1
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
2
|
Tu Z, Xi Y, Zhang Y, Jin P, Yang H, Li C, Zhang Z, Wang H, Hou S. Assessment of blood-brain barrier injury in hypertensive CSVD by 11.7TMR T1mapping and microvascular pathologic changes. Metab Brain Dis 2024; 40:66. [PMID: 39680228 DOI: 10.1007/s11011-024-01483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
We used spontaneously hypertensive rats (SHR) as a hypertensive cerebral small vessel disease (CSVD) model to quantify blood-brain barrier (BBB) disruption by 11.7TMR T1mapping and to investigate white matter lesions and microangiopathy in CSVD. Male SHR were used as a hypertensive CSVD animal model and normotensive Wistar-Kyoto rats (WKY) were used as a control model. After 18 weeks, the rats did the Morris water maze test were evaluated, blood-brain barrier (BBB) integrity were evaluated by using Bruker 11.7T MR T1 mapping. ITK-SNAP software was used to measure hippocampal volume. Then, pathological analysis was carried out on rats, myelin integrity, vascular permeability and microvessel density were assessed by immunohistochemistry. Our data showed that hypertensive CSVD model exhibited decreased memory function, BBB leakage could be detected differently in different brain regions, and T1 values of the hippocampus showed the greatest drop than other areas. Furthermore, the pathological changes in small vessels were more extensive, average optical density of myelin basic protein (MBP) in the white matter of SHR group was significantly reduced, moreover, VEGFR2 immunoreactivity scores (IRS) and CD34-assessed MVD in SHR group were significantly higher than WKY group. We find different parts of the brain tissues have different degrees of BBB leakage, hippocampal atrophy and hippocampal volume were decreased in hypertensive CSVD by using T1 Mapping. Loss of myelin integrity, vascular permeability increased and microangiopathy may contribute to hypertensive-related BBB functional deficits in CSVD model.
Collapse
Affiliation(s)
- Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Yan Xi
- Department of Radiology, Shanghai TCM-Integrated Hospital, 230 Baoding Road, Shanghai, 200000, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Pengpen Jin
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201613, China
| | - Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Zengyu Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 220 Handan Road, 200082, Shanghai, China.
| | - Shuangxing Hou
- Department of Neurology, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, 201613, Shanghai, China.
| |
Collapse
|
3
|
Kong Q, Niu Y, Feng H, Yu X, Wang B, Liu X, Chen Y, Wang F, Tian J, Zhou H. Ligusticum chuanxiong Hort.: a review of its phytochemistry, pharmacology, and toxicology. J Pharm Pharmacol 2024; 76:1404-1430. [PMID: 39180449 DOI: 10.1093/jpp/rgae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Conioselinum anthriscoides (H. Boissieu) Pimenov & Kljuykov, also known as Ligusticum chuanxiong Hort. is a perennial Umbelliferae herb, whose dried rhizome commonly called Chuanxiong Rhizoma. Chuanxiong Rhizoma is widely used in TCM, especially for cardiocerebrovascular and gynecological diseases. However, these studies are scattered and there is no review that can centralize the results of these studies. The authors summarized this review by collecting research results on the chemical, pharmacological, and toxicological of Chuanxiong Rhizoma published in various publications over the past 20 years. AIMS The purpose of this review is to summarize the current experimental studies on Chuanxiong Rhizoma and explore its mechanism of action. METHODS Web of Science, PubMed, CBM, CNKI, Medline, Embase, Elsevier, Springer, Wiley Online Library, Scholar, and other databases were searched, and nearly one hundred experimental studies were collected to summarize this review. RESULTS AND DISCUSSION Chuanxiong Rhizoma is composed of essential oil, terpenes, alkaloids, polysaccharide, organic acids, ceramides, and cerebrosides. It has the functions of promoting blood circulation, removing blood stasis, antibacterial, antiviral, and calming the mind to sleep. Now it can be used to treat cardiocerebrovascular and gynecological diseases, neurodegenerative disease, psoriasis, rectal cancer, osteoporosis, and osteoarthritis. CONCLUSIONS In the past 20 years, a large number of research data have confirmed that Chuanxiong Rhizoma contains rich effective metabolites, has huge medicinal potential, and has a wide range of effective treatments.
Collapse
Affiliation(s)
- Qinghe Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yingshuo Niu
- Cardiovascular Department of Guang'anmen Hospital Jinan, China Academy of Chinese Medical Sciences, Jinan 250012, China
| | - Hao Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaofei Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Bingkang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| |
Collapse
|
4
|
Wu Y, Gao L, Hu Y, He X, Ye W, Long Y, Li X, Deng J, Ma Y, Feng H, Liu H, Wu Q, Li N. NaturalEssential Oils: A Promising Therapy Way for Treating Ischemic Stroke. J Oleo Sci 2024; 73:1377-1396. [PMID: 39414458 DOI: 10.5650/jos.ess24125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
Stroke is an acute cerebrovascular disease with high morbidity, mortality, and disability, making it the second leading cause of death worldwide. Ischemic stroke (IS) accounts for the majority of strokes, and its pathogenesis is complex, often involving complications and sequelae. Currently, conventional clinical approaches are ineffective, with few drugs available for intravenous thrombolysis and mechanical thrombolysis limited by a short time window. With the poor efficacy of monotherapy, the search for new complementary or alternative therapies has become the focus of researchers. In traditional medicine, Chinese aromatherapy has a long history of using aromatic medicines to treat IS. Natural essential oils (EOs), as the main pharmacological substances in aromatic drugs, are composed of different ratios of active metabolites with multi-targets and multi-components, which makes EOs have a wide range of pharmacological effects. Modern studies have also shown that EOs extracts and isolated monomers are beneficial for pathologically complex CIS. Therefore, this paper summarizes the EOs and monomers obtained from EOs that can prevent and treat IS in the last 20 years, and finds that EOs exert their anti-CIS effects mainly through anti-oxidative stress, anti-inflammation, anti-apoptosis, and inhibition of excitotoxicity. The amelioration of IS complications by natural EOs and their active monomer components for the treatment of IS are further discussed.
Collapse
Affiliation(s)
- Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Leying Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Wenli Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Huiyi Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Haolin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Qianqian Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
5
|
Liu Y, Zhao P, Cai Z, He P, Wang J, He H, Zhu Z, Guo X, Ma K, Peng K, Zhao J. Buqi-Huoxue-Tongnao decoction drives gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Chin Med 2024; 19:126. [PMID: 39278929 PMCID: PMC11403783 DOI: 10.1186/s13020-024-00991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Ischemic stroke belongs to "apoplexy" and its pathogenesis is characterized by qi deficiency and blood stasis combining with phlegm-damp clouding orifices. Buqi-Huoxue-Tongnao decoction (BHTD) is a traditional Chinese medicine formula for qi deficiency, blood stasis and phlegm obstruction syndrome. However, its efficacy and potential mechanism on ischemic stroke are still unclear. This study aims to investigate the protective effect and potential mechanism of BHTD against ischemic stroke. MATERIALS AND METHODS Middle cerebral artery occlusion (MCAO) surgery was carried out to establish an ischemic stroke model in rats. Subsequently, the rats were gavaged with different doses of BHTD (2.59, 5.175, 10.35 g/kg) for 14 days. The protective effects of BHTD on the brain and gut were evaluated by neurological function scores, cerebral infarction area, levels of brain injury markers (S-100B, NGB), indicators of gut permeability (FD-4) and bacterial translocation (DAO, LPS, D-lactate), and tight junction proteins (Occludin, Claudin-1, ZO-1) in brain and colon. 16S rRNA gene sequencing and metabolomic analysis were utilized to analyze the effects on gut microecology and screen for marker metabolites to explore potential mechanisms of BHTD protection against ischemic stroke. RESULTS BHTD could effectively mitigate brain impairment, including reducing neurological damage, decreasing cerebral infarction and repairing the blood-brain barrier, and BHTD showed the best effect at the dose of 10.35 g/kg. Moreover, BHTD reversed gut injury induced by ischemic stroke, as evidenced by decreased intestinal permeability, reduced intestinal bacterial translocation, and enhanced intestinal barrier integrity. In addition, BHTD rescued gut microbiota dysbiosis by increasing the abundance of beneficial bacteria, including Turicibacter and Faecalibaculum. Transplantation of the gut microbiota remodeled by BHTD into ischemic stroke rats recapitulated the protective effects of BHTD. Especially, BHTD upregulated tryptophan metabolism, which promoted gut microbiota to produce more indole lactic acid (ILA). Notably, supplementation with ILA by gavage could alleviate stroke injury, which suggested that driving the production of ILA in the gut might be a novel treatment for ischemic stroke. CONCLUSION BHTD could increase gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Our current finding provides evidence that traditional Chinese medicine can ameliorate central diseases through regulating the gut microbiology.
