1
|
Hanna GS, Findlay VJ, Turner DP, Hamann MT. Quantitative NMR Analysis of Marine Macroalgae for AGE Inhibition by Methylglyoxal Scavenging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21905-21911. [PMID: 39298668 DOI: 10.1021/acs.jafc.4c04367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Reactive carbonyl species (RCS) induce a fundamental form of biological stress that has driven the evolution of diverse mechanisms for minimizing its impact on organismal health. The complications that accompany uncontrolled hyperglycemia exemplify the health implications when RCS stress exceeds the body's capacity to prevent the excessive formation of advanced glycation end-products. Presented here is a novel quantitative NMR (qNMR) technique for evaluating scavengers of the prominent sugar-derived carbonyl methylglyoxal (MGO). This tool was employed to screen the chemical diversity of marine macroalgae extracts, with a focus on species that have a history of consumption by the World's healthiest populations and are subject to global scale aquacultural production. Fucus vesiculosus demonstrated the highest capacity for inhibiting glycation and scavenging MGO. Additionally, the Chondrus cripsus, Gracilaria vermiculophyla, and Gracilaria tikvahiae extracts had a high capacity for scavenging MGO, representing the first report of this activity. This new qNMR methodology presented is highly applicable for screening extracts and compounds from diverse sources, and the results highlight the potential of macroalgae extracts to be employed as RCS and AGE targeting therapeutics and food additives.
Collapse
Affiliation(s)
- George S Hanna
- Department of Biomedical Sciences and Drug Discovery, Medical University of South Carolina, Charleston, South Carolina 29425, United States
- Department of Public Health, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Victoria J Findlay
- Department of Surgery, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - David P Turner
- Department of Surgery, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Mark T Hamann
- Department of Biomedical Sciences and Drug Discovery, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
2
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Miao Y, Zhao L, Lei S, Zhao C, Wang Q, Tan C, Peng C, Gong J. Caffeine regulates both osteoclast and osteoblast differentiation via the AKT, NF-κB, and MAPK pathways. Front Pharmacol 2024; 15:1405173. [PMID: 38939843 PMCID: PMC11208461 DOI: 10.3389/fphar.2024.1405173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Background: Although caffeine generally offers benefits to human health, its impact on bone metabolism remains unclear. Aim and Methods: This study aimed to systematically evaluate the long-term effects of caffeine administration on osteoclasts, osteoblasts, and ovariectomy-induced postmenopausal osteoporosis (OP). Results: Our in vitro findings revealed that 3.125 and 12.5 μg/mL caffeine inhibited RANKL-mediated osteoclastogenesis in RAW 264.7 cells through the MAPK and NF-κB pathways, accompanied by the inactivation of nuclear translocation of nuclear factor NFATc1. Similarly, 3.125 and 12.5 μg/mL of caffeine modulated MC3T3-E1 osteogenesis via the AKT, MAPK, and NF-κB pathways. However, 50 μg/mL of caffeine promoted the phosphorylation of IκBα, P65, JNK, P38, and AKT, followed by the activation of NFATc1 and the inactivation of Runx2 and Osterix, ultimately disrupting the balance between osteoblastogenesis and osteoclastogenesis. In vivo studies showed that gavage with 55.44 mg/kg caffeine inhibited osteoclastogenesis, promoted osteogenesis, and ameliorated bone loss in ovariectomized mice. Conclusion: Conversely, long-term intake of high-dose caffeine (110.88 mg/kg) disrupted osteogenesis activity and promoted osteoclastogenesis, thereby disturbing bone homeostasis. Collectively, these findings suggest that a moderate caffeine intake (approximately 400 mg in humans) can regulate bone homeostasis by influencing both osteoclasts and osteoblasts. However, long-term high-dose caffeine consumption (approximately 800 mg in humans) could have detrimental effects on the skeletal system.
Collapse
Affiliation(s)
- Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lei Zhao
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
4
|
Wang W, Jiang H, Yu J, Lou C, Lin J. Astaxanthin-mediated Nrf2 activation ameliorates glucocorticoid-induced oxidative stress and mitochondrial dysfunction and impaired bone formation of glucocorticoid-induced osteonecrosis of the femoral head in rats. J Orthop Surg Res 2024; 19:294. [PMID: 38745231 PMCID: PMC11092235 DOI: 10.1186/s13018-024-04775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head caused by glucocorticoids (GIONFH) is a significant issue resulting from prolonged or excessive clinical glucocorticoid use. Astaxanthin, an orange-red carotenoid present in marine organisms, has been the focus of this study to explore its impact and mechanism on osteoblast apoptosis induced by dexamethasone (Dex) and GIONFH. METHODS In this experiment, bioinformatic prediction, molecular docking and dynamics simulation, cytotoxicity assay, osteogenic differentiation, qRT-PCR analysis, terminal uridine nickend labeling (TUNEL) assay, determination of intracellular ROS, mitochondrial function assay, immunofluorescence, GIONFH rat model construction, micro-computed tomography (micro-CT) scans were performed. RESULTS Our research demonstrated that a low dose of astaxanthin was non-toxic to healthy osteoblasts and restored the osteogenic function of Dex-treated osteoblasts by reducing oxidative stress, mitochondrial dysfunction, and apoptosis. Furthermore, astaxanthin rescued the dysfunction in poor bone quality, bone metabolism and angiogenesis of GIONFH rats. The mechanism behind this involves astaxanthin counteracting Dex-induced osteogenic damage by activating the Nrf2 pathway. CONCLUSION Astaxanthin shields osteoblasts from glucocorticoid-induced oxidative stress and mitochondrial dysfunction via Nrf2 pathway activation, making it a potential therapeutic agent for GIONFH treatment.
