1
|
Nongnual T, Butprom N, Boonsang S, Kaewpirom S. Citric acid crosslinked carboxymethyl cellulose edible films: A case study on preserving freshness in bananas. Int J Biol Macromol 2024; 267:131135. [PMID: 38574914 DOI: 10.1016/j.ijbiomac.2024.131135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
The study involves the preparation and characterization of crosslinked-carboxymethyl cellulose (CMC) films using varying amounts of citric acid (CA) within the range 5 %-20 %, w/w, relative to the dry weight of CMC. Through techniques such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, carbonyl content analysis, and gel fraction measurements, the successful crosslinking between CMC and CA is confirmed. The investigation includes an analysis of chemical structure, physical and optical characteristics, swelling behavior, water vapor transmission rate, moisture content, and surface morphologies. The water resistance of the cross-linked CMC films exhibited a significant improvement when compared to the non-crosslinked CMC film. The findings indicated that films crosslinked with 10 % CA demonstrated favorable properties for application as edible coatings. These transparent films, ideal for packaging, prove effective in preserving the quality and sensory attributes of fresh bananas, including color retention, minimized weight loss, slowed ripening through inhibiting amyloplast degradation, and enhanced firmness during storage.
Collapse
Affiliation(s)
- Teeranan Nongnual
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Nattawut Butprom
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Siridech Boonsang
- Department of Electrical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supranee Kaewpirom
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
2
|
Munoz B, Hayes M, Perkins-Veazie P, Gillitt N, Munoz M, Kay CD, Lila MA, Ferruzzi MG, Iorizzo M. Genotype and ripening method affect carotenoid content and bio-accessibility in banana. Food Funct 2024; 15:3433-3445. [PMID: 38436090 DOI: 10.1039/d3fo04632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Bananas (Musa spp.) are a target crop for provitamin A carotenoids (pVACs) biofortification programs aiming at reducing the negative impact on health caused by vitamin A deficiency in vulnerable populations. However, studies to understand the effect of ripening methods and stages and the genotype on carotenoid content and bioaccessibility in the banana germplasm are scarce. This study evaluated carotenoid content and bioaccessibility in 27 different banana accessions at three maturation stages and two ripening methods (natural ripening and ethylene ripening). Across most accessions, total carotenoid content (TCC) increased from unripe to ripe fruit; only two accessions showed a marginal decrease. The ripening method affected carotenoid accumulation; 18 accessions had lower TCC when naturally ripened compared with the ethylene ripening group, while nine accessions showed higher TCC when ripened with exogenous ethylene, suggesting that treating bananas with exogenous ethylene might directly affect TCC accumulation, but the response is accession dependent. Additionally, carotenoid bioaccessibility varied across genotypes and was correlated with the amount of soluble starch and resistant starch. These findings highlight the importance of ripening methods and genotypes in maximizing banana carotenoid content and bioaccessibility, which could contribute to improving pVACs delivery in biofortification programs.
Collapse
Affiliation(s)
- Bryan Munoz
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| | - Micaela Hayes
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| | | | - Miguel Munoz
- Research & Development Department, Dole, Standard Fruit Company de Costa Rica, San José, Costa Rica
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Arkansas Children's Nutrition Center (ACNC), University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72202, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Arkansas Children's Nutrition Center (ACNC), University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72202, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| |
Collapse
|
3
|
Zhou R, Wang S, Zhan N, He W, Deng G, Dou T, Zhu XT, Xie WZ, Zheng YY, Hu C, Bi F, Gao H, Dong T, Liu S, Li C, Yang Q, Wang L, Song JM, Dang J, Guo Q, Yi G, Chen LL, Sheng O. High-quality genome assemblies for two Australimusa bananas (Musa spp.) and insights into regulatory mechanisms of superior fiber properties. PLANT COMMUNICATIONS 2024; 5:100681. [PMID: 37660253 PMCID: PMC10811375 DOI: 10.1016/j.xplc.2023.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Bananas (Musa spp.) are monocotyledonous plants with high genetic diversity in the Musaceae family that are cultivated mainly in tropical and subtropical countries. The fruits are a popular food, and the plants themselves have diverse uses. Four genetic groups (genomes) are thought to have contributed to current banana cultivars: Musa acuminata (A genome), Musa balbisiana (B genome), Musa schizocarpa (S genome), and species of the Australimusa section (T genome). However, the T genome has not been effectively explored. Here, we present the high-quality TT genomes of two representative accessions, Abaca (Musa textilis), with high-quality natural fiber, and Utafun (Musa troglodytarum, Fe'i group), with abundant β-carotene. Both the Abaca and Utafun assemblies comprise 10 pseudochromosomes, and their total genome sizes are 613 Mb and 619 Mb, respectively. Comparative genome analysis revealed that the larger size of the T genome is likely attributable to rapid expansion and slow removal of transposons. Compared with those of Musa AA or BB accessions or sisal (Agava sisalana), Abaca fibers exhibit superior mechanical properties, mainly because of their thicker cell walls with a higher content of cellulose, lignin, and hemicellulose. Expression of MusaCesA cellulose synthesis genes peaks earlier in Abaca than in AA or BB accessions during plant development, potentially leading to earlier cellulose accumulation during secondary cell wall formation. The Abaca-specific expressed gene MusaMYB26, which is directly regulated by MusaMYB61, may be an important regulator that promotes precocious expression of secondary cell wall MusaCesAs. Furthermore, MusaWRKY2 and MusaNAC68, which appear to be involved in regulating expression of MusaLAC and MusaCAD, may at least partially explain the high accumulation of lignin in Abaca. This work contributes to a better understanding of banana domestication and the diverse genetic resources in the Musaceae family, thus providing resources for Musa genetic improvement.