Collapse
Affiliation(s)
- Yarui Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peng Zhao
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Peishi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiahan Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haoqing He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhibo Zhu
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Xiaowen Guo
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Ke Ma
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Kang Peng
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Huang S, Chen J, Liu X, Xing C, Zhao L, Chan K, Lu G. Evaluation of the Pharmaceutical Activities of Chuanxiong, a Key Medicinal Material in Traditional Chinese Medicine. Pharmaceuticals (Basel) 2024; 17:1157. [PMID: 39338320 PMCID: PMC11434844 DOI: 10.3390/ph17091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Szechwan lovage rhizome (SLR, the rhizome of Ligusticum chuanxiong Hort., Chuanxiong in Chinese transliteration) is one Chinese materia medica (CMM) commonly used to activate blood circulation and remove blood stasis. SLR is applicable to most blood stasis syndromes. It has significant clinical efficacy in relation to human diseases of the cardiocerebrovascular system, nervous system, respiratory system, digestive system, urinary system, etc. Apart from China, SLR is also used in Singapore, Malaysia, the European Union, and the United States of America. However, the current chemical markers in pharmacopeia or monography for the quality assessment of SLR are not well characterized or specifically characterized, nor do they fully reflect the medicinal efficacy of SLR, resulting in the quality of SLR not being effectively controlled. CMM can only have medicinal efficacy when they are applied in vivo to an organism. The intensity of their pharmaceutical activities can more directly represent the quality of CMM. Therefore, the chemical constituents and pharmacological actions of SLR are reviewed in this paper. In order to demonstrate the medicinal efficacy of SLR in promoting blood circulation and removing blood stasis, bioassay methods are put forward to evaluate the pharmaceutical activities of SLR to improve hemorheology, hemodynamics, and vascular microcirculation, as well as its anti-platelet aggregation and anticoagulation properties. Through comprehensive analyses of these pharmaceutical properties, the quality and therapeutic value of SLR are ascertained.
Collapse
Affiliation(s)
- Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohua Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunxin Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Zhao
- Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu 611731, China;
| | - Kelvin Chan
- Centre for Natural Products Discovery, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- NICM Health Research Institute, Western Sydney University, Sydney, NSW 1797, Australia
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
7
|
Li Y, Yu Q, Peng H, Mingjun X, Xu W, Zheng T, Zhao T, Xia M, Wu J, Stavrinou P, Goldbrunner R, Xie Y, Zhang G, Feng Y, Guan Y, Zheng F, Sun P. Jingfang granules protects against intracerebral hemorrhage by inhibiting neuroinflammation and protecting blood-brain barrier damage. Aging (Albany NY) 2024; 16:9023-9046. [PMID: 38809507 PMCID: PMC11164481 DOI: 10.18632/aging.205854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/10/2024] [Indexed: 05/30/2024]
Abstract
Intracerebral hemorrhage (ICH) can induce intensive oxidative stress, neuroinflammation, and brain cell apoptosis. However, conventional methods for ICH treatment have many disadvantages. There is an urgent need for alternative, effective therapies with minimal side effects. Pharmacodynamics experiment, molecular docking, network pharmacology, and metabolomics were adopted to investigate the treatment and its mechanism of Jingfang Granules (JFG) in ICH. In this study, we investigated the therapeutic effects of JFG on ICH using behavioral, brain water content and Magnetic resonance imaging experiments. However, the key active component and targets of JFG remain unknown. Here we verified that JFG was beneficial to improve brain injury after ICH. A network pharmacology analysis revealed that the anti-inflammatory effect of JFG is predominantly mediated by its activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway through Luteolin, (+)-Anomalin and Phaseol and their targeting of AKT1, tumor necrosis factorα (TNF-α), and interleukin-1β (IL-1β). Molecular docking analyses revealed an average affinity of -8.633 kcal/mol, indicating a binding strength of less than -5 kcal/mol. Metabolomic analysis showed that JFG exerted its therapeutic effect on ICH by regulating metabolic pathways, such as the metabolism of taurine and hypotaurine, biosynthesis of valine, leucine, and isoleucine. In conclusion, we demonstrated that JFG attenuated neuroinflammation and BBB injury subsequent to ICH by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yanling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Qingying Yu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyuan Peng
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhong Shan, China
| | - Xie Mingjun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - WenHua Xu
- Prevention and Treatment Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Tingting Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Tingting Zhao
- Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Mengyao Xia
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Jibiao Wu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Yicheng Xie
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yongxia Guan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| |
Collapse
|
8
|
Tang J, Song T, Kuang M, Liu H. Analysis of online prescription patterns in Chinese patients with sequelae of cerebral infarction: a real-world study. Sci Rep 2024; 14:11962. [PMID: 38796623 PMCID: PMC11127947 DOI: 10.1038/s41598-024-62923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Cerebral infarction (CI) is a common cerebrovascular disease worldwide, and the burden caused by the sequelae of CI has increased significantly. However, current treatment guidelines lack standardized recommendations for pharmacotherapy of sequelae of CI. This retrospective study collected and analyzed 1.98 million prescriptions concerning sequelae of CI from patients admitted to Zhiyun Health Internet Hospital in 2022. The mean age of patients was 66.2 ± 11.4 years, and 52.40% were male. 79.73% had one or more comorbidities. For treatment, the prescriptions of 1-, 2- and ≥ 3-drug accounted for 64.55%, 23.77% and 11.68% respectively. Chinese patent medicine (CPM) prescriptions, western medicine (WM) prescriptions, and CPM and WM combined (CPM + WM) prescriptions accounted for 53.81%, 27.33%, and 18.86% respectively. In CPM prescriptions, the most frequently prescribed medications were Salvia miltiorrhiza (34.81%), Ginkgo biloba (24.96%), Panax notoginseng (20.67%), Gastrodia (7.15%) and Ligusticum Wallichii (4.90%). For WM prescriptions, the most commonly prescribed agents were anti-hypertensive (32.82%), anti-thrombotic (16.06%), vasodilator (15.70%), anti-dementia (10.88%), and lipid-lowering (9.58%) drugs. Among CPM + WM prescriptions, 72.61% had CPM/WM = 1, 21.20% had CPM/WM < 1, and 6.19% had CPM/WM > 1. This research utilized real-world data extracted from internet hospitals in China to present valuable evidence of online prescription patterns among patients experiencing sequelae of CI.