Collapse
Affiliation(s)
- Weidan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hongyi Jiang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jiachen Yu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Chao Lou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
5
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Fu F, Luo H, Du Y, Chen Y, Tian K, Pan J, Li J, Wang N, Bao R, Jin H, Tong P, Ruan H, Wu C. AR/PCC herb pair inhibits osteoblast pyroptosis to alleviate diabetes-related osteoporosis by activating Nrf2/Keap1 pathway. J Cell Mol Med 2023; 27:3601-3613. [PMID: 37621124 PMCID: PMC10660633 DOI: 10.1111/jcmm.17928] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoporosis is a prevalent complication of diabetes, characterized by systemic metabolic impairment of bone mass and microarchitecture, particularly in the spine. Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been extensively employed in Traditional Chinese Medicine to manage diabetes; however, its potential to ameliorate diabetic osteoporosis (DOP) has remained obscure. Herein, we explored the protective efficacy of AR/PCC herb pair against DOP using a streptozotocin (STZ)-induced rat diabetic model. Our data showed that AR/PCC could effectively reduce the elevated fasting blood glucose and reverse the osteoporotic phenotype of diabetic rats, resulting in significant improvements in vertebral trabecular area percentage, trabecular thickness and trabecular number, while reducing trabecular separation. Specifically, AR/PCC herb pair improved impaired osteogenesis, nerve ingrowth and angiogenesis. More importantly, it could mitigate the aberrant activation of osteoblast pyroptosis in the vertebral bodies of diabetic rats by reducing increased expressions of Nlrp3, Asc, Caspase1, Gsdmd and IL-1β. Mechanistically, AR/PCC activated antioxidant pathway through the upregulation of the antioxidant response protein Nrf2, while concurrently decreasing its negative feedback regulator Keap1. Collectively, our in vivo findings demonstrate that AR/PCC can inhibit osteoblast pyroptosis and alleviate STZ-induced rat DOP, suggesting its potential as a therapeutic agent for mitigating DOP.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yu Du
- The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuying Chen
- The Fourth Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Kun Tian
- Department of OrthopaedicsThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jin Pan
- Department of Architecture, School of ArchitectureChina Academy of ArtHangzhouChina
| | - Jian Li
- Department of OrthopaedicsHangzhou Ninth People's HospitalHangzhouChina
| | - Nani Wang
- Department of MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouChina
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Peijian Tong
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Hongfeng Ruan
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengliang Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| |
Collapse
|
7
|
Fan Q, Zhou XH, Wang TF, Zeng FJ, Liu X, Gu Y, Chen B, Yang J, Pang ZY, Liu JG, Bai GH. Effects of epigallocatechin-3-gallate on oxidative stress, inflammation, and bone loss in a rat periodontitis model. J Dent Sci 2023; 18:1567-1575. [PMID: 37799898 PMCID: PMC10548010 DOI: 10.1016/j.jds.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/16/2023] [Indexed: 03/13/2023] Open
Abstract
Background/purpose Epigallocatechin-3-gallate (EGCG) is playing an increasingly important role in the treatment of oral diseases. However, its mechanisms remain to be clarified. This study aimed to investigate the effect of EGCG on oxidative and inflammatory stress and bone loss in experimental periodontitis. Materials and methods Periodontitis was induced in rats, followed by gavage using different concentrations of EGCG for 5 weeks. The levels of interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD) and malondialdehyde (MDA) in rats were measured. The degree of alveolar bone loss and the number of inflammatory cells were detected. The integrated optical density of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (HO-1), NLR pyrin domain-containing 3 (NLRP3) and nuclear factor-kappaB p65 (NF-κB p65) was measured. Results EGCG (200 mg/kg) significantly reduced alveolar bone loss in the ligated maxillary molars and the number of inflammatory cells in the EGCG-200 group compared with the periodontitis, EGCG-100 and EGCG-400 groups. 200 mg/kg was the optimal dose of EGCG and was used in subsequent experiments. The expression levels of IL-1β, IL-18, TNF-α and MDA were significantly lower and the expression level of SOD was significantly higher in the EGCG-200 group compared with the periodontitis group. The expression of NLRP3 and NF-κB p65 was significantly decreased, while the expression of Nrf2 and HO-1 was significantly increased in the EGCG-200 group compared with the periodontitis group. Conclusion These results suggest that EGCG inhibits oxidative stress and inflammatory responses in the periodontitis model by modulating the Nrf2/HO-1/NLRP3/NF-κB p65 signaling pathway, thereby decreasing alveolar bone loss.
Collapse
Affiliation(s)
- Qin Fan
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xiao-Hong Zhou
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Teng-Fei Wang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
- The Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, China
| | - Feng-Jiao Zeng
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Xia Liu
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Yu Gu
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Bin Chen
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jie Yang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Zi-Yi Pang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jian-Guo Liu
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Guo-Hui Bai
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Zhou J, Liu S, Bi S, Kong W, Qian R, Xie X, Zeng M, Jiang X, Liao Z, Shuai M, Liu W, Cheng L, Wu M. The RAGE signaling in osteoporosis. Biomed Pharmacother 2023; 165:115044. [PMID: 37354815 DOI: 10.1016/j.biopha.2023.115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoporosis (OP), characterized by an imbalance of bone remodeling between formation and resorption, has become a health issue worldwide. The receptor for advanced glycation end product (RAGE), a transmembrane protein in the immunoglobin family, has multiple ligands and has been involved in many chronic diseases, such as diabetes and OP. Increasing evidence shows that activation of the RAGE signaling negatively affects bone remodeling. Ligands, such as advanced glycation end products (AGEs), S100, β-amyloid (Aβ), and high mobility group box 1 (HMGB1), have been well documented that they may negatively regulate the proliferation and differentiation of osteoblasts and positively stimulate osteoclastogenesis by activating the expression of RAGE. In this review, we comprehensively discuss the structure of RAGE and its biological functions in the pathogenesis of OP. The research findings suggest that RAGE signaling has become a potential target for the therapeutic management of OP.