Collapse
Affiliation(s)
- Run Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Wang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Zhan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Weidi He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Xi-Tong Zhu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Zhao Xie
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Yu Zheng
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Siwen Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiangbo Dang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
4
|
Wang Y, Li S, Zhou Z, Sun L, Sun J, Shen C, Gao R, Song J, Pu X. The Functional Characteristics and Soluble Expression of Saffron CsCCD2. Int J Mol Sci 2023; 24:15090. [PMID: 37894770 PMCID: PMC10606151 DOI: 10.3390/ijms242015090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Crocins are important natural products predominantly obtained from the stigma of saffron, and that can be utilized as a medicinal compound, spice, and colorant with significant promise in the pharmaceutical, food, and cosmetic industries. Carotenoid cleavage dioxygenase 2 (CsCCD2) is a crucial limiting enzyme that has been reported to be responsible for the cleavage of zeaxanthin in the crocin biosynthetic pathway. However, the catalytic activity of CsCCD2 on β-carotene/lycopene remains elusive, and the soluble expression of CsCCD2 remains a big challenge. In this study, we reported the functional characteristics of CsCCD2, that can catalyze not only zeaxanthin cleavage but also β-carotene and lycopene cleavage. The molecular basis of the divergent functionality of CsCCD2 was elucidated using bioinformatic analysis and truncation studies. The protein expression optimization results demonstrated that the use of a maltose-binding protein (MBP) tag and the optimization of the induction conditions resulted in the production of more soluble protein. Correspondingly, the catalytic efficiency of soluble CsCCD2 was higher than that of the insoluble one, and the results further validated its functional verification. This study not only broadened the substrate profile of CsCCD2, but also achieved the soluble expression of CsCCD2. It provides a firm platform for CsCCD2 crystal structure resolution and facilitates the synthesis of crocetin and crocins.
Collapse
Affiliation(s)
- Ying Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Siqi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Ze Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Lifen Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Jing Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Chuanpu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Ranran Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangdong Pu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Li Z, Wang J, Fu Y, Jing Y, Huang B, Chen Y, Wang Q, Wang XB, Meng C, Yang Q, Xu L. The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids. BMC Biol 2022; 20:186. [PMID: 36002843 PMCID: PMC9400310 DOI: 10.1186/s12915-022-01391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/15/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Karat (Musa troglodytarum L.) is an autotriploid Fe'i banana of the Australimusa section. Karat was domesticated independently in the Pacific region, and karat fruit are characterized by a pink sap, a deep yellow-orange flesh colour, and an abundance of β-carotene. Karat fruit showed non-climacteric behaviour, with an approximately 215-day bunch filling time. These features make karat a valuable genetic resource for studying the mechanisms underlying fruit development and ripening and carotenoid biosynthesis. RESULTS Here, we report the genome of M. troglodytarum, which has a total length of 603 Mb and contains 37,577 predicted protein-coding genes. After divergence from the most recent common ancestors, M. troglodytarum (T genome) has experienced fusion of ancestral chromosomes 8 and 9 and multiple translocations and inversions, unlike the high synteny with few rearrangements found among M. schizocarpa (S genome), M. acuminata (A genome) and M. balbisiana (B genome). Genome microsynteny analysis showed that the triplication of MtSSUIIs due to chromosome rearrangement may lead to the accumulation of carotenoids and ABA in the fruit. The expression of duplicated MtCCD4s is repressed during ripening, leading to the accumulation of α-carotene, β-carotene and phytoene. Due to a long terminal repeat (LTR)-like fragment insertion upstream of MtERF11, karat cannot produce large amounts of ethylene but can produce ABA during ripening. These lead to non-climacteric behaviour and prolonged shelf-life, which contributes to an enrichment of carotenoids and riboflavin. CONCLUSIONS The high-quality genome of M. troglodytarum revealed the genomic basis of non-climacteric behaviour and enrichment of carotenoids, riboflavin, flavonoids and free galactose and provides valuable resources for further research on banana domestication and breeding and the improvement of nutritional and bioactive qualities.