Collapse
Affiliation(s)
- Jia Tang
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Tiantian Song
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Ming Kuang
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Hongying Liu
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Tran KN, Kwon JH, Kim MK, Nguyen NPK, Yang IJ. Intranasal delivery of herbal medicine for disease treatment: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155484. [PMID: 38442431 DOI: 10.1016/j.phymed.2024.155484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Intranasal administration has been adopted in traditional medicine to facilitate access to the bloodstream and central nervous system (CNS). In modern medicine, nasal drug delivery systems are valuable for disease treatment because of their noninvasiveness, good absorption, and fast-acting effects. OBJECTIVE This study aimed to systematically organize preclinical and clinical studies on intranasal herbal medicines to highlight their potential in drug development. METHODS A comprehensive search for literature until February 2023 was conducted on PubMed and the Web of Science. From the selected publications, we extracted key information, including the types of herbal materials, target diseases, intranasal conditions, methods of toxicity evaluation, main outcomes, and mechanisms of action, and performed quality assessments for each study. RESULTS Of the 45 studies, 13 were clinical and 32 were preclinical; 28 studies used herbal extracts, 9 used prescriptions, and 8 used natural compounds. The target diseases were rhinosinusitis, influenza, fever, stroke, migraine, insomnia, depression, memory disorders, and lung cancer. The common intranasal volumes were 8-50 µl in mice, 20-100 µl in rats, and 100-500 µl in rabbits. Peppermint oil, Ribes nigrum folium, Melia azedarach L., Elaeocarpus sylvestris, Radix Bupleuri, Da Chuan Xiong Fang, Xingnaojing microemulsion, and Ginsenoside Rb1 emerged as potential candidates for rapid intranasal therapy. The in vivo toxicity assessments were based on mortality, body weight, behavioral changes, mucociliary activity, histopathology, and blood tests. Most intranasal treatments were safe, except for Cyclamen europaeum, Jasminum sambac, Punica granatum L., and violet oil, which caused mild adverse effects. At lower doses, intranasal herbal treatments often show greater effects than oral administration. The actions of intranasal herbal medicine mainly involve regulating inflammation and neurotransmission, with the olfactory bulb and anterior cingulate cortex to be relevant brain regions. CONCLUSION Intranasal delivery of herbal materials holds promise for enhancing drug delivery efficacy and reducing treatment duration, offering a potential future perspective for developing intranasal therapies for various diseases.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Ji-Hye Kwon
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Min-Kyung Kim
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
10
|
Chen Z, Zhu Q, Qi X, Yang LR, Rong YX, Wei Q, Wu SQ, Lu QW, Li L, Jiang MD, Qi H. Dual role of Nrf2/HO-1 pathway in Z-ligustilide-induced ferroptosis against AML cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155288. [PMID: 38183698 DOI: 10.1016/j.phymed.2023.155288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The scarcity of drugs targeting AML cells poses a significant challenge in AML management. Z-Ligustilide (Z-LIG), a phthalide compound, shows promising pharmacological potential as a candidate for AML therapy. However, its precise selective mechanism remains unclear. PURPOSE In order to assess the selective inducement effects of Z-LIG on ferroptosis in AML cells and explore the possible involvement of the Nrf2/HO-1 pathway in the regulation of ferroptosis. METHODS Through in vitro cell proliferation and in vivo tumor growth tests, the evaluation of Z-LIG's anticancer activity was conducted. Ferroptosis was determined by the measurement of ROS and lipid peroxide levels using flow cytometry, as well as the observation of mitochondrial morphology. To analyze the iron-related factors, western blot analysis was employed. The up-regulation of the Nrf2/HO-1 axis was confirmed through various experimental techniques, including CRISPR/Cas9 gene knockout, fluorescent probe staining, and flow cytometry. The efficacy of Z-LIG in inducing ferroptosis was further validated in a xenograft nude mouse model. RESULTS Our study revealed that Z-LIG specifically triggered lipid peroxidation-driven cell death in AML cells. Z-LIG downregulated the total protein and nuclear entrance levels of IRP2, resulting in upregulation of FTH1 and downregulation of TFR1. Z-LIG significantly increased the susceptibility to ferroptosis by upregulating ACSL4 levels and simultaneously suppressing the activity of GPX4. Notably, the Nrf2/HO-1 pathway displayed a twofold impact in the ferroptosis induced by Z-LIG. Mild activation suppressed ferroptosis, while excessive activation promoted it, mainly driven by ROS-induced labile iron pool (LIP) accumulation in AML cells, which was not observed in normal human cells. Additionally, Nrf2 knockout and HO-1 knockdown reversed iron imbalance and mitochondrial damage induced by Z-LIG in HL-60 cells. Z-LIG effectively inhibited the growth of AML xenografts in mice, and Nrf2 knockout partially weakened its antitumor effect by inhibiting ferroptosis. CONCLUSION Our study presents biological proof indicating that the selective initiation of ferroptosis in leukemia cells is credited to the excessive activation of the Nrf2/HO-1 pathway triggered by Z-LIG.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China
| | - Qiang Zhu
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China
| | - Xingyu Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China
| | - Li-Rong Yang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China
| | - Yu-Xia Rong
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China
| | - Qi Wei
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China
| | - Shi-Qi Wu
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China
| | - Qian-Wei Lu
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, PR China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China
| | - Ming-Dong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, PR China
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
11
|
Zhou W, Qiu J, Wei C, Wu Y, Li Y, Hu H, Wang Z. Comprehensive quality evaluation of two different geography originated Angelica sinensis Radix based on potential production area development and resource protection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107878. [PMID: 37480748 DOI: 10.1016/j.plaphy.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023]
Abstract
Angelica sinensis Radix (ASR) is mainly produced in the southern region of Gansu, China, and is a famous edible and medicinal herb. Noticeably, Aba region in Sichuan, China has similar geographical and climatic conditions to the southern region of Gansu, China, and has the potential to further develop the ASR planting industry chain. This study was the first to use an innovative method that combines GC-MS, HPLC-DAD fingerprints, and stoichiometric analysis to compare and explore the feasibility of using the Aba region as a source of high-quality ASR supplements. GC-MS analysis showed that the composition of ASR essential oil(AEO) in these two regions was highly similar (>99%). The HPLC data showed that the main sources of differences in ASR components between the two regions were coniferyl ferulate, E-ligustilide, Z-ligustilide, and Butylidenephthalide, which have great potential in anti-depression, regulating gut microbiota, and other aspects. The ASR in Aba region was rich in these components, and its biological activity might be higher to some extent than that in southern Gansu. This study confirmed the potential of the Aba region in Sichuan to become a high-quality production area for ASR, which was conducive to the expansion of ASR resources and the development of related industrial chains.
Collapse
Affiliation(s)
- Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunlei Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuyi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
12
|
Yuan Y, Sheng P, Ma B, Xue B, Shen M, Zhang L, Li D, Hou J, Ren J, Liu J, Yan BC, Jiang Y. Elucidation of the mechanism of Yiqi Tongluo Granule against cerebral ischemia/reperfusion injury based on a combined strategy of network pharmacology, multi-omics and molecular biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154934. [PMID: 37393828 DOI: 10.1016/j.phymed.2023.154934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Ischemic stroke is caused by local lesions of the central nervous system and is a severe cerebrovascular disease. A traditional Chinese medicine, Yiqi Tongluo Granule (YQTL), shows valuable therapeutic effects. However, the substances and mechanisms remain unclear. PURPOSE We combined network pharmacology, multi-omics, and molecular biology to elucidate the mechanisms by which YQTL protects against CIRI. STUDY DESIGN We innovatively created a combined strategy of network pharmacology, transcriptomics, proteomics and molecular biology to study the active ingredients and mechanisms of YQTL. We performed a network pharmacology study of active ingredients absorbed by the brain to explore the targets, biological processes and pathways of YQTL against CIRI. We also conducted further mechanistic analyses at the gene and protein levels using transcriptomics, proteomics, and molecular biology techniques. RESULTS YQTL significantly decreased the infarction volume percentage and improved the neurological function of mice with CIRI, inhibited hippocampal neuronal death, and suppressed apoptosis. Fifteen active ingredients of YQTL were detected in the brains of rats. Network pharmacology combined with multi-omics revealed that the 15 ingredients regulated 19 pathways via 82 targets. Further analysis suggested that YQTL protected against CIRI via the PI3K-Akt signaling pathway, MAPK signaling pathway, and cAMP signaling pathway. CONCLUSION We confirmed that YQTL protected against CIRI by inhibiting nerve cell apoptosis enhanced by the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yue Yuan
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China
| | - Peng Sheng
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Bo Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100730, China
| | - Bingjie Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengmeng Shen
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Ling Zhang
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Dan Li
- Shineway Pharmaceutical Group Co., Ltd., Shijiazhuang 051430, China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co., Ltd., Shijiazhuang 051430, China
| | - Junguo Ren
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China
| | - Jianxun Liu
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China.
| | - Bing Chun Yan
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China.
| | - Yunyao Jiang
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Zhang K, Zhang C, Teng X, Wang K, Chen M. Bioinformatics and computational chemistry approaches to explore the mechanism of the anti-depressive effect of ligustilide. Sci Rep 2023; 13:5417. [PMID: 37012370 PMCID: PMC10070278 DOI: 10.1038/s41598-023-32495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Depression affects people with multiple adverse outcomes, and the side effects of antidepressants are troubling for depression sufferers. Aromatic drugs have been widely used to relieve symptoms of depression with fewer side effects. Ligustilide (LIG) is the main component of volatile oil in angelica sinensis, exhibiting an excellent anti-depressive effect. However, the mechanisms of the anti-depressive effect of LIG remain unclear. Therefore, this study aimed to explore the mechanisms of LIG exerting an anti-depressive effect. We obtained 12,969 depression-related genes and 204 LIG targets by a network pharmacology approach, which were intersected to get 150 LIG anti-depressive targets. Then, we identified core targets by MCODE, including MAPK3, EGF, MAPK14, CCND1, IL6, CASP3, IL2, MYC, TLR4, AKT1, ESR1, TP53, HIF1A, SRC, STAT3, AR, IL1B, and CREBBP. Functional enrichment analysis of core targets showed a significant association with PI3K/AKT and MAPK signaling pathways. Molecular docking showed strong affinities of LIG with AKT1, MAPK14, and ESR1. Finally, we validated the interactions between these proteins and LIG by molecular dynamics (MD) simulations. In conclusion, this study successfully predicted that LIG exerted an anti-depressive effect through multiple targets, including AKT1, MAPK14, and ESR1, and the pathways of PI3K/AKT and MAPK. The study provides a new strategy to explore the molecular mechanisms of LIG in treating depression.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chaoguo Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiuli Teng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Zou J, Wang J, Hou K, Wang F, Su S, Xue W, Wu W, Yang N, Du X. An Underutilized Food “Miwu”: Diet History, Nutritional Evaluations, and Countermeasures for Industrial Development. Foods 2023; 12:foods12071385. [PMID: 37048212 PMCID: PMC10093453 DOI: 10.3390/foods12071385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
About 10 major crops basically feed the world. In fact, there are still a large number of plants that have not been fully explored and utilized because they have been ignored by the market and research. The expansion of food sources in various countries plays an important role in maintaining food security and nutrition security in the world. Miwu is the aerial part of the medicinal plant Rhizoma Chuanxiong belonging to a traditional local characteristic food raw material. Its edible value is still little known. Through textual research, component determination, literature survey, field research, and SWOT analysis, this paper has a comprehensive understanding of Miwu’s diet history, chemical components, safety risks, and industrial development status. It is found that Miwu has been eaten for 800 years, is rich in nutrients and active ingredients, and has no acute toxicity. In addition, the current industrial development of Miwu has significant advantages and many challenges. To sum up, Miwu is a potentially underutilized food raw material. This paper also provides countermeasures for the industrialized development of Miwu, which will provide a milestone reference for the future utilization and development of Miwu.