Collapse
Affiliation(s)
- Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Rui Qian
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Ming Zeng
- Department of Orthopedics, Ruijin Traditional Chinese Medicine Hospital, Ruijin 342500, China
| | - Xiaowei Jiang
- Department of Joint Surgery, Ningdu County People's Hospital, Ningdu 342800, China
| | - Zhibin Liao
- Department of Joint Surgery, Ningdu County People's Hospital, Ningdu 342800, China
| | - Ming Shuai
- Department of Orthopedics, Chongyi County People's Hospital, Chongyi 341300, China
| | - Wei Liu
- Department of Orthopedics, Ningdu County Traditional Chinese Medicine Hospital, Ningdu 342800, China
| | - Long Cheng
- Department of Orthopedics, Ningdu County Traditional Chinese Medicine Hospital, Ningdu 342800, China
| | - Moujian Wu
- Department of Orthopedics, Xingguo County Traditional Chinese Medicine Hospital, Xingguo 342400, China
| |
Collapse
|
9
|
Duan J, Zhao Y, Pei F, Deng W, He L, Rao C, Zhai Y, Zhang C. Swietenine inhibited oxidative stress through AKT/Nrf2/HO-1 signal pathways and the liver-protective effect in T2DM mice: In vivo and in vitro study. ENVIRONMENTAL TOXICOLOGY 2023; 38:1292-1304. [PMID: 36880193 DOI: 10.1002/tox.23764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Swietenia macrophylla King, belongs to the Meliaceae family, is a valuable medicinal plant and its fruits have been processed commercially to a variety of health foods. The seeds have long been known for their ethnomedicinal significance against these diseases. Swietenine (Swi) was isolated from S. macrophylla and could ameliorate inflammation and oxidative stress. In this study, HepG2 cells induced by H2 O2 were used to construct oxidative stress model in vitro. The aim of this study was to investigate the protective effect of Swi on H2 O2 induced oxidative injury in HepG2 cells and its molecular mechanism, and to explore the effect of Swi on liver injury in db/db mice and its possible mechanism. The results showed that Swi significantly inhibited HepG2 cells viability and reduced oxidative damage in a dose-dependent manner as evidenced by a range of biochemical analysis and immunoblotting study. Moreover, it induced the protein and mRNA expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of AKT in HepG2 cells. LY294002, a PI3K/AKT inhibitor, significantly suppressed the Nrf2 nuclear translocation and HO-1 expression in H2 O2 induced HepG2 cells treated with Swi. In addition, RNA interference with Nrf2 significantly reduced the expression level of Nrf2 and HO-1 in the nucleus. Swi has a significant protective effect on cell damage in H2 O2 induced HepG2 cells by increasing the antioxidant capacity which is achieved through the AKT/Nrf2/HO-1 pathway. Additionally, in vivo, Swi could protect the liver of type 2 diabetic mice by improving lipid deposition in liver tissue and inhibiting oxidative stress. These findings indicated that Swi can be a promising dietary agent to improve type 2 diabetes.
Collapse
Affiliation(s)
- Jingyu Duan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yangqi Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Feilong Pei
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wenhao Deng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liangliang He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Chengdian Rao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yutong Zhai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Chunping Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
10
|
Shin J, Choi LS, Jeon HJ, Lee HM, Kim SH, Kim KW, Ko W, Oh H, Park HS. Synthetic Glabridin Derivatives Inhibit LPS-Induced Inflammation via MAPKs and NF-κB Pathways in RAW264.7 Macrophages. Molecules 2023; 28:molecules28052135. [PMID: 36903379 PMCID: PMC10004008 DOI: 10.3390/molecules28052135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Glabridin is a polyphenolic compound with reported anti-inflammatory and anti-oxidative effects. In the previous study, we synthesized glabridin derivatives-HSG4112, (S)-HSG4112, and HGR4113-based on the structure-activity relationship study of glabridin to improve its biological efficacy and chemical stability. In the present study, we investigated the anti-inflammatory effects of the glabridin derivatives in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We found that the synthetic glabridin derivatives significantly and dose-dependently suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and decreased the level of inducible nitric oxygen synthase (iNOS) and cyclooxygenase-2 (COX-2) and the expression of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). The synthetic glabridin derivatives inhibited the nuclear translocation of the NF-κB by inhibiting phosphorylation of the inhibitor of κB alpha (IκB-α), and distinctively inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. In addition, the compounds increased the expression of antioxidant protein heme oxygenase (HO-1) by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) through ERK and p38 MAPKs. Taken together, these results indicate that the synthetic glabridin derivatives exert strong anti-inflammatory effects in LPS-stimulated macrophages through MAPKs and NF-κB pathways, and support their development as potential therapeutics against inflammatory diseases.
Collapse
Affiliation(s)
- Jaejin Shin
- Glaceum Inc., Suwon 16675, Republic of Korea
| | | | | | - Hyeong Min Lee
- Glaceum Inc., Suwon 16675, Republic of Korea
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | | | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Wonmin Ko
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | | |
Collapse
|
11
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
12
|
Acute Methylglyoxal-Induced Damage in Blood-Brain Barrier and Hippocampal Tissue. Neurotox Res 2022; 40:1337-1347. [PMID: 36057040 DOI: 10.1007/s12640-022-00571-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl compound formed mostly via the glycolytic pathway. Elevated blood glucose levels can cause MG accumulation in plasma and cerebrospinal fluid in patients with diabetes mellitus and Alzheimer's disease. Under these disease conditions, the high reactivity of MG leads to modification of proteins and other biomolecules, generating advanced glycation end products (AGEs), which are considered mediators in neurodegenerative diseases. We investigated the integrity of the blood-brain barrier (BBB) and astrocyte response in the hippocampus to acute insult induced by MG when it was intracerebroventricularly administered to rats. Seventy-two hours later, BBB integrity was lost, as assessed by the entry of Evans dye into the brain tissue and albumin in the cerebrospinal fluid, and a decrease in aquaporin-4 and connexin-43 in the hippocampal tissue. MG did not induce changes in the hippocampal contents of RAGE in this short interval, but decreased the expression of S100B, an astrocyte-secreted protein that binds RAGE. The expression of two important transcription factors of the antioxidant response, NF-κB and Nrf2, was unchanged. However, hemeoxigenase-1 was upregulated in the MG-treated group. These data corroborate the idea that hippocampal cells are targets of MG toxicity and that BBB dysfunction and specific glial alterations induced by this compound may contribute to the behavioral and cognitive alterations observed in these animals.
Collapse
|
13
|
Wang W, Yang Y, Tang K. Equilibrium on reactive extraction of glabridin in a quaternary solvent system containing SBE-β-CD. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Han J, Yang K, An J, Jiang N, Fu S, Tang X. The Role of NRF2 in Bone Metabolism - Friend or Foe? Front Endocrinol (Lausanne) 2022; 13:813057. [PMID: 35282459 PMCID: PMC8906930 DOI: 10.3389/fendo.2022.813057] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Bone metabolism is closely related to oxidative stress. As one of the core regulatory factors of oxidative stress, NRF2 itself and its regulation of oxidative stress are both involved in bone metabolism. NRF2 plays an important and controversial role in the regulation of bone homeostasis in osteoblasts, osteoclasts and other bone cells. The role of NRF2 in bone is complex and affected by several factors, such as its expression levels, age, sex, the presence of various physiological and pathological conditions, as well as its interaction with certains transcription factors that maintain the normal physiological function of the bone tissue. The properties of NRF2 agonists have protective effects on the survival of osteogenic cells, including osteoblasts, osteocytes and stem cells. Activation of NRF2 directly inhibits osteoclast differentiation by resisting oxidative stress. The effects of NRF2 inhibition and hyperactivation on animal skeleton are still controversial, the majority of the studies suggest that the presence of NRF2 is indispensable for the acquisition and maintenance of bone mass, as well as the protection of bone mass under various stress conditions. More studies show that hyperactivation of NRF2 may cause damage to bone formation, while moderate activation of NRF2 promotes increased bone mass. In addition, the effects of NRF2 on the bone phenotype are characterized by sexual dimorphism. The efficacy of NRF2-activated drugs for bone protection and maintenance has been verified in a large number of in vivo and in vitro studies. Additional research on the role of NRF2 in bone metabolism will provide novel targets for the etiology and treatment of osteoporosis.