Collapse
Affiliation(s)
- Zhiying Li
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Jiabin Wang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Yunliu Fu
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Yonglin Jing
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Bilan Huang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Ying Chen
- grid.428986.90000 0001 0373 6302College of Horticulture and Landscape Architecture, Hainan University, Haikou, 570228 China
| | - Qinglong Wang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China
| | - Xiao Bing Wang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Chunyang Meng
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Qingquan Yang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Li Xu
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| |
Collapse
|
6
|
Burkhart S, Underhill S, Raneri J. Realizing the Potential of Neglected and Underutilized Bananas in Improving Diets for Nutrition and Health Outcomes in the Pacific Islands. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.805776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pacific Island countries are undergoing rapid food system transformation. This has led to a deterioration in diet quality with decreased consumption of traditional, fresh foods, and increasing consumption of imported, ultra-processed foods. Consequently, the triple burden of malnutrition is a now a major issue in the region. It is estimated that Vitamin A deficiency (VAD) is widespread, particularly in Kiribati, Vanuatu, and Solomon Islands. Rates of overweight, obesity, and diet-related non-communicable disease (DR-NCD) are high. Increasing consumption of local, traditional fruits and vegetables, particularly those that have high nutritional value like Pacific Island bananas, could play an important role in improving diets and health outcomes of Pacific Islander populations. Many of the banana cultivars found in the Pacific Islands region are high in carotenoids, an important precursor to Vitamin A. Fe'i bananas, such as Utin Iap, have been shown to contain much higher amounts of carotenoids than that of the commonly consumed Cavendish banana. As a traditional, starchy staple food, bananas are a good source of carbohydrate, including resistant starch, with small amounts of protein and little fat. These characteristics also lend themselves to being part of a healthy diet. The promotion of neglected and underutilized banana cultivars in the Pacific region provides a food-based and low-cost solution that simultaneously supports healthy diets and good nutrition, local farming systems and livelihood opportunities. However, to realize this potential, more work is required to understand the availability of nutrient rich banana in the region, current consumption patterns and drivers of consumption.
Collapse
|
7
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
8
|
Yang Y, Jiang M, Feng J, Wu C, Shan W, Kuang J, Chen J, Hu Z, Lu W. Transcriptome analysis of low-temperature-affected ripening revealed MYB transcription factors-mediated regulatory network in banana fruit. Food Res Int 2021; 148:110616. [PMID: 34507760 DOI: 10.1016/j.foodres.2021.110616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Low temperature leads to abnormal ripening and poor quality of the harvested banana fruit, which is an urgent problem limiting the development of industry in China. To comprehensively understand the mechanism underlying low-temperature-affected ripening, we performed comparative RNA-Seq analysis of ethylene-induced ripening of banana fruit after 3 days of pre-storage at 7 °C and 22 °C. A total of 986 differentially expressed genes (DEGs) were identified in both RT-0 d versus RT-3 d, LT-0 d versus LT-3 d, RT-0 d versus LT-0 d and RT-3 d versus LT-3 d, and the RNA-Seq outputs of 15 randomly selective DEGs were verified using qRT-PCR. Among the 986 DEGs obtained in the four groups, 9 MYB genes (MaMYB75/281/219/4/151/156/3/37 and MaMYB3R1) and 32 genes related to carotenoid biosynthesis (MaPSY1/2a), flavor formation (MaLOX6, MaADH7, MaAAT1), sucrose transport (MaSUS2/4), ethylene production (MaSAM1, MaACO9/10/12, MaACS1/12), starch degradation (MaAMY1A/1B, MaPHS1/2, MaMEX2, MapGlcT1) and cell wall degradation (MaPG3/X1, MaPME25/41, MaXTH5/7/22/23/25, MaEXP2/20/A1/A15) were characterized. Combining transcription factor binding site (TFBS) analysis as well as cis-acting element analysis, the regulatory network of low-temperature-affected ripening mediated by MYBs were constructed. The data generated in this study may unravel the transcriptional regulatory network of MYBs associated with low-temperature-affected ripening and provide a solid foundation for future studies.
