovery values confirmed that the method is suitable for further applications.
Collapse
|
46
|
Effect of caffeic acid esters on antioxidant activity and oxidative stability of sunflower oil: Molecular simulation and experiments. Food Res Int 2022; 160:111760. [DOI: 10.1016/j.foodres.2022.111760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/26/2022]
|
47
|
Eltamany EE, Mosalam EM, Mehanna ET, Awad BM, Mosaad SM, Abdel-Kader MS, Ibrahim AK, Badr JM, Goda MS. Potential Gonado-Protective Effect of Cichorium endivia and Its Major Phenolic Acids against Methotrexate-Induced Testicular Injury in Mice. Biomedicines 2022; 10:1986. [PMID: 36009533 PMCID: PMC9406180 DOI: 10.3390/biomedicines10081986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cichorium endivia L. (Asteraceae) is a wide edible plant that grows in the Mediterranean region. In this study, a phytochemical investigation of C. endivia L. ethanolic extract led to the isolation of stigmasterol (1), ursolic acid (2), β-amyrin (3), azelaic acid (4), vanillic acid (5), (6S, 7E)-6-hydroxy-4,7-megastigmadien-3,9-dione (S(+)-dehydrovomifoliol) (6), 4-hydroxy phenyl acetic acid (7), vomifoliol (8), ferulic acid (9), protocatechuic acid (10), kaempferol (11), p. coumaric acid (12), and luteolin (13). In addition, the total phenolic content as well as the in vitro antioxidant activity of C. endivia L. extract were estimated. Moreover, we inspected the potential gonado-protective effect of C. endivia crude extract, its phenolic fraction, and the isolated coumaric, vanillic, and ferulic acids against methotrexate (MTX)-induced testicular injury in mice. There were seven groups: normal control, MTX control, MTX + C. endivia crude extract, MTX + C. endivia phenolic fraction, MTX + isolated coumaric acid, MTX + isolated vanillic acid, and MTX + isolated ferulic acid. MTX was given by i.p. injection of a 20 mg/kg single dose. The crude extract and phenolic fraction were given with a dose of 100 mg/kg/day, whereas the compounds were given at a dose of 10 mg/kg/day. A histopathological examination was done. The testosterone level was detected in serum together with the testicular content of malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), interleukin 1β (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB), B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x protein (Bax), p53, and miR-29a. C. endivia crude extract, the phenolic fraction, and the isolated compounds showed significant elevation in their levels of testosterone, CAT, SOD, Bcl-2 with a significant decrease in their levels of MDA, TNF-α, IL-1β, IL-6, NF-κB, Bax, P53, and miR-29a compared to those of the MTX control group. In conclusion, C. endivia mitigated MTX-induced germ cell toxicity via anti-inflammatory, antioxidant, and antiapoptotic effects.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Esraa M. Mosalam
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebin El-Koum 32511, Egypt
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Basma M. Awad
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, El-Arish 45518, Egypt
| | - Sarah M. Mosaad
- Division of Pharmacology and Therapeutics, Department of Continuous Medical Education, General Authority of Healthcare, Ismailia 41522, Egypt
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
48
|
Anti-Inflammatory, Anti-Diabetic, Anti-Oxidant and Cytotoxicity Assays of South African Herbal Teas and Bush Tea Blends. Foods 2022; 11:foods11152233. [PMID: 35954001 PMCID: PMC9368003 DOI: 10.3390/foods11152233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
South Africa is home to a variety of herbal teas, such as bush tea (Athrixia phylicoides DC.), honeybush tea (Cyclopia intermedia E. Mey and C. subternata Vogel), special tea (Monsonia burkeana Planch. ex Harv.), and rooibos tea (Aspalathus linearis (Burm.f.) R. Dahlgren) that are known to possess anti-oxidant, anti-inflammatory and anti-diabetic properties. The objective of this study was to determine the in vitro anti-oxidant activity of selected tea blends using 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, as well as to assess their anti-inflammatory properties using the 15-lipoxygenase inhibitory assay. Furthermore, the study measured glucose utilisation in C2C12 myotubes. Lastly, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to test the safety of the tea extracts on Vero cells (African green monkey kidney cell line). Special tea and its blend with bush tea exhibited potent anti-oxidant and anti-inflammatory activity. The blending of bush tea with special tea at different ratios resulted in increased anti-oxidant activity. Although special tea had a level of cell toxicity, its toxicity was lowered during blending. All of the tea samples showed anti-diabetic effects, although with less potency as compared to insulin. The current investigation supports the use of blended herbal teas, and the positive anti-inflammatory effect of special tea warrants further research.