Collapse
Affiliation(s)
- Jie Han
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kuan Yang
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Jinyang An
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Na Jiang
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Songbo Fu
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xulei Tang
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Xulei Tang,
| |
Collapse
|
15
|
Zhou X, Yuan W, Xiong X, Zhang Z, Liu J, Zheng Y, Wang J, Liu J. HO-1 in Bone Biology: Potential Therapeutic Strategies for Osteoporosis. Front Cell Dev Biol 2021; 9:791585. [PMID: 34917622 PMCID: PMC8669958 DOI: 10.3389/fcell.2021.791585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a prevalent bone disorder characterized by bone mass reduction and deterioration of bone microarchitecture leading to bone fragility and fracture risk. In recent decades, knowledge regarding the etiological mechanisms emphasizes that inflammation, oxidative stress and senescence of bone cells contribute to the development of osteoporosis. Studies have demonstrated that heme oxygenase 1 (HO-1), an inducible enzyme catalyzing heme degradation, exhibits anti-inflammatory, anti-oxidative stress and anti-apoptosis properties. Emerging evidence has revealed that HO-1 is critical in the maintenance of bone homeostasis, making HO-1 a potential target for osteoporosis treatment. In this Review, we aim to provide an introduction to current knowledge of HO-1 biology and its regulation, focusing specifically on its roles in bone homeostasis and osteoporosis. We also examine the potential of HO-1-based pharmacological therapeutics for osteoporosis and issues faced during clinical translation.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
17
|
Che J, Yang J, Zhao B, Shang P. HO-1: A new potential therapeutic target to combat osteoporosis. Eur J Pharmacol 2021; 906:174219. [PMID: 34081904 DOI: 10.1016/j.ejphar.2021.174219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) exerts a protective effect against cell damage and induces the activity of many enzymes involved in the treatment of many human diseases, including osteoporosis. The increasing prevalence of osteoporosis and the limitations of the current treatments available led to a continuous occurrence of bone loss and osteoporotic fractures, highlighting the need of a better understanding of the mechanism and function of HO-1. Many factors cause osteoporosis, including lack of estrogen, aging, and iron overload, and they either cause the increase in inflammatory factors or the increase in reactive oxygen species to break bone reconstruction balance. Therefore, regulating the production of inflammatory factors and reactive oxygen species may become a strategy for the treatment of osteoporosis. Solid evidence showed that the overexpression of HO-1 compensates high oxidation levels by increasing intracellular antioxidant levels and reduces inflammation by suppressing pro-inflammatory factors. Some extracts can target HO-1 and ameliorate osteoporosis. However, no systematic report is available on therapies targeting HO-1 to combat osteoporosis. Therefore, this review summarizes the biological characteristics of HO-1, and the relationship between inflammatory response and reactive oxygen species production regulated by HO-1 and osteoporosis. The understanding of the role of HO-1 in osteoporosis may provide ideas for a potential clinical treatment and new drugs targeting HO-1.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| | - Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
18
|
Shen J, Cao MS, Zhou T, Chen Y, Liang J, Song Y, Xue C, Cao MH, Ke K. PGE1 triggers Nrf2/HO-1 signal pathway to resist hemin-induced toxicity in mouse cortical neurons. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:634. [PMID: 33987332 PMCID: PMC8106031 DOI: 10.21037/atm-20-5839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background Prostaglandin E1 (PGE1) exerts various pharmacological effects such as membrane stabilization, anti-inflammatory functions, vasodilation, and platelet aggregation inhibition. We have previously demonstrated that PGE1 has a beneficial impact on patients suffering from intracerebral hemorrhage (ICH). The related mechanism underlying PGE1’s beneficial effect on ICH treatment needs further exploration. Methods The present study elucidates the mechanism of PGE1 on ICH treatment using a neuronal apoptosis model in vitro. The mouse primary cortical neurons were pretreated with different concentrations of PGE1, followed by the treatment with hemin, the main catabolite in whole blood, to mimic the clinical ICH. Results Comparing with the vehicle-treated group, PGE1 prevented cultured cortical neurons from the accumulation of inhibited intracellular levels of reactive oxygen species (ROS), amelioration of mitochondrial membrane potential, and hemin-induced apoptosis. The reduction of ROS and apoptosis were associated with the up-regulation of Heme oxygenase-1 (HO-1) expression. Knockdown of nuclear transcription factor erythroid 2-related factor (Nrf2) by siRNA attenuated the upregulation of HO-1 as well as the protective effect of PGE1. Conclusions Our work suggests that the Nrf2/HO-1 molecular pathway may play a crucial role in treating ICH patients with PGE1 and may represent novel molecular targets, resulting in discovering new drugs for ICH treatment.