Collapse
|
15
|
Liu A, Hu J, Yeh TS, Wang C, Tang J, Huang X, Chen B, Huangfu L, Yu W, Zhang L. Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives. Curr Neuropharmacol 2023; 21:2283-2309. [PMID: 37458258 PMCID: PMC10556387 DOI: 10.2174/1570159x21666230717144752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 09/09/2023] Open
Abstract
Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.
Collapse
Affiliation(s)
- Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tzu-Shao Yeh
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jilong Tang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaohong Huang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Bin Chen
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Liexiang Huangfu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
16
|
Wang H, Zhang H, Zhang X, Yin Y, Ding G, Tang X, Hou P, Sun S, Wang W. Identification of coniferyl ferulate as the bioactive compound behind the xanthine oxidase inhibitory activity of Chuanxiong Rhizome. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Chang SR, Liu JG, Li H, Liu MX, Shi DD, Zhou LJ. Pharmaceutical and pharmacological studies of Shen Ma Yi Zhi granule for prevention of vascular dementia: A review. Front Neurosci 2022; 16:1044572. [PMID: 36507350 PMCID: PMC9731835 DOI: 10.3389/fnins.2022.1044572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background: With dementia significantly increasing hospitalization and disability rates, worldwide aging of the population presents major challenges to public health. The majority of cases of cognitive dysfunction among the elderly, however, are characterized by an identifiable, preventable and treatable vascular component. As such, increased study of preventative methods in the context of dementia is warranted. Traditional Chinese medicine compounds have been reported to be neuroprotective and improve cognitive function via a variety of mechanisms. Shen Ma Yi Zhi granule (SMYZG) is one such collection of compounds that has been proven clinically effective. Pharmacological mechanisms of action, pharmacokinetics and clinical applications of SMYZG have been previously studied using a variety of vascular dementia animal models. SMYZG activates and regulates four main signaling pathways relevant to vascular dementia including the AMPK/PPARα/PGC-1α/UCP2, Nrf2/HO-1, HIF-1/VEGF/Notch, and VEGF/Flk-1/p8 MAPK pathways. Furthermore, SMYZG influences anti-inflammatory and anti-oxidant stress responses, reverses demyelination of brain white matter and vascular endothelium, regulates pericyte function and normalizes mitochondrial metabolism. Neuroprotective effects of SMYZG, as well as those promoting regeneration of vascular endothelium, have also been reported in studies of rat models of vascular dementia. Future research concerning SMYG is warranted for development of vascular dementia preventative management strategies.
Collapse
Affiliation(s)
- Su-rui Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-gang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China,*Correspondence: Jian-gang Liu,
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China,Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Hao Li,
| | - Mei-xia Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan-dan Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-juan Zhou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Yan H, Zhou Y, Tang F, Wang C, Wu J, Hu C, Xie X, Peng C, Tan Y. A comprehensive investigation on the chemical diversity and efficacy of different parts of Ligusticum chuanxiong. Food Funct 2022; 13:1092-1107. [PMID: 35083993 DOI: 10.1039/d1fo02811a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant with a wide range of constituents of biological interest. Since the biomass of the non-medicinal parts of CX is huge, discarding them will cause a waste of resources. To expand the medicinal uses of CX, we comprehensively investigated the chemical diversity and efficacy of its different parts (rhizomes, fibrous roots, stems and leaves). 75 compounds in the volatile oil and 243 compounds in the methanol extracts (including 95 phthalides) obtained from CX were characterized by GC-MS and UHPLC/Q-Orbitrap MS analysis, respectively. Of 95 phthalides, 14 potential new compounds and 5 phthalide trimers were identified from CX for the first time. Phthalide monomers were more abundant in rhizomes and fibrous roots, and phthalide dimers or even phthalide trimers mainly in stems and leaves. By multivariate and univariate analyses, 22 and 24 different compounds were found in the volatile oils and the methanol extracts, respectively. In the bioactivity evaluation of different parts, stems and leaves showed the best antioxidant activity, fibrous roots showed the strongest vasodilator activity, and rhizomes showed the most significant anticoagulant activity, which was related to the different metabolites in different parts. Ultimately, this work revealed the similarities and differences of phytochemicals and bioactivities in different anatomical parts of CX. It might provide helpful evidence for the rational application of non-medicinal resources.
Collapse
Affiliation(s)
- Hongling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yinlin Zhou
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chengjiu Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Changjiang Hu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. .,Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co. Ltd, Pengzhou 611930, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Li D, Long Y, Yu S, Shi A, Wan J, Wen J, Li X, Liu S, Zhang Y, Li N, Zheng C, Yang M, Shen L. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front Pharmacol 2022; 12:832673. [PMID: 35173614 PMCID: PMC8841966 DOI: 10.3389/fphar.2021.832673] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Zeng P, Yi Y, Su HF, Ye CY, Sun YW, Zhou XW, Lu Y, Shi A, Tian Q. Key Phytochemicals and Biological Functions of Chuanxiong Rhizoma Against Ischemic Stroke: A Network Pharmacology and Experimental Assessment. Front Pharmacol 2022; 12:758049. [PMID: 34992531 PMCID: PMC8724589 DOI: 10.3389/fphar.2021.758049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Presently, the treatment options for ischemic stroke (IS) are limited due to the complicated pathological process of the disease. Chuanxiong Rhizome (CR), also known as Conioselinum anthriscoides "Chuanxiong" (rhizome), is the most widely used traditional Chinese medicine for treating stroke. This study aimed to uncover the key phytochemicals and biological functions of CR against IS through a network pharmacology approach combining with IS pathophysiology analysis. We employed permanent unilateral common carotid artery ligation to construct a mouse model of global cerebral ischemia and found that cerebral ischemia injuries were improved after 7 days of gavage treatment of CR (1,300 mg/kg/day). CR exerts protective effects on neurons mainly by acting on targets related to synaptic structure, synaptic function, neuronal survival and neuronal growth. A total of 18 phytochemicals from CR based on UHPLC-MS/MS that corresponded to 85 anti-IS targets. Coniferyl ferulate, neocnidilide and ferulic acid were identified as the key phytochemicals of CR against IS. Its brain protective effects involve anti-inflammatory, anti-oxidative stress, and anti-cell death activities and improves blood circulation. Additionally, the two most important synergistic effects of CR phytochemicals in treating IS are prevention of infection and regulation of blood pressure. In brain samples of Sham mice, L-tryptophan and vanillin were detected, while L-tryptophan, gallic acid, vanillin and cryptochlorogenic acid were detected in IS mice by UHPLC-MS/MS. Our findings provide a pathophysiology relevant pharmacological basis for further researches on IS therapeutic drugs.