Collapse
Affiliation(s)
- Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mengge Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jintao Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Varghese R, S UK, C GPD, Ramamoorthy S. Unraveling the versatility of CCD4: Metabolic engineering, transcriptomic and computational approaches. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110991. [PMID: 34315605 DOI: 10.1016/j.plantsci.2021.110991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are economically valuable isoprenoids synthesized by plants and microorganisms, which play a paramount role in their overall growth and development. Carotenoid cleavage dioxygenases are a vast group of enzymes that specifically cleave thecarotenoids to produce apocarotenoids. Recently, CCDs are a subject of talk because of their contributions to different aspects of plant growth and due to their significance in the production of economically valuable apocarotenoids. Among them, CCD4 stands unique because of its versatility in performing metabolic roles. This review focuses on the multiple functionalities of CCD4 like pigmentation, volatile apocarotenoid production, stress responses, etc. Interestingly, through our literature survey we arrived at a conclusion that CCD4 could perform functions of other carotenoid cleaving enzymes.The metabolic engineering, transcriptomic, and computational approaches adopted to reveal the contributions of CCD4 were also considered here for the study.Phylogenetic analysis was performed to delve into the evolutionary relationships of CCD4 in different plant groups. A tree of 81CCD genes from 64 plant species was constructed, signifying the presence of well-conserved families. Gene structures were illustrated and the difference in the number and position of exons could be considered as a factor behind functional versatility and substrate tolerance of CCD4 in different plants.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Udhaya Kumar S
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Harish, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. CURRENT PLANT BIOLOGY 2021; 26:100203. [DOI: 10.1016/j.cpb.2021.100203] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
11
|
Vogliano C, Raneri JE, Coad J, Tutua S, Wham C, Lachat C, Burlingame B. Dietary agrobiodiversity for improved nutrition and health outcomes within a transitioning indigenous Solomon Island food system. Food Secur 2021. [DOI: 10.1007/s12571-021-01167-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractIndigenous food systems of Pacific Small Island Developing Countries contain vast biological and cultural diversity. However, a nutrition transition is underway, characterized by shifts away from traditional diets in favour of imported and modern foods, contributing to some of the highest rates of obesity and Diabetes Type 2 Mellitus in the world. Using a mixed method approach, this study aimed to assess dietary agrobiodiversity’s relationship with nutrition indicators related to diet quality and anthropometrics within the context of the rural and Indigenous food system of Baniata village, located in the Western Province of Solomon Islands (Melanesia). A secondary aim was to evaluate the contribution of agrobiodiversity from the local food system to diet quality. A comprehensive nutrition survey was administered to the women primarily responsible for cooking of randomly selected households (n = 30). Additionally, 14 participatory focus group discussions captured the historical narrative of food system transitions, were hosted over a period of seven days, and included men, women and youth. Dietary intakes of the participants were reported below the estimated average requirement (EAR) for several essential nutrients, including protein (53%), calcium (96.6%), vitamin B1 (86.6%), vitamin B2 (80%), vitamin A (80%), zinc (40%) and fibre (77%). Focus group participants built a timeline of key historical and climatic transitions perceived to be drivers of dietary shifts away from traditional foods and towards imported and processed foods. Participants identified 221 species and varieties of agrobiodiverse foods available for cultivation or wild collection. Based on 24 h diet recalls, 87 were found to be utilised. Participants who consumed foods of a wider diversity of species richness had a higher probability of achieving recommended nutrition intakes and a lower body fat percentage (r2 = 0.205; p = 0.012). Our results suggest a nutrition transition is underway, and strategies harnessing traditional knowledge of nutrient-dense, agrobiodiverse foods can help improve food and nutrition security.
Collapse
|
12
|
Immaculate N, Eunice AO, Grace KR. Nutritional physico-chemical composition of pumpkin pulp for value addition: Case of selected cultivars grown in Uganda. ACTA ACUST UNITED AC 2020. [DOI: 10.5897/ajfs2020.1980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Pu X, Li Z, Tian Y, Gao R, Hao L, Hu Y, He C, Sun W, Xu M, Peters RJ, Van de Peer Y, Xu Z, Song J. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. THE NEW PHYTOLOGIST 2020; 227:930-943. [PMID: 32187685 PMCID: PMC7116227 DOI: 10.1111/nph.16552] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/12/2020] [Indexed: 05/12/2023]
Abstract
Lonicera japonica is a widespread member of the Caprifoliaceae (honeysuckle) family utilized in traditional medical practices. This twining vine honeysuckle also is a much-sought ornamental, in part due to its dynamic flower coloration, which changes from white to gold during development. The molecular mechanism underlying dynamic flower coloration in L. japonica was elucidated by integrating whole genome sequencing, transcriptomic analysis and biochemical assays. Here, we report a chromosome-level genome assembly of L. japonica, comprising nine pseudochromosomes with a total size of 843.2 Mb. We also provide evidence for a whole-genome duplication event in the lineage leading to L. japonica, which occurred after its divergence from Dipsacales and Asterales. Moreover, gene expression analysis not only revealed correlated expression of the relevant biosynthetic genes with carotenoid accumulation, but also suggested a role for carotenoid degradation in L. japonica's dynamic flower coloration. The variation of flower color is consistent with not only the observed carotenoid accumulation pattern, but also with the release of volatile apocarotenoids that presumably serve as pollinator attractants. Beyond novel insights into the evolution and dynamics of flower coloration, the high-quality L. japonica genome sequence also provides a foundation for molecular breeding to improve desired characteristics.