Collapse
Affiliation(s)
- Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Mao-Sheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Tingting Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Song
- Department of Neurology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mao-Hong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Yang L, Jiang Y, Zhang Z, Hou J, Tian S, Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113216. [PMID: 32763420 DOI: 10.1016/j.jep.2020.113216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A great deal of valuable experience has been accumulated in the traditional Chinese medicine (TCM) system for the treatment of "Xiaoke" disease which is known as diabetes mellitus now. As the most-commonly used Chinese herb, licorice has been used in TCM for more than two thousand years. It is often used in combination with other herbs to treat metabolic disorders, especially diabetes mellitus. AIM OF THE STUDY To summarize the characteristics, mechanisms, and clinical use of licorice and its active components for treating diabetes mellitus. METHODS PubMed, Web of Science, Research Gate, Science Direct, Google Scholar, and Academic Journals were used as information sources by the inclusion of the search terms 'diabetes', 'licorice', 'licorice extracts', 'flavonoids', 'triterpenoids', and their combinations, mainly from 2005 to 2019. RESULTS Licorice extracts, five flavonoids and three triterpenoids isolated from licorice possess great antidiabetic activities in vivo and in vitro. This was done by several mechanisms such as increasing the appetency and sensitivity of insulin receptor site to insulin, enhancing the use of glucose in different tissues and organs, clearing away the free radicals and resist peroxidation, correcting the metabolic disorder of lipid and protein, and improving microcirculation in the body. Multiple signaling pathways, including the PI3K/Akt, AMPK, AGE-RAGE, MAPK, NF-кB, and NLRP3 signaling pathways, are targets of the licorice compounds. CONCLUSION Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA, 15261, USA
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
20
|
Kim EN, Kim TY, Park EK, Kim JY, Jeong GS. Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis. Antioxidants (Basel) 2020; 9:E1221. [PMID: 33287198 PMCID: PMC7761716 DOI: 10.3390/antiox9121221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an infectious inflammatory disease of tissues around teeth that destroys connective tissues and is characterized by the loss of periodontal ligaments and alveolar bone. A new treatment strategy is needed owing to the limitations of the current surgical treatment method and the side effects of anti-inflammatory drugs. Therefore, here, we assessed whether Panax ginseng fruit extract (PGFE) is a new therapeutic agent for periodontitis in vitro and in vivo. According to the results, PGFE suppressed pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, and pro-inflammatory mediators such as inducible nitric oxide synthase and cyclooxygenase-2 through heme oxygenase-1 expression in human periodontal ligament cells stimulated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS). In addition, the osteogenic induction of human periodontal ligament cells was inhibited by PG-LPS, and protein and mRNA levels of osteogenic markers such as alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2) were increased. The efficacy of PGFE for inhibiting periodontitis in vitro was demonstrated in a representative in vitro model of periodontitis induced by ligature and PG-LPS. Subsequently, hematoxylin and eosin staining and micro-computed tomography of the euthanized experimental animal model confirmed suppressed periodontal inflammation, which is an important strategy for treating periodontitis and for recovering the resulting alveolar bone loss. Therefore, PGFE is a potential, novel therapeutic agent for periodontal diseases.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea;
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu 41940, Korea; (T.-Y.K.); (J.-Y.K.)
| | - Eui Kyun Park
- Departments of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu 41940, Korea; (T.-Y.K.); (J.-Y.K.)
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea;
| |
Collapse
|
21
|
Park C, Lee H, Han MH, Jeong JW, Kim SO, Jeong SJ, Lee BJ, Kim GY, Park EK, Jeon YJ, Choi YH. Cytoprotective effects of fermented oyster extracts against oxidative stress-induced DNA damage and apoptosis through activation of the Nrf2/HO-1 signaling pathway in MC3T3-E1 osteoblasts. EXCLI JOURNAL 2020; 19:1102-1119. [PMID: 33013267 PMCID: PMC7527492 DOI: 10.17179/excli2020-2376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Osteoblast damage by oxidative stress has been recognized as a cause of bone-related disease, including osteoporosis. Recently, we reported that fermented Pacific oyster (Crassostrea gigas) extracts (FO) inhibited osteoclastogenesis and osteoporosis, while promoting osteogenesis. However, since the beneficial potential of FO on osteoblasts is not well known, in the present study, we investigated the cytoprotective effect of FO against oxidative stress in MC3T3-E1 osteoblasts. Our results demonstrated that FO inhibited hydrogen peroxide (H2O2)-induced DNA damage and cytotoxicity through the rescue of mitochondrial function by blocking abnormal ROS accumulation. FO also prevented apoptosis by suppressing loss of mitochondrial membrane potential and cytosolic release of cytochrome c, decreasing the rate of Bax/Bcl-2 expression and reducing the activity of caspase-9 and caspase-3 in H2O2-stimulated MC3T3-E1 osteoblasts, suggesting that FO protected MC3T3-E1 osteoblasts from the induction of caspase dependent- and mitochondria-mediated apoptosis by oxidative stress. In addition, FO markedly promoted the activation of nuclear factor-erythroid-2-related factor 2 (Nrf2), which was associated with the enhanced expression of heme oxygenase-1 (HO-1). However, inhibiting the expression of HO-1 by artificially blocking the expression of Nrf2 using siRNA significantly eliminated the protective effect of FO, indicating that FO activates the Nrf2/HO-1 signaling pathway in MC3T3-E1 osteoblasts to protect against oxidative stress. Based on the present data, FO is thought to be useful as a potential therapeutic agent for the inhibition of oxidative stress in osteoblasts.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong?eui University, Busan, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Sung Ok Kim
- Department of Food Science and Biotechnology, College of Engineering, Kyungsung University, Busan, Republic of Korea
| | - Soon-Jeong Jeong
- Department of Dental Hygiene, College of Health Science, Youngsan University, Yangsan, Republic of Korea
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| |
Collapse
|
22
|
Jin W, Zhu X, Yao F, Xu X, Chen X, Luo Z, Zhao D, Li X, Leng X, Sun L. Cytoprotective effect of Fufang Lurong Jiangu capsule against hydrogen peroxide-induced oxidative stress in bone marrow stromal cell-derived osteoblasts through the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2019; 121:109676. [PMID: 31810119 DOI: 10.1016/j.biopha.2019.109676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Oxidative stress is increasingly recognized as a risk factor associated with the development and progression of osteoporosis. Fufang Lurong Jiangu Capsule (FLJC) has a known anti-osteoporotic effect, but its pharmacological effect on osteoblasts is not clearly understood. This study was designed to investigate FLJC effects/mechanisms on in vitro hydrogen peroxide (H2O2)-induced oxidative damage of osteoblasts and on in vivo lipopolysaccharide (LPS)-induced mice bone loss. FLJC alleviates osteoporosis via unknown pharmacological mechanisms. METHODS Chemical compositions of FLJC preparations were analyzed using high-performance liquid chromatographic fingerprinting. After rat bone marrow mesenchymal stem cell differentiation induction, resulting osteoblasts received various 48 h FLJC pretreatments before H2O2-based (200 μM) oxidative stress exposure. FLJC effects were measured on osteoblast cell viability, morphological changes, levels of intracellular reactive oxygen species (ROS), localization of mitochondria, activity of antioxidant enzymes, alkaline phosphatase (ALP) and mineralization, the secretion of Col I and expression of osteogenic markers. The percentages of apoptosis were determined by flow cytometric analysis; apoptosis-related protein levels, including nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) with or without Nrf2 inhibitor were analyzed via western blot. Hematoxylin and eosin (H&E) and ALP staining revealed in vivo FLJC effect on mice LPS-induced bone loss. RESULTS Five chemical components in FLJC were identified, and fingerprint analysis showed good reproducibility. FLJC pretreatment significantly reduced H2O2-induced ROS levels in osteoblasts and increased antioxidant enzyme activities to reduce oxidative damage. With regard to osteoblast differentiation, FLJC pretreatment increased ALP expression, as well as levels of mineralization and osteoblast markers. Additionally, FLJC protected against H2O2-induced apoptosis by inhibiting changes in expression of major Bcl-2 family effector proteins of the mitochondrial apoptosis pathway. Furthermore, FLJC protected cells from H2O2-induced oxidative damage by up-regulating Nrf2 and HO-1 protein levels. Finally, we confirmed that FLJC administration could reverse the bone loss in LPS-induced mice. CONCLUSION These results indicate that FLJC may significantly attenuate oxidative damage of osteoblasts induced by H2O2 via the Nrf2/HO-1 signaling pathway, providing new insights to guide development of treatments for osteoporosis induced by oxidative injury.