Collapse
Affiliation(s)
- Peng Zeng
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Yi
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Fei Su
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Yuan Ye
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Wen Sun
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wen Zhou
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Wang J, Zhang Y, Zhang M, Sun S, Zhong Y, Han L, Xu Y, Wan D, Zhang J, Zhu H. Feasibility of Catalpol Intranasal Administration and Its Protective Effect on Acute Cerebral Ischemia in Rats via Anti-Oxidative and Anti-Apoptotic Mechanisms. Drug Des Devel Ther 2022; 16:279-296. [PMID: 35115763 PMCID: PMC8801896 DOI: 10.2147/dddt.s343928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Jinghui Wang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yuhua Zhang
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, People’s Republic of China
| | - Meifeng Zhang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Si Sun
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Zhong
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Lei Han
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yitong Xu
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Dong Wan
- Department of Emergency and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Junhui Zhang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Junhui Zhang Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China Email
| | - Huifeng Zhu
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, People’s Republic of China
- Correspondence: Huifeng Zhu College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, 400715, People’s Republic of China Email
| |
Collapse
|
22
|
Wang K, Lei L, Cao J, Qiao Y, Liang R, Duan J, Feng Z, Ding Y, Ma Y, Yang Z, Zhang E. Network pharmacology-based prediction of the active compounds and mechanism of Buyang Huanwu Decoction for ischemic stroke. Exp Ther Med 2021; 22:1050. [PMID: 34434264 PMCID: PMC8353622 DOI: 10.3892/etm.2021.10484] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Buyang Huanwu Decoction (BYHWD) is used to promote blood circulation and is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. However, the mechanism and active compounds of BYHWD used to treat ischemic stroke are not well understood. The current study aimed to identify the potential active components of BYHWD and explore its mechanism using network pharmacology and bioinformatics analyses. The compounds of BYHWD were obtained from public databases. Oral bioavailability and drug-likeness were screened using the absorption, distribution, metabolism and excretion (ADME) criteria. Components of BYHWD, alongside the candidate targets of each component and the known therapeutic targets of ischemic stroke were collected. A network of target gene compounds and cerebral ischemia compounds was established using network pharmacology data sources. The enrichment of key targets and pathways was analyzed using STRING and DAVID databases. Moreover, three of key targets [IL6, VEGFA and hypoxia-inducible-factor-1α (HIF-1α)] were verified using western blot analysis. Network analysis determined 102 compounds in seven herbal medicines that were subjected to ADME screening. A total of 42 compounds as well as 79 genes formed the principal pathways associated with ischemic stroke. The 16 key compounds identified were baicalein, beta-carotene, baicalin, kaempferol, luteolin, quercetin, hydroxysafflor yellow A, isorhamnetin, bifendate, formononetin, calycosin, astragaloside IV, stigmasterol, sitosterol, Z-ligustilide, and dihydrocapsaicin. The core genes in this network were IL6, TNF, VEGFA, HIF-1α, MAPK1, MAPK3, JUN, STAT3, IL1B and IL10. Furthermore, the TNF, IL17, apoptosis, PI3K-Akt, toll-like receptor, MAPK, NF-κB and HIF-1 signaling pathways were identified to be associated with ischemic stroke. Compared with the control group (no treatment), BYHWD significantly inhibited the expression of IL6 and increase the expression of HIF-1α and VEGFA. Network pharmacology analyses can help to reveal close interactions between multi-components and multi-targets and enhance understanding of the potential effects of BYHWD on ischemic stroke.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Lu Lei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ruimin Liang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhijun Feng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Enhu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
23
|
Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC. Nrf2 and Heme Oxygenase-1 Involvement in Atherosclerosis Related Oxidative Stress. Antioxidants (Basel) 2021; 10:1463. [PMID: 34573095 PMCID: PMC8466960 DOI: 10.3390/antiox10091463] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis remains the underlying process responsible for cardiovascular diseases and the high mortality rates associated. This chronic inflammatory disease progresses with the formation of occlusive atherosclerotic plaques over the inner walls of vascular vessels, with oxidative stress being an important element of this pathology. Oxidation of low-density lipoproteins (ox-LDL) induces endothelial dysfunction, foam cell activation, and inflammatory response, resulting in the formation of fatty streaks in the atherosclerotic wall. With this in mind, different approaches aim to reduce oxidative damage as a strategy to tackle the progression of atherosclerosis. Special attention has been paid in recent years to the transcription factor Nrf2 and its downstream-regulated protein heme oxygenase-1 (HO-1), both known to provide protection against atherosclerotic injury. In the current review, we summarize the involvement of oxidative stress in atherosclerosis, focusing on the role that these antioxidant molecules exert, as well as the potential therapeutic strategies applied to enhance their antioxidant and antiatherogenic properties.
Collapse
Affiliation(s)
- Jose Angel Alonso-Piñeiro
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Almudena Gonzalez-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain
| | - Ma Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| |
Collapse
|
24
|
Yang Q, Shen F, Zhang F, Bai X, Zhang Y, Zhang H. The combination of two natural medicines, Chuanxiong and Asarum: A review of the chemical constituents and pharmacological activities. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211039130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traditional Chinese medicine has been clinically used in China for many years, with experimental studies and clinical trials having demonstrated that it is safe and valid. Among many traditional natural medicines, Chuanxiong and Asarum have been proven to be effective in the treatment of relieving pain. Actually, as well as analgesic, they have common attributes, such as anti-inflammatory, cardiovascular benefits, and anticancer activities, with volatile oils being their major components. Furthermore, Chuanxiong and Asarum have been combined as drug pairs in the same prescription for thousands of years, with examples being Chuanxiong Chatiao San and Chuanxiongxixintang. More interestingly, their combination has better therapeutic effects on diseases than a single drug. After the combination of Chuanxiong and Asarum forms a blend, a series of changes take place in their chemical components, such as the contents of the main active ingredients, ferulic acid and ligustilide, increased significantly after this progress. At the same time, the pharmacological effects of the combination appearing to be more powerful, such as synergistic analgesic. This review focuses on the chemical constituents and pharmacological activities of Chuanxiong, Asarum, and Chuanxiong Asarum compositions.
Collapse
Affiliation(s)
- Qingcheng Yang
- College of Pharmacy, Dali University, Dali, P.R. China
- Department of Pharmacy, The First People’s Hospital of Kunming, Kunming, P.R. China
| | - Fangli Shen
- College of Pharmacy, Dali University, Dali, P.R. China
- Department of Pharmacy, The First People’s Hospital of Kunming, Kunming, P.R. China
| | - Fengqin Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Xue Bai
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Yanru Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Haizhu Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, Dali, P.R. China
| |
Collapse
|
25
|
Ma JC, Zhang HL, Huang HP, Ma ZL, Chen SF, Qiu ZK, Chen JS. Antidepressant-like effects of Z-ligustilide on chronic unpredictable mild stress-induced depression in rats. Exp Ther Med 2021; 22:677. [PMID: 33986842 PMCID: PMC8112151 DOI: 10.3892/etm.2021.10109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Depression is a significant public health issue and its neuropathogenesis is associated with the dysfunction of progesterone and allopregnanolone biosynthesis. Z-ligustilide (LIG), one of the main components of the herb Angelica sinensis (Oliv.) Diels (AS), is reported to have antidepressant activities. The present study aimed to evaluate the antidepressant-like effects of LIG via behavioral tests and to measure the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus. The results demonstrated that LIG (20 and 40 mg/kg) exerted antidepressant-like effects, confirmed by increased mobility, locomotion, rearing frequency and preference to sucrose. Furthermore, the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus were markedly increased following treatment with LIG (20 and 40 mg/kg), indicating that both neurosteroids could serve a significant role in the antidepressant-like effects of LIG.
Collapse
Affiliation(s)
- Jian-Chun Ma
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Hao-Liang Zhang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui-Ping Huang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Zao-Liang Ma
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Su-Fang Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Ji-Sheng Chen, Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, 19 Nonlinxia Road, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
26
|
Liu C, Du L, Wang S, Kong L, Zhang S, Li S, Zhang W, Du G. Differences in the prevention and control of cardiovascular and cerebrovascular diseases. Pharmacol Res 2021; 170:105737. [PMID: 34147660 DOI: 10.1016/j.phrs.2021.105737] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
At present, the prevention and control of cardiovascular diseases (CAVDs) has made initial advancements, although the prevention and control of cerebrovascular diseases (CEVDs) has not yet achieved the desired progress. In this paper, we review the prevention and control of CEVDs and CAVDs, and analyze the differences in prevention effects, and the pathological and physiological structures pertaining to CEVDs and CAVDs. Combined with the different effects of low-dose aspirin in the primary prevention of CEVDs and CAVDs by meta-analysis, aspirin plays a more important role in the primary prevention of CAVDs than CEVDs. We recognize the misunderstandings and blind spots concerning prevention and control of CEVDs, which can be summarized as follows: (1) CEVDs and CAVDs can be controlled by the same methods and drugs; (2) considering the same pathological factors for cardiovascular diseases; (3) a lack of understanding of the particularity of CEVDs; (4) a focus on platelets and neglect of cerebrovascular protection. In summary, our research clarifies the differences in the prevention measures and drugs used for CEVDs and CAVDs. Of particular concern is the serious lack of preventive drugs for CEVDs in clinical use. An ideal drug for the prevention of CEVDs should have protective effects on the blood, the vascular endothelium, the blood-brain barrier (BBB), and other related factors. Our review aims to highlight several issues in the current prevention of CEVDs and CAVDs, and to provide an optimized plan for preventive drug discovery.