Collapse
|
49
|
In Vitro Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities and Antioxidant Capacity of Helichrysum cymosum and Helichrysum pandurifolium Schrank Constituents. SEPARATIONS 2022. [DOI: 10.3390/separations9080190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is a group of systemic metabolic disorders with a high rate of morbidity and mortality worldwide. Due to the detrimental side effects of the current treatment, there is a great need to develop more effective antidiabetic drugs with fewer side effects. Natural products are a well-known source for the discovery of new scaffolds for drug discovery, including new antidiabetic drugs. The genus Helichrysum has been shown to produce antidiabetic natural products. In this investigation, the methanolic extract of H. cymosum and H. pandurifolium resulted in the isolation and identification of eleven known compounds viz 5,8-dihydroxy-7-methoxy-2-phenyl flavanone (1), pinostrobin (2), dihydrobaicalein (3), glabranin (4), allopatuletin (5), pinostrobin chalcone (6), helichrysetin (7), 5-hydroxy-3,7-dimethoxyflavone (8), 3,5-dihydroxy-6,7,8-trimethoxyflavone (9), 3-O-methylquercetin (10), and 3-methylethergalangin (11). The in vitro bio-evaluation of isolated compounds against alpha-glucosidase showed that 10, 5, and 11 demonstrated the highest alpha-glucosidase inhibitory activity with IC50 values of 9.24 ± 0.4, 12.94 ± 0.2, and 16.00 ± 2.4 μM respectively, followed by 7 and 3 with IC50 values of 18.16 ± 1.2 and 44.44 ± 0.2 μM respectively. However, none of these compounds showed a measurable inhibitory effect on alpha-amylase under the experimental conditions used except compound 10 which showed a poor alpha-amylase inhibitory activity with an IC50 value of 230.66 ± 15.8 μM. Additionally, strong total antioxidant capacities were demonstrated by 10, 5 and 7 in ferric-ion reducing antioxidant power assay (374.34 ± 69.7; 334.37 ± 1.7; 279.93 ± 0.8) µmol AAE/mmol. This is the first scientific report to be carried out on alpha-glucosidase inhibitory activities and antioxidant capacities of H. cymosum constituents and a first report on the isolation and identification of methoxyflavanoids from H. pandurifolium. Our findings suggest that these compounds are promising candidates to inhibit alpha-glucosidase as well as oxidative stress related to diabetes. Results from molecular docking provided insight into the observed in vitro alpha-glucosidase inhibitory activities for 5, 7, 10, and 11. It is envisaged that the isolated phytochemicals from these plants may contribute to the development of hypoglycemic lead compounds with anti-diabetic potential.
Collapse
|
50
|
Identifying Major Drivers of Antioxidant Activities in Complex Polyphenol Mixtures from Grape Canes. Molecules 2022; 27:molecules27134029. [PMID: 35807274 PMCID: PMC9268674 DOI: 10.3390/molecules27134029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022] Open
Abstract
Grape canes represent a valuable source of numerous polyphenols with antioxidant properties, whose compositions vary depending on the genotype and environmental factors. Antioxidant activities of pure molecules are often reported without considering possible interactions that may occur in complex polyphenol mixture. Using UPLC-MS-based metabolomics and unsupervised classification, we explored the polyphenol variations in grape cane extracts from a collection of European varieties. Antioxidant activities were assessed using ORAC, ABTS, DPPH, FRAP, CUPRAC and chelation assays. Pairwise correlations between polyphenols and antioxidant capacities were performed to identify molecules that contributed more to the antioxidant capacities within a complex mixture of polyphenols.
Collapse
|