1
|
Zhang Y, Liu W, Li G, Wu C, Yan J, Feng D, Yuan S, Zhang R, Lou H, Peng X. Novel polyketide from Fusarium verticillioide G102 as NPC1L1 inhibitors. Nat Prod Res 2024; 38:2957-2963. [PMID: 37074061 DOI: 10.1080/14786419.2023.2201885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
One novel polyketide, fusaritide A (1), was isolated from a marine fish-derived halotolerant fungal strain Fusarium verticillioide G102. The structure was determined through extensive spectroscopic analysis and high-resolution electrospray ionization mass spectrometry. Fusaritide A (1) with unprecedented structure reduced cholesterol uptake by inhibiting Niemann-Pick C1-Like 1 (NPC1L1).
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Wenjing Liu
- Cancer Institute, Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Changzheng Wu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Jing Yan
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Dan Feng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Shuangzhi Yuan
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Renshuai Zhang
- Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
3
|
González-Salazar LA, Quezada M, Rodríguez-Orduña L, Ramos-Aboites H, Capon RJ, Souza-Saldívar V, Barona-Gomez F, Licona-Cassani C. Biosynthetic novelty index reveals the metabolic potential of rare actinobacteria isolated from highly oligotrophic sediments. Microb Genom 2023; 9:mgen000921. [PMID: 36748531 PMCID: PMC9973853 DOI: 10.1099/mgen.0.000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Calculations predict that testing of 5 000-10 000 molecules and >1 billion US dollars (£0.8 billion, £1=$1.2) are required for one single drug to come to the market. A solution to this problem is to establish more efficient protocols that reduce the high rate of re-isolation and continuous rediscovery of natural products during early stages of the drug development process. The study of 'rare actinobacteria' has emerged as a possible approach for increasing the discovery rate of drug leads from natural sources. Here, we define a simple genomic metric, defined as biosynthetic novelty index (BiNI), that can be used to rapidly rank strains according to the novelty of the subset of encoding biosynthetic clusters. By comparing a subset of high-quality genomes from strains of different taxonomic and ecological backgrounds, we used the BiNI score to support the notion that rare actinobacteria encode more biosynthetic gene cluster (BGC) novelty. In addition, we present the isolation and genomic characterization, focused on specialized metabolites and phenotypic screening, of two isolates belonging to genera Lentzea and Actinokineospora from a highly oligotrophic environment. Our results show that both strains harbour a unique subset of BGCs compared to other members of the genera Lentzea and Actinokineospora. These BGCs are responsible for potent antimicrobial and cytotoxic bioactivity. The experimental data and analysis presented in this study contribute to the knowledge of genome mining analysis in rare actinobacteria and, most importantly, can serve to direct sampling efforts to accelerate early stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Luz A González-Salazar
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico
| | - Michelle Quezada
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lorena Rodríguez-Orduña
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico
| | - Hilda Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanza (LANGEBIO), Cinvestav-IPN, Irapuato, Mexico
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valeria Souza-Saldívar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanza (LANGEBIO), Cinvestav-IPN, Irapuato, Mexico.,Present address: Microbial Diversity and Specialized Metabolism Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Cuauhtémoc Licona-Cassani
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico.,Division of Integrative Biology, Institute for Obesity Research, Tecnológico de Monterrey, Nuevo León, Mexico
| |
Collapse
|
4
|
Xu Z, Jiang X, Li Y, Ma X, Tang Y, Li H, Yi K, Li J, Liu Z. Antifungal activity of montmorillonite/peptide aptamer nanocomposite against Colletotrichum gloeosporioides on Stylosanthes. Int J Biol Macromol 2022; 217:282-290. [PMID: 35835303 DOI: 10.1016/j.ijbiomac.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Chemical agents are effective treatment methods for anthracnose induced by pathogenic Colletotrichum gloeosporioides on Stylosanthes. However, excess consumption of chemical agents destroys the environment, synthetic biology was capable of conquering the issue. The antifungal agent is developed by enclosing a bio-synthesized peptide aptamer with layered montmorillonite via electrostatic interaction. Compared with free peptide aptamer, the nanocomposite exhibits higher antifungal activity against Colletotrichum gloeosporioides, further improving the utilization of peptide aptamer. The nanocomposite killed Colletotrichum gloeosporioides by releasing peptide aptamer after they entered the spore. Moreover, montmorillonite enhances the adhesion ability of peptide aptamer via hydrophobic interactions between nanomaterials and leaves, prolonging the extension time of nanocomposite on leaves. Consequently, 0.1 mg of nanocomposite demonstrates a comparable effect to commercial carbendazim (1 %) to prevent anthracnose on leaves of Stylosanthes induced by HK-04 at room temperature. This work demonstrates an alternative to commercial antifungal agents and proposes a versatile approach to preparing environmental-friendly antifungal agents to inhibit fungal infections on crops.