Collapse
Affiliation(s)
- Chengdi Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lida Du
- King's College Circle, Toronto, Ontario M5S1A8, Canada
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
27
|
Zhang Q, Zhang L, Liu Y, Tian X, Li X, Han B, Zhang Y, Wu Z, Yu H, Zhao H, Wang S, Ma K, Wang Y. Research progress on the pharmacological effect and clinical application of Tongqiao Huoxue Decoction in the treatment of ischaemic stroke. Biomed Pharmacother 2021; 138:111460. [PMID: 33711554 DOI: 10.1016/j.biopha.2021.111460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022] Open
Abstract
Ischaemic stroke (IS) is a common type of stroke characterised by sudden fainting and communication disorders, alongside a number of other symptoms. It is characterised by high morbidity, disability, and mortality rates. Tongqiao Huoxue Decoction (THD) is effective in the treatment of stroke. As a representative prescription for promoting blood circulation and removing blood stasis, THD has been widely used clinically. This paper systematically introduces clinical and experimental studies of THD in the treatment of IS, summarising its clinical application, pharmacological mechanisms, and active components in the treatment of IS. It also explores its key pathways in the treatment of IS through network pharmacology analyses, thereby speculating on its underlying mechanisms. It is of great significance for the secondary development of this classic prescription as well as for the research and development of new drugs.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Lijuan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yu Liu
- Medical College of China, Three Gorges University, Yichang 443200, PR China
| | - Xu Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiuyang Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yanan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Huayun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Haijun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
28
|
Xiao G, Lyu M, Li Z, Cao L, Liu X, Wang Y, He S, Chen Z, Du H, Feng Y, Wang J, Zhu Y. Restoration of early deficiency of axonal guidance signaling by guanxinning injection as a novel therapeutic option for acute ischemic stroke. Pharmacol Res 2021; 165:105460. [PMID: 33513357 DOI: 10.1016/j.phrs.2021.105460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 01/12/2023]
Abstract
Despite of its high morbidity and mortality, there is still a lack of effective treatment for ischemic stroke in part due to our incomplete understanding of molecular mechanisms of its pathogenesis. In this study, we demonstrate that SHH-PTCH1-GLI1-mediated axonal guidance signaling and its related neurogenesis, a central pathway for neuronal development, also plays a critical role in early stage of an acute stroke model. Specifically, in vivo, we evaluated the effect of GXNI on ischemic stroke mice via using the middle cerebral artery embolization model, and found that GXNI significantly alleviated cerebral ischemic reperfusion (I/R) injury by reducing the volume of cerebral infarction, neurological deficit score and cerebral edema, reversing the BBB permeability and histopathological changes. A combined approach of RNA-seq and network pharmacology analysis was used to reveal the underlying mechanisms of GXNI followed by RT-PCR, immunohistochemistry and western blotting validation. It was pointed out that axon guidance signaling pathway played the most prominent role in GXNI action with Shh, Ptch1, and Gli1 genes as the critical contributors in brain protection. In addition, GXNI markedly prevented primary cortical neuron cells from oxygen-glucose deprivation/reoxygenation damage in vitro, and promoted axon growth and synaptogenesis of damaged neurons, which further confirmed the results of in vivo experiments. Moreover, due to the inhibition of the SHH-PTCH1-GLI1 signaling pathway by cyclopropylamine, the effect of GXNI was significantly weakened. Hence, our study provides a novel option for the clinical treatment of acute ischemic stroke by GXNI via SHH-PTCH1-GLI1-mediated axonal guidance signaling, a neuronal development pathway previously considered for after-stroke recovery.
Collapse
Affiliation(s)
- Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhixiong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Linghua Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Xinyan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yule Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Zihao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Hongxia Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Jigang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China.
| |
Collapse
|
29
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
30
|
Yang T, Zhang F. Targeting Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) for the Intervention of Vascular Cognitive Impairment and Dementia. Arterioscler Thromb Vasc Biol 2020; 41:97-116. [PMID: 33054394 DOI: 10.1161/atvbaha.120.314804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular cognitive impairment and dementia (VCID) is an age-related, mild to severe mental disability due to a broad panel of cerebrovascular disorders. Its pathobiology involves neurovascular dysfunction, blood-brain barrier disruption, white matter damage, microRNAs, oxidative stress, neuroinflammation, and gut microbiota alterations, etc. Nrf2 (Nuclear factor erythroid 2-related factor 2) is the master regulator of redox status and controls the transcription of a panel of antioxidative and anti-inflammatory genes. By interacting with NF-κB (nuclear factor-κB), Nrf2 also fine-tunes the cellular oxidative and inflammatory balance. Aging is associated with Nrf2 dysfunction, and increasing evidence has proved the role of Nrf2 in mitigating the VCID process. Based on VCID pathobiologies and Nrf2 studies from VCID and other brain diseases, we point out several hypothetical Nrf2 targets for VCID management, including restoration of endothelial function and neurovascular coupling, preservation of blood-brain barrier integrity, reduction of amyloidopathy, promoting white matter integrity, and mitigating oxidative stress and neuroinflammation. Collectively, the Nrf2 pathway could be a promising direction for future VCID research. Targeting Nrf2 would shed light on VCID managing strategies.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| |
Collapse
|
31
|
Pu ZH, Dai M, Xiong L, Peng C. Total alkaloids from the rhizomes of Ligusticum striatum: a review of chemical analysis and pharmacological activities. Nat Prod Res 2020; 36:3489-3506. [PMID: 33034219 DOI: 10.1080/14786419.2020.1830398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rhizome Chuanxiong (RCX), the dried rhizomes of Ligusticum striatum DC., is a geoauthentic TCM herb distributed in Sichuan province of China that possesses efficacy in promoting blood circulation, removing blood stasis and alleviating pain. Rhizome Chuanxiong total alkaloids (RCXTAs) are one of the major characteristic constituents of RCX with the effects of antimigraine, neuroprotective, cardioprotective and other cardiovascular and cerebrovascular diseases. Over the past years, rapid development of technology has advanced some aspects of RCXTAs. The aim of this review is to illustrate the recent advances in the chemical analysis and biological activities of RCXTAs, and to highlight new challenges.
Collapse
Affiliation(s)
- Zhong-Hui Pu
- Department of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Min Dai
- Department of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Liang Xiong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
32
|
Pan R, Tang X, Wang H, Huang Y, Huang K, Ling S, Zhou M, Cai J, Chen H, Huang Y. The Combination of Astragalus membranaceus and Ligustrazine Protects Against Thrombolysis-Induced Hemorrhagic Transformation Through PKCδ/Marcks Pathway in Cerebral Ischemia Rats. Cell Transplant 2020; 29:963689720946020. [PMID: 32749163 PMCID: PMC7563031 DOI: 10.1177/0963689720946020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Astragalus membranaceus (Ast) and ligustrazine (Lig) have a
protective effect on lower hemorrhagic transformation induced by pharmaceutical
thrombolysis. The cerebral ischemia rat model was induced with autologous blood
clot injections. A combination of Ast and Lig, or a protein kinase C delta
(PKCδ) inhibitor—rottlerin, or a combination of Ast, Lig, and rottlerin was
administered immediately after recombinant tissue plasminogen activator
injection. The cerebral infarct area, neurological deficits, cerebral hemorrhage
status, neuronal damage and tight junctions’ changes in cerebral vessels, and
the messenger RNA and protein levels of PKCδ, myristoylated alanine-rich C
kinase substrate (Marcks), and matrix metallopeptidase 9 (MMP9) were determined
after 3 h and 24 h of thrombolysis. The ultrastructure of the neuronal damage
and tight junctions was examined under a transmission electron microscope. The
expression levels of PKCδ, Marcks, and MMP9 were assessed by
immunohistochemistry, western blot, and quantitative real-time polymerase chain
reaction . Administration of Ast and Lig not only significantly decreased
neurological deficit scores, infarct volumes, and cerebral hemorrhage but also
inhibited the disruption due to neuronal dysfunction and the tight junction
integrity in the cerebral vessel. Treatment with a combination of Ast and Lig
effectively protected ischemia-induced microhemorrhage transformation through
PKCδ/Marcks pathway suppression.