Collapse
Affiliation(s)
- Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ya Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yating Hu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- Corresponding Authors: Jingyuan Song: , 86-10-57833199; Zhichao Xu: , 86-10-57833199
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China
- Corresponding Authors: Jingyuan Song: , 86-10-57833199; Zhichao Xu: , 86-10-57833199
| |
Collapse
|
14
|
Watkins JL, Pogson BJ. Prospects for Carotenoid Biofortification Targeting Retention and Catabolism. TRENDS IN PLANT SCIENCE 2020; 25:501-512. [PMID: 31956035 DOI: 10.1016/j.tplants.2019.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Due to the ongoing prevalence of vitamin A deficiency (VAD) in developing countries there has been a large effort towards increasing the carotenoid content of staple foods via biofortification. Common strategies used for carotenoid biofortification include altering flux through the biosynthesis pathway to direct synthesis to a specific product, generally β-carotene, or via increasing the expression of genes early in the carotenoid biosynthesis pathway. Recently, carotenoid biofortification strategies are turning towards increasing the retention of carotenoids in plant tissues either via altering sequestration within the cell or via downregulating enzymes known to cause degradation of carotenoids. To date, little attention has focused on increasing the stability of carotenoids, which may be a promising method of increasing carotenoid content in staple foods.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
15
|
Zhu LS, Liang SM, Chen LL, Wu CJ, Wei W, Shan W, Chen JY, Lu WJ, Su XG, Kuang JF. Banana MaSPL16 Modulates Carotenoid Biosynthesis during Fruit Ripening through Activating the Transcription of Lycopene β-Cyclase Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1286-1296. [PMID: 31891496 DOI: 10.1021/acs.jafc.9b07134] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carotenoids are a class of bioactive compounds that exhibit health-promoting properties for humans, but their regulation in bananas during fruit ripening remains largely unclear. Here, we found that the total carotenoid content continued to be elevated along the course of banana ripening and peaked at the ripening stage followed by a decrease, which is presumably caused by the transcript abundances of carotenoid biosynthetic genes MaLCYB1.1 and MaLCYB1.2. Moreover, a ripening-inducible transcription factor MaSPL16 was characterized, which was a nuclear protein with transactivation activity. Transient transformation of MaSPL16 in banana fruits led to enhanced transcript levels of MaLCYB1.1 and MaLCYB1.2 and hence the total carotenoid accumulation. Importantly, MaSPL16 stimulated the transcription of MaLCYB1.1 and MaLCYB1.2 through directly binding to their promoters. Collectively, our findings indicate that MaSPL16 behaves as an activator to modulate banana carotenoid biosynthesis, which may provide a new target for molecular improvement of the nutritional and bioactive qualities of agricultural crops that accumulate carotenoids.
Collapse
Affiliation(s)
- Li-Sha Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Shu-Min Liang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Lu-Lu Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Chao-Jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Jian-Ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Wang-Jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Xin-Guo Su
- Guangdong Food and Drug Vocational College , Longdongbei Road 321 , Tianhe District, Guangzhou 510520 , P. R. China
| | - Jian-Fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|
16
|
Mbabazi R, Harding R, Khanna H, Namanya P, Arinaitwe G, Tushemereirwe W, Dale J, Paul J. Pro-vitamin A carotenoids in East African highland banana and other Musa cultivars grown in Uganda. Food Sci Nutr 2020; 8:311-321. [PMID: 31993157 PMCID: PMC6977416 DOI: 10.1002/fsn3.1308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/09/2019] [Indexed: 11/23/2022] Open
Abstract
Bananas and plantains (Musa spp.) are an important staple and food security crop in sub-Saharan Africa. In Uganda, where the consumption of East African highland banana (EAHB) is the highest in the world, the population suffers from a high incidence of vitamin A deficiency (VAD). Since the consumption of pro-vitamin A carotenoids (pVAC) made available through the food staple can help alleviate these ailments, we set out to identify the most suitable banana variety to use in future biofortification strategies through genetic engineering. The study focussed on eight popular Musa cultivars grown in the heart of banana farming communities and across the three major agricultural zones of Uganda. The fruit pVAC concentration varied considerably within and across the cultivars tested. These variations could not be explained by the altitude nor the geographical location where these fruits were grown. More than 50% of the total carotenoids present in EAHB cultivars was found to comprise of α- and β-carotene, while the retention of these compounds following traditional processing methods was at least 70%. Storage up to 14 days postharvest improved carotenoid accumulation up to 2.4-fold in the cultivar Nakitembe. The technical challenge for a successful biofortification approach in Uganda using genetically modified EAHB lies in guaranteeing that the fruit pVAC content will invariably provide at least 50% of the estimated average requirement for vitamin A regardless of the growing conditions.
