1
|
Wei Z, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, Wu A, He J. Potential Risk of Caffeoylquinic Acids, the Main Polyphenol Components in Coffee, on the Health of Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20091-20100. [PMID: 39189965 DOI: 10.1021/acs.jafc.4c04923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As the main coffee polyphenols, caffeoylquinic acids (CQAs) are abundant in coffee-derived products and have the potential to act as novel feed additives for animals. However, research on the side effects of dietary CQAs supplementation is scarce, especially in young animals. Here, we explore the safety of CQAs derived from green coffee beans. Results showed that ingesting 50, 125, 250, and 500 mg/kg of dietary CQAs for 55 days is associated with greater final body weight, average daily gain, and feed efficiency in piglets compared with the control group (P < 0.05). CQAs also increased the apparent digestibility of dry matter, crude protein, and gross energy at a dose over 50 mg/kg (P < 0.05). Interestingly, CQAs supplementation with 500 mg/kg increased the white blood cell count (P < 0.05). Moreover, CQAs supplementation at a dose over 50 mg/kg decreased the serum total cholesterol concentration but increased the immunoglobulin M level in serum (P < 0.05). Importantly, CQAs supplementation had no side effects on organ histopathology and organ weight (P > 0.05). These results suggest that CQAs could serve as a secure and effective additive to improve growth performance without negatively affecting the organs of piglets.
Collapse
Affiliation(s)
- Zixiang Wei
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
2
|
Feng L, Luo Z, Wang J, Wu K, Wang W, Liu Z, Wen J, Wang Z, Duns GJ, Ma X, Tan B. Effects of different ratios of soluble to insoluble dietary fiber on growth performance and intestinal health of piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:257-271. [PMID: 39281054 PMCID: PMC11402385 DOI: 10.1016/j.aninu.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 09/18/2024]
Abstract
This study investigated the impact of different ratios of soluble to insoluble dietary fiber (SDF:IDF) formulations by sugar beet pulp (SBP) supplementation on piglet growth performance, nutrient digestibility, immune function, intestinal morphology, intestinal microbiota and intestinal health. A total of 60 crossbred piglets (Duroc × [Landrace × Yorkshire]) at 40 d old with body weight of 10.0 ± 0.3 kg were randomly assigned to 5 treatments with 6 replicates per treatment and 2 piglets per replicate in a 21-d trial. The dietary treatments included a corn-soybean meal diet (0% SBP supplementation; CON), and diets supplemented with 2%, 4%, 6%, and 8% SBP, representing different SDF:IDF ratios at 10.16%, 13.53%, 16.79%, 19.86%, and 24.81%, respectively. The results indicated that the 8% SBP treatment had a negative effect on feed-to-gain ratio (linear, P = 0.009) compared with the CON treatment (P = 0.021). The apparent total tract digestibility (ATTD) of crude protein was lower in treatments supplemented with SBP (P = 0.002) and showed a linear decrease (P = 0.001), while the ATTD of IDF showed a linear increase (P = 0.037) in four SBP treatments compared to the CON treatment. The 4% SBP treatment increased serum concentrations of triglyceride (quadratic, P = 0.019) and K (linear, P < 0.0037), and decreased alanine transaminase concentration (quadratic, P = 0.015) compared with the CON treatment. The concentrations of Cit, Cys, Ile, Leu, Orn, Arg, taurine, urea, 1-methylhistidine, α-aminoadipic acid, α-aminobutyric acid and cystathionine in the 4% SBP treatment were highest among all treatments (P < 0.05). The serum concentrations of interleukin-6, interleukin-8, interleukin-10, transforming growth factor-β, and tumor necrosis factor-α in the 6% SBP treatment were higher than those in the CON treatment (P < 0.05), which also increased mucin-2 and G protein-coupled receptor 41 mRNA expression (P < 0.05) in colonic mucosa compared with the CON treatment and improved the intestinal barrier function. Diets containing more than 19.86% SDF:IDF could impair the intestinal health in piglets when SBP was used as the SDF source. Supplementing nursery piglet diets with 16.79% to 19.86% SDF:IDF is recommended for improving intestinal barrier function, increasing short-chain fatty acids concentrations, and improving intestinal microbiota composition.
Collapse
Affiliation(s)
- Luya Feng
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Zhenfu Luo
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Kunfu Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Wenliang Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Zhimou Liu
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Juping Wen
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Zhenbin Wang
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Gregory J Duns
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaokang Ma
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Bi'e Tan
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
3
|
Yang H, Fan X, Mao X, Yu B, He J, Yan H, Wang J. The protective role of prebiotics and probiotics on diarrhea and gut damage in the rotavirus-infected piglets. J Anim Sci Biotechnol 2024; 15:61. [PMID: 38698473 PMCID: PMC11067158 DOI: 10.1186/s40104-024-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.