Collapse
Affiliation(s)
- Zhenfei Xu
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Xiaoli Jiang
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China.
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
The Discovery of Actinospene, a New Polyene Macrolide with Broad Activity against Plant Fungal Pathogens and Pathogenic Yeasts. Molecules 2021; 26:molecules26227020. [PMID: 34834113 PMCID: PMC8621364 DOI: 10.3390/molecules26227020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Phytopathogenic fungi infect crops, presenting a worldwide threat to agriculture. Polyene macrolides are one of the most effective antifungal agents applied in human therapy and crop protection. In this study, we found a cryptic polyene biosynthetic gene cluster in Actinokineospora spheciospongiae by genome mining. Then, this gene cluster was activated via varying fermentation conditions, leading to the discovery of new polyene actinospene (1), which was subsequently isolated and its structure determined through spectroscopic techniques including UV, HR-MS, and NMR. The absolute configuration was confirmed by comparing the calculated and experimental electronic circular dichroism (ECD) spectra. Unlike known polyene macrolides, actinospene (1) demonstrated more versatile post-assembling decorations including two epoxide groups and an unusual isobutenyl side chain. In bioassays, actinospene (1) showed a broad spectrum of antifungal activity against several plant fungal pathogens as well as pathogenic yeasts with minimum inhibitory concentrations ranging between 2 and 10 μg/mL.
Collapse
|
6
|
Identification and Predictions Regarding the Biosynthesis Pathway of Polyene Macrolides Produced by Streptomyces roseoflavus Men-myco-93-63. Appl Environ Microbiol 2021; 87:AEM.03157-20. [PMID: 33637575 DOI: 10.1128/aem.03157-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
A group of polyene macrolides mainly composed of two constituents was isolated from the fermentation broth of Streptomyces roseoflavus Men-myco-93-63, which was isolated from soil where potato scabs were repressed naturally. One of these macrolides was roflamycoin, which was first reported in 1968, and the other was a novel compound named Men-myco-A, which had one methylene unit more than roflamycoin. Together, they were designated RM. This group of antibiotics exhibited broad-spectrum antifungal activities in vitro against 17 plant-pathogenic fungi, with 50% effective concentrations (EC50) of 2.05 to 7.09 μg/ml and 90% effective concentrations (EC90) of 4.32 to 54.45 μg/ml, which indicates their potential use in plant disease control. Furthermore, their biosynthetic gene cluster was identified, and the associated biosynthetic assembly line was proposed based on a module and domain analysis of polyketide synthases (PKSs), supported by findings from gene inactivation experiments.IMPORTANCE Streptomyces roseoflavus Men-myco-93-63 is a biocontrol strain that has been studied in our laboratory for many years and exhibits a good inhibitory effect in many crop diseases. Therefore, the identification of antimicrobial metabolites is necessary and our main objective. In this work, chemical, bioinformatic, and molecular biological methods were combined to identify the structures and biosynthesis of the active metabolites. This work provides a new alternative agent for the biological control of plant diseases and is helpful for improving both the properties and yield of the antibiotics via genetic engineering.
Collapse
|
7
|
A New Micromonospora Strain with Antibiotic Activity Isolated from the Microbiome of a Mid-Atlantic Deep-Sea Sponge. Mar Drugs 2021; 19:md19020105. [PMID: 33670308 PMCID: PMC7918784 DOI: 10.3390/md19020105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.