Collapse
Affiliation(s)
- Ruth Mbabazi
- National Agricultural Research Organisation, NARLWakisoUganda
- Present address:
Plant and Soil Science BuildingMichigan State UniversityEast LansingMIUSA
| | - Robert Harding
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Harjeet Khanna
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQLDAustralia
- Present address:
Sugar Research AustraliaIndooroopillyQLDAustralia
| | - Priver Namanya
- National Agricultural Research Organisation, NARLWakisoUganda
| | - Geofrey Arinaitwe
- National Agricultural Research Organisation, NARLWakisoUganda
- National Agricultural Research Organisation, National Coffee Research InstituteMukonoUganda
| | | | - James Dale
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Jean‐Yves Paul
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
17
|
Integrated proteomic and metabolomic analysis suggests high rates of glycolysis are likely required to support high carotenoid accumulation in banana pulp. Food Chem 2019; 297:125016. [DOI: 10.1016/j.foodchem.2019.125016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022]
|
18
|
Rego ECS, Pinheiro TDM, Antonino JD, Alves GSC, Cotta MG, Fonseca FCDA, Miller RNG. Stable reference genes for RT-qPCR analysis of gene expression in the Musa acuminata-Pseudocercospora musae interaction. Sci Rep 2019; 9:14592. [PMID: 31601872 PMCID: PMC6787041 DOI: 10.1038/s41598-019-51040-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022] Open
Abstract
Leaf pathogens are limiting factors in banana (Musa spp.) production, with Pseudocercospora spp. responsible for the important Sigatoka disease complex. In order to investigate cellular processes and genes involved in host defence responses, quantitative real-time PCR (RT-qPCR) is an analytical technique for gene expression quantification. Reliable RT-qPCR data, however, requires that reference genes for normalization of mRNA levels in samples are validated under the conditions employed for expression analysis of target genes. We evaluated the stability of potential reference genes ACT1, α-TUB, UBQ1, UBQ2, GAPDH, EF1α, APT and RAN. Total RNA was extracted from leaf tissues of Musa acuminata genotypes Calcutta 4 (resistant) and Cavendish Grande Naine (susceptible), both subjected to P. musae infection. Expression stability was determined with NormFinder, BestKeeper, geNorm and RefFinder algorithms. UBQ2 and RAN were the most stable across all M. acuminata samples, whereas when considering inoculated and non-inoculated leaf samples, APT and UBQ2 were appropriate for normalization in Calcutta 4, with RAN and α-TUB most stable in Cavendish Grande Naine. This first study of reference genes for relative quantification of target gene expression in the M. acuminata-P. musae interaction will enable reliable analysis of gene expression in this pathosystem, benefiting elucidation of disease resistance mechanisms.
Collapse
Affiliation(s)
- Erica Cristina Silva Rego
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Tatiana David Miranda Pinheiro
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Jose Dijair Antonino
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil.,Departamento de Agronomia-Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Gabriel Sergio Costa Alves
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Michelle Guitton Cotta
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Fernando Campos De Assis Fonseca
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Robert Neil Gerard Miller
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
19
|
Lycopene cyclases determine high α-/β-carotene ratio and increased carotenoids in bananas ripening at high temperatures. Food Chem 2019; 283:131-140. [DOI: 10.1016/j.foodchem.2018.12.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 11/18/2022]
|
20
|
Amah D, van Biljon A, Brown A, Perkins-Veazie P, Swennen R, Labuschagne M. Recent advances in banana (musa spp.) biofortification to alleviate vitamin A deficiency. Crit Rev Food Sci Nutr 2018; 59:3498-3510. [DOI: 10.1080/10408398.2018.1495175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Delphine Amah
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Angeline van Biljon
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| | - Allan Brown
- International Institute of Tropical Agriculture, Arusha, Tanzania
| | | | - Rony Swennen
- International Institute of Tropical Agriculture, Arusha, Tanzania
- Bioversity International, Heverlee, Belgium
- Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Maryke Labuschagne
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
21
|
Saini RK, Keum YS. Significance of Genetic, Environmental, and Pre- and Postharvest Factors Affecting Carotenoid Contents in Crops: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5310-5324. [PMID: 29745660 DOI: 10.1021/acs.jafc.8b01613] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carotenoids are a diverse group of tetraterpenoid pigments that play indispensable roles in plants and animals. The biosynthesis of carotenoids in plants is strictly regulated at the transcriptional and post-transcriptional levels in accordance with inherited genetic signals and developmental requirements and in response to external environmental stimulants. The alteration in the biosynthesis of carotenoids under the influence of external environmental stimulants, such as high light, drought, salinity, and chilling stresses, has been shown to significantly influence the nutritional value of crop plants. In addition to these stimulants, several pre- and postharvesting cultivation practices significantly influence carotenoid compositions and contents. Thus, this review discusses how various environmental stimulants and pre- and postharvesting factors can be positively modulated for the enhanced biosynthesis and accumulation of carotenoids in the edible parts of crop plants, such as the leaves, roots, tubers, flowers, fruit, and seeds. In addition, future research directions in this context are identified.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science , Konkuk University , Seoul 143-701 , Republic of Korea
| | - Young-Soo Keum
- Department of Crop Science , Konkuk University , Seoul 143-701 , Republic of Korea
| |
Collapse
|
22
|
Paul JY, Harding R, Tushemereirwe W, Dale J. Banana21: From Gene Discovery to Deregulated Golden Bananas. FRONTIERS IN PLANT SCIENCE 2018; 9:558. [PMID: 29755496 PMCID: PMC5932193 DOI: 10.3389/fpls.2018.00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/09/2018] [Indexed: 05/29/2023]
Abstract
Uganda is a tropical country with a population in excess of 30 million, >80% of whom live in rural areas. Bananas (Musa spp.) are the staple food of Uganda with the East African Highland banana, a cooking banana, the primary starch source. Unfortunately, these bananas are low in pro-vitamin A (PVA) and iron and, as a result, banana-based diets are low in these micronutrients which results in very high levels of inadequate nutrition. This inadequate nutrition manifests as high levels of vitamin A deficiency, iron deficiency anemia, and stunting in children. A project known as Banana21 commenced in 2005 to alleviate micronutrient deficiencies in Uganda and surrounding countries through the generation of farmer- and consumer-acceptable edible bananas with significantly increased fruit levels of PVA and iron. A genetic modification approach was adopted since bananas are recalcitrant to conventional breeding. In this review, we focus on the PVA-biofortification component of the Banana21 project and describe the proof-of-concept studies conducted in Australia, the transfer of the technology to our Ugandan collaborators, and the successful implementation of the strategy into the field in Uganda. The many challenges encountered and the potential future obstacles to the practical exploitation of PVA-enhanced bananas in Uganda are discussed.