Collapse
Affiliation(s)
- Wenqi Jin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaoqian Zhu
- Technology Innovation Center for Chinese Medicine Biotechnology, College of Science, Beihua University, Jilin, Jilin, China
| | - Fan Yao
- Center of Preventive Treatment of Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zongjian Luo
- Department of Orthopedics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyang Leng
- Department of Orthopedics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
23
|
Li G, Jiang X, Liu L, Liu X, Liu H, Zhang Z. Effect of estradiol on high glucose‑induced osteoblast injury. Mol Med Rep 2019; 20:3019-3026. [PMID: 31432111 PMCID: PMC6755179 DOI: 10.3892/mmr.2019.10552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Estradiol (E2) serves an important role in the changes of postmenopausal bone turnover rate and the development of osteoporosis. The present study aimed to investigate the effects of E2 on high glucose (HG)‑induced osteoblast injury. Cell Counting Kit‑8 was used to determine cell viability. Reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting was used to analyze the mRNA and protein expression levels of osteocalcin, Runt‑related transcription factor 2 (Runx2), nuclear factor E2‑related factor 2 (Nrf2) and heme oxygenase‑1 (HO1). Flow cytometry was performed to analyze apoptosis. The results revealed that cell viability was lower in cells treated with HG (100, 200 or 300 mg/dl) compared with the control group. Cell viability was decreased in cells treated with 200 mg/dl HG on days 3, 5 and 7. In addition, cell viability was increased by 0.1 µM E2. E2 with HG co‑treatment increased cell viability, osteocalcin and Runx2 mRNA expression levels and nuclear Nrf2 and HO1 protein expression levels compared with the HG‑only group. All these changes, with the exception of Runx2, were reversed by silencing Nrf2 expression using small interfering (si)RNA (siNrf2). Additionally, apoptosis was reduced by E2 in HG‑treated cells, which was reversed by siNrf2 transfection. These results demonstrated that E2 may prevent HG‑induced osteoblast injury by activating Nrf2/HO1 signaling pathways.
Collapse
Affiliation(s)
- Guangrun Li
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaofeng Jiang
- Department of Joint Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Liping Liu
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaoyang Liu
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Hongtao Liu
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Zuofu Zhang
- Department of Joint Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
24
|
Yen CH, Hsiao HH. NRF2 Is One of the Players Involved in Bone Marrow Mediated Drug Resistance in Multiple Myeloma. Int J Mol Sci 2018; 19:E3503. [PMID: 30405034 PMCID: PMC6274683 DOI: 10.3390/ijms19113503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma with clonal plasma expansion in bone marrow is the second most common hematologic malignancy in the world. Though the improvement of outcomes from the achievement of novel agents in recent decades, the disease progresses and leads to death eventually due to the elusive nature of myeloma cells and resistance mechanisms to therapeutic agents. In addition to the molecular and genetic basis of resistance pathomechanisms, the bone marrow microenvironment also contributes to disease progression and confers drug resistance in myeloma cells. In this review, we focus on the current state of the literature in terms of critical bone marrow microenvironment components, including soluble factors, cell adhesion mechanisms, and other cellular components. Transcriptional factor nuclear factor erythroid-derived-2-like 2 (NRF2), a central regulator for anti-oxidative stresses and detoxification, is implicated in chemoresistance in several cancers. The functional roles of NRF2 in myeloid-derived suppressor cells and multiple myeloma cells, and the potential of targeting NRF2 for overcoming microenvironment-mediated drug resistance in multiple myeloma are also discussed.
Collapse
Affiliation(s)
- Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hui-Hua Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
25
|
Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018; 14:465-473. [PMID: 29080525 PMCID: PMC5680520 DOI: 10.1016/j.redox.2017.10.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
The glyoxalase pathway functions to detoxify reactive dicarbonyl compounds, most importantly methylglyoxal. The glyoxalase pathway is an antioxidant defense mechanism that is essential for neuroprotection. Excessive concentrations of methylglyoxal have deleterious effects on cells, leading to increased levels of inflammation and oxidative stress. Neurodegenerative diseases - including Alzheimer's, Parkinson's, Aging and Autism Spectrum Disorder - are often induced or exacerbated by accumulation of methylglyoxal. Antioxidant compounds possess several distinct mechanisms that enhance the glyoxalase pathway and function as neuroprotectants. Flavonoids are well-researched secondary plant metabolites that appear to be effective in reducing levels of oxidative stress and inflammation in neural cells. Novel flavonoids could be designed, synthesized and tested to protect against neurodegenerative diseases through regulating the glyoxalase pathway.