Collapse
|
8
|
Peng F, Zhang MY, Hou SY, Chen J, Wu YY, Zhang YX. Insights into Streptomyces spp. isolated from the rhizospheric soil of Panax notoginseng: isolation, antimicrobial activity and biosynthetic potential for polyketides and non-ribosomal peptides. BMC Microbiol 2020; 20:143. [PMID: 32493249 PMCID: PMC7271549 DOI: 10.1186/s12866-020-01832-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Streptomycetes from the rhizospheric soils are a rich resource of novel secondary metabolites with various biological activities. However, there is still little information related to the isolation, antimicrobial activity and biosynthetic potential for polyketide and non-ribosomal peptide discovery associated with the rhizospheric streptomycetes of Panax notoginseng. Thus, the aims of the present study are to (i) identify culturable streptomycetes from the rhizospheric soil of P. notoginseng by 16S rRNA gene, (ii) evaluate the antimicrobial activities of isolates and analyze the biosynthetic gene encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) of isolates, (iii) detect the bioactive secondary metabolites from selected streptomycetes, (iv) study the influence of the selected isolate on the growth of P. notoginseng in the continuous cropping field. This study would provide a preliminary basis for the further discovery of the secondary metabolites from streptomycetes isolated from the rhizospheric soil of P. notoginseng and their further utilization for biocontrol of plants. Results A total of 42 strains representing 42 species of the genus Streptomyces were isolated from 12 rhizospheric soil samples in the cultivation field of P. notoginseng and were analyzed by 16S rRNA gene sequencing. Overall, 40 crude cell extracts out of 42 under two culture conditions showed antibacterial and antifungal activities. Also, the presence of biosynthesis genes encoding type I and II polyketide synthase (PKS I and PKS II) and nonribosomal peptide synthetases (NRPSs) in 42 strains were established. Based on characteristic chemical profiles screening by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD), the secondary metabolite profiles of strain SYP-A7257 were evaluated by High Performance Liquid Chromatography-High Resolution Mass Spectrometry (HPLC-HRMS). Finally, four compounds actinomycin X2 (F1), fungichromin (F2), thailandin B (F7) and antifungalmycin (F8) were isolated from strain SYP-A7257 by using chromatography techniques, UV, HR-ESI-MS and NMR, and their antimicrobial activities against the test bacteria and fungus were also evaluated. In the farm experiments, Streptomyces sp. SYP-A7257 showed healthy growth promotion and survival rate improvement of P. notoginseng in the continuous cropping field. Conclusions We demonstrated the P. notoginseng rhizospheric soil-derived Streptomyces spp. distribution and diversity with respect to their metabolic potential for polyketides and non-ribosomal peptides, as well as the presence of biosynthesis genes PKS I, PKS II and NRPSs. Our results showed that cultivatable Streptomyces isolates from the rhizospheric soils of P. notoginseng have the ability to produce bioactive secondary metabolites. The farm experiments suggested that the rhizospheric soil Streptomyces sp. SYP-A7257 may be a potential biological control agent for healthy growth promotion and survival rate improvement of P. notoginseng in the continuous cropping field.
Collapse
Affiliation(s)
- Fei Peng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.,Quanzhou Medical College, Quanzhou, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shao-Yang Hou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Juan Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
9
|
Oberhofer M, Hess J, Leutgeb M, Gössnitzer F, Rattei T, Wawrosch C, Zotchev SB. Exploring Actinobacteria Associated With Rhizosphere and Endosphere of the Native Alpine Medicinal Plant Leontopodium nivale Subspecies alpinum. Front Microbiol 2019; 10:2531. [PMID: 31781058 PMCID: PMC6857621 DOI: 10.3389/fmicb.2019.02531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/21/2019] [Indexed: 11/24/2022] Open
Abstract
The rhizosphere of plants is enriched in nutrients facilitating growth of microorganisms, some of which are recruited as endophytes. Endophytes, especially Actinobacteria, are known to produce a plethora of bioactive compounds. We hypothesized that Leontopodium nivale subsp. alpinum (Edelweiss), a rare alpine medicinal plant, may serve as yet untapped source for uncommon Actinobacteria associated with this plant. Rhizosphere soil of native Alpine plants was used, after physical and chemical pre-treatments, for isolating Actinobacteria. Isolates were selected based on morphology and identified by 16S rRNA gene-based barcoding. Resulting 77 Actinobacteria isolates represented the genera Actinokineospora, Kitasatospora, Asanoa, Microbacterium, Micromonospora, Micrococcus, Mycobacterium, Nocardia, and Streptomyces. In parallel, Edelweiss plants from the same location were surface-sterilized, separated into leaves, roots, rhizomes, and inflorescence and pooled within tissues before genomic DNA extraction. Metagenomic 16S rRNA gene amplicons confirmed large numbers of actinobacterial operational taxonomic units (OTUs) descending in diversity from roots to rhizomes, leaves and inflorescences. These metagenomic data, when queried with isolate sequences, revealed an overlap between the two datasets, suggesting recruitment of soil bacteria by the plant. Moreover, this study uncovered a profound diversity of uncultured Actinobacteria from Rubrobacteridae, Thermoleophilales, Acidimicrobiales and unclassified Actinobacteria specifically in belowground tissues, which may be exploited by a targeted isolation approach in the future.