Collapse
Affiliation(s)
- Jean-Yves Paul
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robert Harding
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - James Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Contributions of biotechnology to meeting future food and environmental security needs. EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Biotechnology, including genetic modifications, can play a vital role in helping to meet future food and environmental security needs for our growing population. The nature and use of biotechnology crops are described and related to aspects of food security. Biotechnological applications for food and animal feed are described, together with trends on global adoption of these crops. The benefits of biotechnology crops through increased yield, reduced pesticide use and decreased environmental damage are discussed. Examples of biotechnology crops which do not involve genetic modification are also described. Applications of biotechnology to drought and salt tolerance, and biofortification in which micronutrient content is enhanced are discussed. Emergent technologies such as RNA spraying technology, use of genome editing in agriculture and future targets for improved food and environmental security are considered.
Collapse
|
24
|
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid Metabolism in Plants: The Role of Plastids. MOLECULAR PLANT 2018; 11:58-74. [PMID: 28958604 DOI: 10.1016/j.molp.2017.09.010] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 05/17/2023]
Abstract
Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mohammad Yazdani
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yaakov Tadmor
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Yaar Research Center, P.O. Box 1021, Ramat Yishai 30095, Israel
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Res 2017; 27:25-38. [PMID: 29247330 DOI: 10.1007/s11248-017-0051-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023]
Abstract
Japanese morning glory, Ipomoea nil, exhibits a variety of flower colours, except yellow, reflecting the accumulation of only trace amounts of carotenoids in the petals. In a previous study, we attributed this effect to the low expression levels of carotenogenic genes in the petals, but there may be other contributing factors. In the present study, we investigated the possible involvement of carotenoid cleavage dioxygenase (CCD), which cleaves specific double bonds of the polyene chains of carotenoids, in the regulation of carotenoid accumulation in the petals of I. nil. Using bioinformatics analysis, seven InCCD genes were identified in the I. nil genome. Sequencing and expression analyses indicated potential involvement of InCCD4 in carotenoid degradation in the petals. Successful knockout of InCCD4 using the CRISPR/Cas9 system in the white-flowered cultivar I. nil cv. AK77 caused the white petals to turn pale yellow. The total amount of carotenoids in the petals of ccd4 plants was increased 20-fold relative to non-transgenic plants. This result indicates that in the petals of I. nil, not only low carotenogenic gene expression but also carotenoid degradation leads to extremely low levels of carotenoids.