Collapse
Affiliation(s)
- Joel R Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
26
|
Liu S, Fang T, Yang L, Chen Z, Mu S, Fu Q. Gastrodin protects MC3T3-E1 osteoblasts from dexamethasone-induced cellular dysfunction and promotes bone formation via induction of the NRF2 signaling pathway. Int J Mol Med 2018; 41:2059-2069. [PMID: 29393365 PMCID: PMC5810206 DOI: 10.3892/ijmm.2018.3414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis (GIO) is one of the most common secondary and iatrogenic forms of osteoporosis. GCs are widely used in clinical therapy and play a key role in the normal regulation of bone remodeling. However, the prolonged and high-dose administration of GCs results in the occurrence of osteoporosis, which is partially due to the dysfunction and apoptosis of osteoblasts and osteocytes. The aim of the present study was to investigate the effects of gastrodin, a natural bioactive compound isolated from the traditional Chinese herbal agent Gastrodia elata, on GC-treated MC3T3‑E1 murine osteoblastic cells. MC3T3‑E1 cells were exposed to dexamethasone (DEX), with or without gastrodin pretreatment, and cell viability was measured by the cell counting kit-8 (CCK-8) assay. Quantitative polymerase chain reaction analysis was performed to evaluate osteogenic gene expression, and cellular alkaline phosphatase (ALP) activity was measured as well. Alizarin Red staining of calcium deposits was found to reflect the degree of osteoblast maturity. Western blotting was performed to determine the expression of osteogenic and adipogenic differentiation key proteins, as well as nuclear factor-like 2 (NRF2) pathway‑related proteins. Annexin V-fluorescein isothiocyanate̸propidium iodide flow cytometric analysis was performed to determine osteoblast apoptosis. JC-1 staining was used to detect the changes of the mitochondrial membrane potential in cells. The results revealed that gastrodin prevented the decrease in cell viability caused by DEX-induced MC3T3‑E1 cell dysfunction, and that groups pretreated with gastrodin exhibited higher mRNA levels of osteogenic genes, such as Runx2, osterix, bone morphogenetic protein-2 and osteocalcin. Furthermore, treatment with both DEX and gastrodin was associated with increased ALP activity in MC3T3-E1 cells, as well as more calcium deposits, compared with cells treated with DEX alone. In addition, gastrodin increased osteogenic key marker protein Runx2 while activating NRF2 and downstream effector protein expression. Therefore, gastrodin may have the potential to reduce DEX-induced cell apoptosis and increase the mitochondrial membrane potential against DEX. These results demonstrated that gastrodin was able to prevent and/or delay DEX‑induced osteoporosis by improving osteoblast function, and these protective effects were verified in an animal model.
Collapse
Affiliation(s)
- Shengye Liu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tao Fang
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liyu Yang
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhiguang Chen
- Emergency Department, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuai Mu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qin Fu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
27
|
Yang Y, Xi Z, Xue Y, Ren J, Sun Y, Wang B, Zhong Z, Yang GY, Sun Q, Bian L. Hemoglobin pretreatment endows rat cortical astrocytes resistance to hemin-induced toxicity via Nrf2/HO-1 pathway. Exp Cell Res 2017; 361:217-224. [PMID: 29074371 DOI: 10.1016/j.yexcr.2017.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 11/27/2022]
Abstract
Oxidative stress mediated secondary injury contributes to neurological deterioration after intracerebral hemorrhage (ICH). Astrocytes, the most dominant cells in the central nervous system (CNS), play key roles in maintaining redox homeostasis by providing oxidative stress defense. Hemoglobin (Hb), the primary component released by hemolysis, is an effective activator of astrocytes. Hemin, the product of Hb degradation, is highly toxic due to the induction of reactive oxygen species (ROS). We speculate that Hb-activated astrocytes are resistant to hemin-induced toxicity. To verify our speculation, Hb-pretreated astrocytes were exposed to hemin, intracellular ROS accumulation and cell apoptosis were evaluated. Heme oxygenase 1 (HO-1) and nuclear transcription factor-erythroid 2 related factor (Nrf2) expression were observed to explore the potential mechanism. The results demonstrated that Hb induced upregulation and nuclear translocation of Nrf2 in astrocytes, resulted in HO-1 upregulation, which contributed to reduced ROS accumulation and apoptosis rate. Knocking down Nrf2 expression by siRNA suppressed Hb-induced upregulation of HO-1 expression and increased the susceptibility of Hb-pretreated astrocytes to hemin-induced toxicity. Taken together, Hb-activated astrocytes acquired resistance to hemin-induced toxicity via Nrf2/HO-1 pathway. This phenomenon can be considered as the adaptive self-defense in the pathological process of ICH. Hb pre-warned astrocytes and enhanced their capability of handling the coming hemin "flood". Nrf2/HO-1 may be employed as a target for neuroprotection after ICH.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuan Xue
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212000, China
| | - Jie Ren
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Department of Neurosurgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
28
|
Suh KS, Chon S, Choi EM. Cytoprotective effects of xanthohumol against methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. J Appl Toxicol 2017; 38:180-192. [DOI: 10.1002/jat.3521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/22/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; 1, Hoegi-dong, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; 1, Hoegi-dong, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; 1, Hoegi-dong, Dongdaemun-gu Seoul 02447 Republic of Korea
| |
Collapse
|
29
|
Marchev AS, Dimitrova PA, Burns AJ, Kostov RV, Dinkova-Kostova AT, Georgiev MI. Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime? Ann N Y Acad Sci 2017; 1401:114-135. [PMID: 28662306 DOI: 10.1111/nyas.13407] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is an age-related joint degenerative disease associated with pain, joint deformity, and disability. The disease starts with cartilage damage but then progressively involves subchondral bone, causing an imbalance between osteoclast-driven bone resorption and osteoblast-driven remodeling. Here, we summarize the data for the role of oxidative stress and inflammation in OA pathology and discuss how these two processes are integrated during OA progression, as well as their contribution to abnormalities in cartilage/bone metabolism and integrity. At the cellular level, oxidative stress and inflammation are counteracted by transcription factor nuclear factor erythroid p45-related factor 2 (NRF2), and we describe the regulation of NRF2, highlighting its role in OA pathology. We also discuss the beneficial effect of some phytonutrients, including the therapeutic potential of NRF2 activation, in OA.