Collapse
Affiliation(s)
- Martina Oberhofer
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Jaqueline Hess
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Marlene Leutgeb
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Florian Gössnitzer
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Christoph Wawrosch
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Sergey B. Zotchev
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Ding T, Yang LJ, Zhang WD, Shen YH. The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 2019; 9:21964-21988. [PMID: 35518871 PMCID: PMC9067109 DOI: 10.1039/c9ra03579f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Actinomycetes are outstanding and fascinating sources of potent bioactive compounds, particularly antibiotics. In recent years, rare actinomycetes have had an increasingly important position in the discovery of antibacterial compounds, especially Micromonospora, Actinomadura and Amycolatopsis. Focusing on the period from 2008 to 2018, we herein summarize the structures and bioactivities of secondary metabolites from rare actinomycetes, involving 21 genera.
Collapse
Affiliation(s)
- Ting Ding
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry Shanghai 201203 China
| | - Luo-Jie Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Wei-Dong Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry Shanghai 201203 China
- School of Pharmacy, The Second Military Medical University Shanghai 200433 China
| | - Yun-Heng Shen
- School of Pharmacy, The Second Military Medical University Shanghai 200433 China
| |
Collapse
|
11
|
Isolation and identification of two alkaloid structures with radical scavenging activity from Actinokineospora sp. UTMC 968, a new promising source of alkaloid compounds. Mol Biol Rep 2018; 45:2325-2332. [PMID: 30242664 DOI: 10.1007/s11033-018-4395-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
For decades, natural products from Actinomycetes have been recognized as one of the inestimable sources of therapeutic compounds. Presently, due to some challenges in the identification of novel compounds including the validation of novel natural products and their compatibility with the high throughput screening bioassays, evaluating new activity from known commercial ones would be an important designation. On the other hand, finding new sources of bioactive compounds from Actinomycetes can be promising in attaining pharmaceutical compounds with fewer purification steps and cost-effective production of the bioproducts. Here we describe the isolation and identification of two alkaloid compounds from a soil actinobacterium Actinokineospora sp. UTMC 968 including N-acetyltyramine (1) and N-acetyltryptamine (2) with revealing a new bioactivity for these molecules. The producer is a rare actinobacterium belonging to family Pseudonocardiaceae as the first alkaloid compounds producer genus in its family. The structures of alkaloid 1 and 2 were assigned on the basis of 1D and 2D NMR spectroscopy and MS analyses. Compound 1 and 2 are used commercially for their pharmaceutical activity but their radical scavenging activity has not previously been reported. The results of 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay represented a remarkable DPPH radical scavenging capability with an IC50 value of 64.7 ± 0.5 and 131.3 ± 1.8 µg/mL for compound 1 and 2, respectively.
Collapse
|
12
|
The Draft Genome Sequence of Actinokineospora bangkokensis 44EHW T Reveals the Biosynthetic Pathway of the Antifungal Thailandin Compounds with Unusual Butylmalonyl-CoA Extender Units. Molecules 2016; 21:molecules21111607. [PMID: 27886115 PMCID: PMC6273641 DOI: 10.3390/molecules21111607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/16/2022] Open
Abstract
We report the draft genome sequence of Actinokineospora bangkokensis 44EHWT, the producer of the antifungal polyene compounds, thailandins A and B. The sequence contains 7.45 Mb, 74.1% GC content and 35 putative gene clusters for the biosynthesis of secondary metabolites. There are three gene clusters encoding large polyketide synthases of type I. Annotation of the ORF functions and targeted gene disruption enabled us to identify the cluster for thailandin biosynthesis. We propose a plausible biosynthetic pathway for thailandin, where the unusual butylmalonyl-CoA extender unit is incorporated and results in an untypical side chain.
Collapse
|