Collapse
Affiliation(s)
- Kenta Watanabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Chihiro Oda-Yamamizo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan.,Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Kimiyo Sage-Ono
- Faculty of Life and Environmental Sciences, Gene Research Center, Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akemi Ohmiya
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Michiyuki Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan. .,Faculty of Life and Environmental Sciences, Gene Research Center, Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
26
|
Ahrazem O, Diretto G, Argandoña J, Rubio-Moraga Á, Julve JM, Orzáez D, Granell A, Gómez-Gómez L. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4663-4677. [PMID: 28981773 DOI: 10.1093/jxb/erx277] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Crocetin, one of the few colored apocarotenoids known in nature, is present in flowers and fruits and has long been used medicinally and as a colorant. Saffron is the main source of crocetin, although a few other plants produce lower amounts of this apocarotenoid. Notably, Buddleja davidii accumulates crocetin in its flowers. Recently, a carotenoid dioxygenase cleavage enzyme, CCD2, has been characterized as responsible for crocetin production in Crocus species. We searched for CCD2 homologues in B. davidii and identified several CCD enzymes from the CCD1 and CCD4 subfamilies. Unexpectedly, two out of the three CCD4 enzymes, namely BdCCD4.1 and BdCCD4.3, showed 7,8;7',8' activity in vitro and in vivo over zeaxanthin. In silico analyses of these enzymes and CCD2 allowed the determination of key residues for this activity. Both BdCCD4 genes are highly expressed during flower development and transcripts levels parallel the accumulation of crocins in the petals. Phylogenetic analysis showed that BdCCD4.2 grouped with almost all the characterized CCD4 enzymes, while BdCCD4.1 and BdCCD4.3 form a new sub-cluster together with CCD4 enzymes from certain Lamiales species. The present study indicates that convergent evolution led to the acquisition of 7,8;7',8' apocarotenoid cleavage activity in two separate CCD enzyme families.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Campus Tecnológico de la Fábrica de Armas, Avda, Carlos III s/n, E-45071 Toledo, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Javier Argandoña
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - José Manuel Julve
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
27
|
Lee H. Transgenic Pro-Vitamin A Biofortified Crops for Improving Vitamin A Deficiency and Their Challenges. ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1874331501711010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vitamin A Deficiency (VAD) has been a public health problem among children in developing countries. To alleviate VAD, Vitamin A Supplementation (VAS), food fortification, biofortification and nutrition education have been implemented in various degrees of success with their own merits and limits. While VAS is the most widely utilized intervention in developing countries to ease the burden of VAD, some have raised questions on VAS’ effectiveness. Biofortification, often touted as an effective alternative to VAS, has received significant attention. Among the available biofortification methods, adopting transgenic technology has not only facilitated rapid progress in science for enhanced pro-Vitamin A (pVA) levels in target crops, but drawn considerable skepticism in politics for safety issues. Additionally, VAD-afflicted target regions of transgenic pVA crops widely vary in their national stance on Genetically Modified (GM) products, which further complicates crop development and release. This paper briefly reviews VAS and its controversy which partly demanded shifts to food-based VAD interventions, and updates the current status of transgenic pVA crops. Also, this paper presents a framework to provide potential influencers for transgenic pVA crop development under politically challenging climates with GM products. The framework could be applicable to other transgenic micronutrient biofortification.
Collapse
|
28
|
Paul J, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniells J, Zaplin E, Rosenberg Y, James A, Mlalazi B, Deo P, Arinaitwe G, Namanya P, Becker D, Tindamanyire J, Tushemereirwe W, Harding R, Dale J. Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:520-532. [PMID: 27734628 PMCID: PMC5362681 DOI: 10.1111/pbi.12650] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Vitamin A deficiency remains one of the world's major public health problems despite food fortification and supplements strategies. Biofortification of staple crops with enhanced levels of pro-vitamin A (PVA) offers a sustainable alternative strategy to both food fortification and supplementation. As a proof of concept, PVA-biofortified transgenic Cavendish bananas were generated and field trialed in Australia with the aim of achieving a target level of 20 μg/g of dry weight (dw) β-carotene equivalent (β-CE) in the fruit. Expression of a Fe'i banana-derived phytoene synthase 2a (MtPsy2a) gene resulted in the generation of lines with PVA levels exceeding the target level with one line reaching 55 μg/g dw β-CE. Expression of the maize phytoene synthase 1 (ZmPsy1) gene, used to develop 'Golden Rice 2', also resulted in increased fruit PVA levels although many lines displayed undesirable phenotypes. Constitutive expression of either transgene with the maize polyubiquitin promoter increased PVA accumulation from the earliest stage of fruit development. In contrast, PVA accumulation was restricted to the late stages of fruit development when either the banana 1-aminocyclopropane-1-carboxylate oxidase or the expansin 1 promoters were used to drive the same transgenes. Wild-type plants with the longest fruit development time had also the highest fruit PVA concentrations. The results from this study suggest that early activation of the rate-limiting enzyme in the carotenoid biosynthetic pathway and extended fruit maturation time are essential factors to achieve optimal PVA concentrations in banana fruit.
Collapse
Affiliation(s)
- Jean‐Yves Paul
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | - Harjeet Khanna
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
- Present address: Sugar Research AustraliaBrisbaneQldAustralia
| | - Jennifer Kleidon
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | - Phuong Hoang
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | - Jason Geijskes
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
- Present address: Syngenta Asia PacificSingaporeSingapore
| | - Jeff Daniells
- Agri‐Science QueenslandDepartment of Agriculture and FisheriesSouth JohnstoneQldAustralia
| | - Ella Zaplin
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
- Present address: Charles Sturt UniversityWagga WaggaNSWAustralia
| | | | - Anthony James
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | - Bulukani Mlalazi
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | - Pradeep Deo
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | - Geofrey Arinaitwe
- National Agricultural Research LaboratoriesNational Agricultural Research OrganizationKampalaUganda
| | - Priver Namanya
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
- National Agricultural Research LaboratoriesNational Agricultural Research OrganizationKampalaUganda
| | - Douglas Becker
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | - James Tindamanyire
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | | | - Robert Harding
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| | - James Dale
- Centre for Tropical Crops and BiocommoditiesQueensland University of TechnologyBrisbaneQldAustralia
| |
Collapse
|