Collapse
Affiliation(s)
- Andrey S Marchev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Petya A Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Andrew J Burns
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Rumen V Kostov
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| |
Collapse
|
30
|
Frandsen J, Narayanasamy P. Flavonoid Enhances the Glyoxalase Pathway in Cerebellar Neurons to Retain Cellular Functions. Sci Rep 2017; 7:5126. [PMID: 28698611 PMCID: PMC5505997 DOI: 10.1038/s41598-017-05287-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is damaging to cells and contributes to aging and neurodegenerative disease. This state is mediated by production of imbalanced molecules, and reactive dicarbonyl compounds - mainly methylglyoxal. The glyoxalase pathway is an antioxidant defense system utilized to detoxify methylglyoxal and neutralize free radicals. Pathway dysfunction leads to overproduction and accumulation of toxic, prooxidant compounds. We hypothesize flavonoid treatment as a means to enhance the glyoxalase pathway’s ability to detoxify in neurons. This study found that flavonoid treatment in methylglyoxal treated cerebellar neurons increased the functioning of glyoxalase pathway by enhancing expression of glyoxalase-1 and glyoxalase-2 proteins, decreased cell death and increased cellular viability. Flavonoids also significantly contributed in the retention of synaptic functions (VGLUT1 and GAD65) in cerebellar neurons. In addition, flavonoids were found to be involved in pAkt - NF-κB signaling pathway through a reduction in phosphorylation of Akt. The data here show flavonoid compounds have the potential to protect the brain from aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
31
|
Zhang CX, Wang T, Ma JF, Liu Y, Zhou ZG, Wang DC. Protective effect of CDDO-ethyl amide against high-glucose-induced oxidative injury via the Nrf2/HO-1 pathway. Spine J 2017; 17:1017-1025. [PMID: 28343048 DOI: 10.1016/j.spinee.2017.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 02/19/2017] [Accepted: 03/20/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration (IDD) is the main cause of low back pain, and nucleus pulposus (NP) cell apoptosis is an important risk factor of IDD. However, the molecular mechanism of this disease remains unknown. PURPOSE To assess the potential protective effect of CDDO-ethyl amide (EA) against high-glucose-induced oxidative stress injury in NP cells and to investigate the mechanism of antioxidative effects and apoptotic inhibition. STUDY DESIGN/SETTING To find new molecule to inhibit intervertebral disc degeneration. METHODS Viability, reactive oxygen species (ROS) levels, and apoptosis were examined in NP cells. The protein expression levels of HO-1 and Nrf2 were measured through Western blot RESULTS: CDDO-EA elicited cytoprotective effects against NP cell apoptosis and ROS accumulation induced by high glucose. CDDO-EA treatment increased the HO-1 and Nrf2 expression abrogated by HO-1, Nrf2, and mitogen-activated protein kinase inhibitors. CONCLUSIONS The phosphorylation and nuclear translocation of Nrf2 are crucial for HO-1 overexpression induced by CDDO-EA, which is essential for the cytoprotection against high-glucose-induced oxidative stress in NP cells.
Collapse
Affiliation(s)
- Cun-Xin Zhang
- Qingdao Spine Center, Qingdao Municipal Hospital, Qingdao University, 5# Donghai Rd, Shinan District, Qingdao 266061, China
| | - Ting Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266000, China
| | - Jin-Feng Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266000, China
| | - Yang Liu
- Department of Orthopaedics, Zhucheng People's Hospital, Zhucheng 262200, China
| | - Zheng-Gang Zhou
- Department of Spine and Joint Surgery, Chengyang People's Hospital, Qingdao 266108, China
| | - De-Chun Wang
- Qingdao Spine Center, Qingdao Municipal Hospital, Qingdao University, 5# Donghai Rd, Shinan District, Qingdao 266061, China.
| |
Collapse
|
32
|
Matafome P, Rodrigues T, Sena C, Seiça R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med Res Rev 2017; 37:368-403. [PMID: 27636890 DOI: 10.1002/med.21410] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 08/26/2024]
Abstract
Glucose and fructose metabolism originates the highly reactive byproduct methylglyoxal (MG), which is a strong precursor of advanced glycation end products (AGE). The MG has been implicated in classical diabetic complications such as retinopathy, nephropathy, and neuropathy, but has also been recently associated with cardiovascular diseases and central nervous system disorders such as cerebrovascular diseases and dementia. Recent studies even suggested its involvement in insulin resistance and beta-cell dysfunction, contributing to the early development of type 2 diabetes and creating a vicious circle between glycation and hyperglycemia. Despite several drugs and natural compounds have been identified in the last years in order to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the endogenous and exogenous sources of MG, also addressing the current controversy about the importance of exogenous MG sources. The mechanisms by which MG changes cell behavior and its involvement in type 2 diabetes development and complications and the pathophysiological implication are also summarized. Particular emphasis will be given to pathophysiological relevance of studies using higher MG doses, which may have produced biased results. Finally, we also overview the current knowledge about detoxification strategies, including modulation of endogenous enzymatic systems and exogenous compounds able to inhibit MG effects on biological systems.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3045-601, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
33
|
Han D, Chen W, Gu X, Shan R, Zou J, Liu G, Shahid M, Gao J, Han B. Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. Oncotarget 2017; 8:14680-14692. [PMID: 28122344 PMCID: PMC5362435 DOI: 10.18632/oncotarget.14747] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is a disorder of bone and its development is closely associated with oxidative stress and reactive oxygen species (ROS). Chlorogenic acid (CGA) has potential antioxidant effects and its pharmacological action in osteoblasts is not clearly understood. The present study aimed to clarify the protective effects and mechanisms of CGA on hydrogen peroxide (H2O2)-induced oxidative stress in osteoblast cells. MC3T3-E1 cells were treated with H2O2 to induce oxidative stress model in vitro. Cells were treated with CGA prior to H2O2 exposure, the intracellular ROS production, malondialdehyde content, nitric oxide release and glutathione level were measured. We also investigated the protein levels of heme oxygenase-1 (HO-1), the nuclear translocation of transcription factor NF-erythroid 2-related factor (Nrf2) and the phosphorylation levels of Akt in CGA-treated cells. The results showed that pretreatment of CGA could reverse the inhibition of cell viability and suppress the induced apoptosis and caspase-3 activity. Additionally, it significantly reduced H2O2-induced oxidative damage in a dose-dependent manner. Furthermore, it induced the protein expression of HO-1 together with its upstream mediator Nrf2, and activated the phosphorylation of Akt in MC3T3-E1 cells. LY294002, a PI3K/Akt inhibitor, significantly suppressed the CGA-induced Nrf2 nuclear translocation and HO-1 expression. Reduction of cell death mediated by CGA in presence of H2O2 was significantly inhibited by Zinc protoporphyrin IX (a HO-1 inhibitor) and LY294002. These data demonstrated that CGA protected MC3T3-E1 cells against oxidative damage via PI3K/Akt-mediated activation of Nrf2/HO-1 pathway, which may be an effective drug in treatment of osteoporosis.
Collapse
Affiliation(s)
- Dandan Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolong Gu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Ruixue Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jiaqi Zou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Muhammad Shahid
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|