Collapse
Affiliation(s)
- Ruihuan Pan
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Both the authors contributed equally to this article
| | - Xialin Tang
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Both the authors contributed equally to this article
| | - Huajun Wang
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Huang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Huang
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shanshan Ling
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingchao Zhou
- Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Cai
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hongxia Chen
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Huang
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Yuan X, Han B, Feng ZM, Jiang JS, Yang YN, Zhang PC. Chemical constituents of Ligusticum chuanxiong and their anti-inflammation and hepatoprotective activities. Bioorg Chem 2020; 101:104016. [DOI: 10.1016/j.bioorg.2020.104016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
|
34
|
Gugliandolo A, Bramanti P, Mazzon E. Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke? Int J Mol Sci 2020; 21:ijms21144875. [PMID: 32664226 PMCID: PMC7402299 DOI: 10.3390/ijms21144875] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke represents one of the main causes of disability and death worldwide. The pathological subtypes of stroke are ischemic stroke, the most frequent, and hemorrhagic stroke. Nrf2 is a transcription factor that regulates redox homeostasis. In stress conditions, Nrf2 translocates inside the nucleus and induces the transcription of enzymes involved in counteracting oxidative stress, endobiotic and xenobiotic metabolism, regulators of inflammation, and others. Different natural compounds, including food and plant-derived components, were shown to be able to activate Nrf2, mediating an antioxidant response. Some of these compounds were tested in stroke experimental models showing several beneficial actions. In this review, we focused on the studies that evidenced the positive effects of natural bioactive compounds in stroke experimental models through the activation of Nrf2 pathway. Interestingly, different natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response associated with the beneficial effects against stroke. According to several studies, the combination of different bioactive compounds can lead to a better neuroprotection. In conclusion, natural bioactive compounds may represent new therapeutic strategies against stroke.
Collapse
|
35
|
Ren C, Li N, Gao C, Zhang W, Yang Y, Li S, Ji X, Ding Y. Ligustilide provides neuroprotection by promoting angiogenesis after cerebral ischemia. Neurol Res 2020; 42:683-692. [PMID: 32584207 DOI: 10.1080/01616412.2020.1782122] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Ning Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Chen Gao
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Wei Zhang
- Department of Herbal Formula Science Medicine, Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Yang
- Department of Herbal Formula Science Medicine, Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Sijie Li
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
| | - Xunming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
36
|
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother Res 2020; 34:1966-1991. [DOI: 10.1002/ptr.6662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxuan Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Linlin Zhang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yu Zheng
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Kai Liu
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Hailong Tang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yanmei Liao
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
37
|
Dou Y, Li X, Shi Y, Zhang J, Yuan Y, Zhou M, Wei X, Zhang X. Preparation, optimization and in vitro-in vivo evaluation of Shunxin sustained release granules. Chin Med 2019; 14:36. [PMID: 31572488 PMCID: PMC6757358 DOI: 10.1186/s13020-019-0255-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Shunxinzufang decoction is tutors, empirical formula and has been used in Chinese patients of HFpEF for several years. The aim of this study was to make into sustained release granules and select the best formula for the preparation of Shunxin sustained release granules and to evaluate its in vivo and in vitro drug release behavior. Methods Response surface methodology and Center composite design were applied to screen the optimal formula of Shunxin sustained release granules. HPLC was used to detect indicative ingredients—paeoniflorin, calycosin-7-glucoside and ferulic acid in Shunxin sustained release granules. The in vitro sustained release character of indicative ingredients was investigated in simulated digestive fluids. In-vivo process of active components was studied through pharmacokinetics. Results The optimal formula of Shunxin sustained release granules consisted of 35% shunxinzufang extract and 65% HPMC/starch (HPMC/starch ratio = 2:1). Three indicative components can be separated well under selected HPLC conditions. Compared with Shunxinzufang extract, the active components of Shunxin sustained release granules have obvious sustained-release character and improved bioavailability. Conclusion Shunxin sustained release granules has obvious sustained-release character and improved bioavailability.![]()
Collapse
Affiliation(s)
- Yinghuan Dou
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Xuefeng Li
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Yanbin Shi
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Jiaying Zhang
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Yang Yuan
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Mengru Zhou
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Xiangxiang Wei
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Xiaoying Zhang
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| |
Collapse
|
38
|
Yin DD, Wang YL, Yang M, Yin DK, Wang GK, Xu F. Analysis of Chuanxiong Rhizoma substrate on production of ligustrazine in endophytic Bacillus subtilis by ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci 2019; 42:3067-3076. [PMID: 31347249 DOI: 10.1002/jssc.201900030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022]
Abstract
Ligustrazine was the active ingredient of the traditional Chinese medicine Chuanxiong Rhizoma. However, the content of ligustrazine is very low. We proposed a hypothesis that ligustrazine was produced by the mutual effects between endophytic Bacillus subtilis and the Ligusticum chuanxiong Hort. This study aimed to explore whether the endophytic B. subtilis LB5 could make use of Chuanxiong Rhizoma fermentation matrix to produce ligustrazine and clarify the mechanisms of action preliminarily. Ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry analysis showed the content of ligustrazine in Chuanxiong Rhizoma was below the detection limit (0.1 ng/mL), while B. subtilis LB5 produced ligustrazine at the yield of 1.0268 mg/mL in the Chuanxiong Rhizoma-ammonium sulfate fermentation medium. In the fermented matrix, the reducing sugar had a significant reduction from 12.034 to 2.424 mg/mL, and rough protein content increased from 2.239 to 4.361 mg/mL. Acetoin, the biosynthetic precursor of ligustrazine, was generated in the Chuanxiong Rhizoma-Ammonium sulfate (151.2 mg/mL) fermentation medium. This result showed that the endophytic bacteria B. subtilis LB5 metabolized Chuanxiong Rhizoma via secreted protein to consume the sugar in Chuanxiong Rhizoma to produce a considerable amount of ligustrazine. Collectively, our preliminary research suggested that ligustrazine was the interaction product of endophyte, but not the secondary metabolite of Chuanxiong Rhizoma itself.
Collapse
Affiliation(s)
- Dan Dan Yin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China.,Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, Anhui, P. R. China
| | - Yun Lai Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China.,Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, Anhui, P. R. China
| | - Mo Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China.,Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, Anhui, P. R. China
| | - Deng Ke Yin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China.,Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, Anhui, P. R. China
| | - Guo Kai Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China.,Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, Anhui, P. R. China
| | - Fan Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China.,Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, Anhui, P. R. China
| |
Collapse
|
39
|
Ligustilide Ameliorates the Permeability of the Blood–Brain Barrier Model In Vitro During Oxygen–Glucose Deprivation Injury Through HIF/VEGF Pathway. J Cardiovasc Pharmacol 2019; 73:316-325. [DOI: 10.1097/fjc.0000000000000664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, Gu N, Jiang W. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis 2019; 284:110-120. [PMID: 30897380 DOI: 10.1016/j.atherosclerosis.2019.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Oxidative stress-induced endothelial dysfunction is considered to exert a vital role in the development of atherosclerotic coronary heart disease (CHD). NRF2 is a key transcriptional factor against oxidative stress through activation of multiple ARE-mediated genes. Z-Lig is derived from the Ligusticum species with antitumor, anti-inflammation and neuroprotection activities. However, the antioxidant potentials of Z-Lig on endothelial dysfunction and atherosclerosis have not been well elucidated. Therefore, in the present work, we appraise the cytoprotective property and anti-atherosclerosis effect of Z-Lig. METHODS Potential NRF2 activators were screened and verified by luciferase reporter gene assay. The protein and mRNA levels of NRF2 and ARE-mediated genes, and GSH/GSSG level in EA.hy926 cells treated with Z-Lig were detected. The cytoprotective property of Z-Lig was assessed in the tert-butyl hydroperoxide (t-BHP)-evoked oxidative stress model. Cell viability and reactive oxygen species (ROS) levels in EA.hy926 cells were determined. An atherosclerosis model induced by HFD was used to determine the anti-atherosclerosis effect of Z-Lig in HFD-fed Ldlr-deficient mice. RESULTS In vitro, 100 μM Z-Lig upregulated expressions of NRF2 and ARE-driven genes, promoted accumulation of nuclear NRF2 and unbound NRF2- KEAP1 complex in EA.hy926 cells. Furthermore, Z-Lig alleviated oxidative stress and cell injury caused by t-BHP via stimulation of the NRF2/ARE pathway. In vivo, intervention with 20 mg/kg Z-Lig markedly restrained atherosclerosis progression, including attenuation of HFD-induced atherosclerotic plaque formation, alleviation of lipid peroxidation and increase in antioxidant enzyme activity in aortas of HFD-fed Ldlr-/- mice. The chemopreventive effects of Z-Lig might be associated with the activation of NRF2 and ARE-driven genes. CONCLUSIONS The present study suggested that Z-Lig is an effective NRF2 activator, which can protect vascular endothelial cells from oxidative stress and rescue HFD-induced atherosclerosis.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yajie Zhang
- Department of Central Laboratory, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Clinical Biobank, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xia Huang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yong Xie
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yuan Qu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Hongyan Long
- Department of Central Laboratory, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Clinical Biobank, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Ning Gu
- Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Weimin Jiang
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
41
|
He L, Shi X, Seto SW, Dennis C, Wang H, Zhang S, Chen W, Wang J. Using 3D-UPLC-DAD and a new method-verification by adding mixture standard compounds to determine the fingerprint and eight active components of Naoluoxintong decoction. J Pharm Biomed Anal 2019; 169:60-69. [PMID: 30836247 DOI: 10.1016/j.jpba.2018.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 12/13/2022]
Abstract
Naoluoxintong decoction (NLXTD) is a traditional Chinese formula which has been used for the management of ischemic stroke in China for two hundred years. In this study, we developed a comprehensive and reliable analytical method to qualitatively analyze the components in NLXTD. This novel method was based on three-dimensional ultra-fast high performance liquid chromatography coupled with diode array detector (3D-UPLC-DAD) with an additional component validation method via incorporation of the mixture standard compounds during the verification step. In addition, the relationship between active components and "Monarch drug, Minster drug, Assistant drug, Guide drug" were determined. Our results showed that gradient elution with the mobile phase of 0.02% formic acid and methanol was the optimum condition to separate peaks. A total of 35 common peaks were established by comparing ten batches of NLXTD, and eight components were identified, including Calycosin, Calycosin-7-O-β-d-glucoside and Ononin in Astragali radix (Monarch drug); Ligustrazine in Chuanxiong Rhizoma (Minster drug); 4-Hydroxbenzyl alcohol and Parishin A in Gastrodiae rhizome (Assistant drug); Ferulic acid in Angelicae sinensis radix (Guide drug). The validation method of verification by adding mixture standard compounds combined with 3D-UPLC-DAD method, with the merits of greater resolution, higher speed of analysis and higher sensitivity, provided a semi-quantitative and qualitative analysis method to assess traditional Chinese medicinal prescription consisting of many bio-active components. Finally, our study has provided systemic and scientific evidence to explain the relationship between the bio-active components in the NLXTD and traditional Chinese medicine theory.
Collapse
Affiliation(s)
- Ling He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Xiaoqian Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - S W Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - C Dennis
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Heng Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Sheng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Jian Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|
42
|
Z-Ligustilide Exerted Hormetic Effect on Growth and Detoxification Enzymes of Spodoptera litura Larvae. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7104513. [PMID: 30057645 PMCID: PMC6051125 DOI: 10.1155/2018/7104513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/03/2018] [Accepted: 06/02/2018] [Indexed: 11/17/2022]
Abstract
Plants have evolved a variety of phytochemicals to defense insect feeding, whereas insects have also evolved diverse detoxification enzymes, which are adaptively induced as a prosurvival mechanism. Herein, Z-ligustilide in Ligusticum chuanxiong Hort. was found to exhibit a similar trend in the accumulation from December to May as the occurrence of Spodoptera litura (Fabricius) larvae. Importantly, S. litura larvae feeding enhanced Z-ligustilide level in the stem and leaf (p < 0.01). Moreover, Z-ligustilide ranging from 1 to 5 mg·g−1 exhibited remarkable larvicidal activity, antifeedant activity, and growth inhibition against S. litura larvae. The LC50 values of larvicidal activity for phthalides in L. chuanxiong were compared as follows: Z-ligustilide > levistilide A > senkyunolide A > 3-butylidenephthalide > senkyunolide I, implicating the critical role of conjugated structure. Notably, there was a biphasic dose response for glutathione S-transferase (GST), cytochrome P450 (CYP) 450, Acetylcholinesterase (AChE), and Carboxylesterase (CarE) activities and GSTs1, cytochrome P450 (CYP) 4S9, and CYP4M14 mRNA expression. Particularly, low dose (0.1 mg·g−1) of Z-ligustilide conferred the resistance of S. litura larvae against chlorpyrifos (p < 0.05). Together, our data suggest that Z-ligustilide may function in a hormetic way in the chemical defense of L. chuanxiong against S. litura larvae.
Collapse
|
43
|
Zhou HJ, Zeng CY, Yang TT, Long FY, Kuang X, Du JR. Lentivirus-mediated klotho up-regulation improves aging-related memory deficits and oxidative stress in senescence-accelerated mouse prone-8 mice. Life Sci 2018; 200:56-62. [DOI: 10.1016/j.lfs.2018.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
44
|
A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol 2018; 119:309-325. [PMID: 29486278 DOI: 10.1016/j.fct.2018.02.050] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
Chuanxiong Rhizome (called Chuanxiong, CX in Chinese), the dried rhizome of Ligusticum chuanxiong Hort, is an extremely common traditional edible-medicinal herb. As a widely used ethnomedicine in Asia including China, Japan and Korea, CX possesses ideal therapeutic effect on cardiovascular and cerebrovascular diseases, and is also used as a major ingredient in soups for regular consumption to benefit health. Based on the traditional perception, amounts of investigations on different aspects have been done for CX in the past decades. However, no literature systematic review about these achievements have been compiled. Herein, the aim of this review is to present the up-to-date information on the ethnobotany, ethnopharmacological uses, phytochemicals, pharmacological activities, toxicology of this plant to identify their therapeutic potential and directs future research opportunities. So far, about 174 compounds has been isolated and identified from CX, in which phthalides and alkaloids would be the main bioactive ingredients for its pharmacological properties, such as anti-cerebral ischemia, anti-myocardial ischemia, blood vessel protection, anti-thrombotic, anti-hypertensive, anti-atherosclerosis, anti-spasmodic, anti-inflammatory, anti-cancer, anti-oxidant, and anti-asthma effects. Even so, due to the incomplete standardized planting, unstable herbal quality, and outdated preparation techniques, the industrial progress of CX is still less developed.
Collapse
|
45
|
Li Y, An C, Han D, Dang Y, Liu X, Zhang F, Xu Y, Zhong H, Sun X. Neutrophil affinity for PGP and HAIYPRH (T7) peptide dual-ligand functionalized nanoformulation enhances the brain delivery of tanshinone IIA and exerts neuroprotective effects against ischemic stroke by inhibiting proinflammatory signaling pathways. NEW J CHEM 2018. [DOI: 10.1039/c8nj04819c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A great challenge to the therapy of ischemic stroke is the poor physicochemical properties and inability of the drug to cross the blood–brain barrier (BBB).
Collapse
Affiliation(s)
- Yutao Li
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Chiying An
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Danan Han
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Yanxin Dang
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Xin Liu
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Fengming Zhang
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Yuan Xu
- Department of Pharmacology
- School of Medicine
- Yale University
- New Haven
- USA
| | - Haijing Zhong
- Department of Pharmacology
- School of Medicine
- Yale University
- New Haven
- USA
| | - Xiaojun Sun
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| |
Collapse
|
46
|
Yinchen Linggui Zhugan Decoction Ameliorates Nonalcoholic Fatty Liver Disease in Rats by Regulating the Nrf2/ARE Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6178358. [PMID: 28932253 PMCID: PMC5592414 DOI: 10.1155/2017/6178358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/11/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022]
Abstract
Yinchen Linggui Zhugan Decoction (YCLGZGD) is the combination of Linggui Zhugan (LGZGD) and Yinchenhao (YCHD) decoctions, two famous traditional Chinese medicine prescriptions. In previous studies, we found that Yinchen Linggui Zhugan Decoction (YCLGZGD) could regulate lipid metabolism disorder and attenuate inflammation in pathological process of nonalcoholic fatty liver disease (NAFLD). However, the exact underlying mechanism remains unknown. The aim of this study was to explore the effect of Yinchen Linggui Zhugan Decoction on experimental NAFLD and its mechanism in rats with high-fat diet (HFD) which was established by 8-week administration of HFD. YCLGZGD, LGZGD, and YCHD were administered daily for 4 weeks, after which the rats were euthanized. The level of blood lipid, liver enzymes, H&E, and Oil Red O staining were determined to evaluate NAFLD severity. Western blotting and real-time polymerase chain reaction were, respectively, used to determine hepatic protein and gene expression of Keap1, Nrf2, NQO1, and HO-1. Oral YCLGZGD ameliorated HFD-induced NAFLD. Furthermore, YCLGZGD increased the protein and gene expression of Nrf2, NQO1, and HO-1 without changing Keap1. Overall, these results suggest that YCLGZGD ameliorates HFD-induced NAFLD in rats by upregulating the Nrf2/ARE signaling pathway.
Collapse
|
47
|
Peters M, Wielsch B, Boltze J. The role of SUMOylation in cerebral hypoxia and ischemia. Neurochem Int 2017; 107:66-77. [DOI: 10.1016/j.neuint.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|