Collapse
Affiliation(s)
- Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China.
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| |
Collapse
|
4
|
Ding S, Cheng Y, Azad MAK, Zhu Q, Huang P, Kong X. Development of small intestinal barrier function and underlying mechanism in Chinese indigenous and Duroc piglets during suckling and weaning periods. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:429-442. [PMID: 38406666 PMCID: PMC10885791 DOI: 10.1016/j.aninu.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 02/27/2024]
Abstract
This study explored the developmental changes in small intestinal barrier function and the potential regulatory roles of intestinal microbiota and metabolites in different breeds of piglets during suckling and weaning periods. Taoyuan black (TB), Xiangcun black (XB), and Duroc (DR) piglets (10 litters per breed; half male and half female) were selected for sampling to evaluate the intestinal barrier-related indexes and intestinal microbiota and metabolites at 1, 10, 21 (weaned), and 24 (3 d after weaning) d old. The results showed that weaning led to severe shedding of small intestinal microvilli and sparse microvilli arrangement. D-lactate level in the ileum of TB and XB piglets during suckling and weaning periods was lower (P < 0.01) than that of DR piglets, as well as the ileal diamine oxidase level at 1 d old. The expression level of mucin 1 was higher (P < 0.05) in the ileum of TB and XB piglets than that of DR piglets, and it was the highest in the ileum of TB piglets at 21 d old. The expression levels of mucin 2 and mucin 13 were higher (P < 0.10) in TB and XB piglets than those of DR piglets at 21 d old, whereas mucin 2 and mucin 13 in the ileum of TB and XB piglets were higher (P < 0.05) than those of DR piglets at 24 d old. TB and XB piglets had a lower relative abundance of Escherichia_Shigella at 21 and 24 d old, but they had higher Streptococcus at 1 and 24 d old than DR piglets (P < 0.01). Differential metabolites between the three breeds of piglets were mainly related to oxidative phosphorylation, steroid biosynthesis, and bile acid synthesis. Collectively, these findings suggest that different pig breeds present differences in the development of the small intestinal barrier function. Compared with DR piglets, TB and XB piglets had higher intestinal permeability during the suckling period and a stronger intestinal mechanical barrier after weaning. Moreover, intestinal microbiota and metabolites are the key factors for developing small intestinal barrier functions in different breeds of piglets.
Collapse
Affiliation(s)
- Sujuan Ding
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Cheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Abul Kalam Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Huang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang M, Yang Z, Wu G, Xu F, Zhang J, Luo X, Ma Y, Pang H, Duan Y, Chen J, Cai Y, Wang L, Tan Z. Effects of Probiotic-Fermented Feed on the Growth Profile, Immune Functions, and Intestinal Microbiota of Bamei Piglets. Animals (Basel) 2024; 14:647. [PMID: 38396614 PMCID: PMC10886304 DOI: 10.3390/ani14040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Purebred Bamei piglets present problems, including slow growth, respiratory disease, and post-weaning stress. This study investigated the effects of Lactobacillus plantarum QP28-1- and Bacillus subtilis QB8-fermented feed supplementation on the growth performance, immunity, and intestinal microflora of Bamei piglets from Qinghai, China. A total of 48 purebred Bamei piglets (25 days; 6.8 ± 0.97 kg) were divided into the following four groups for a 28-day diet experiment: basal feed (CK); diet containing 10% Lactobacillus plantarum-fermented feed (L); diet containing 10% Bacillus subtilis-fermented feed (B); and diet containing a mixture of 5% Lactobacillus plantarum + 5% Bacillus subtilis-fermented feed (H). The daily weight gain and daily food intake of group H increased (p < 0.05), and the feed/weight gain ratios of the groups fed with fermented feed decreased more than that of the CK group. The levels of three immune factors, namely immunoglobulin (Ig)M, IgG, and interferon-γ, were higher (p < 0.05), whereas those of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were lower (p < 0.05) in the fermented feed groups than in the CK group. Total protein was higher (p < 0.05), while urea nitrogen, total cholesterol and triglycerides were lower (p < 0.05) in the mixed-fermented feed group than in the CK group. Analysis of the gut microbiota showed that the addition of fermented feed increased the α-diversity of the gut microbiota, increasing the abundances of probiotics including Lactobacillus, Muribaculaceae, Ruminococcaceae, Prevotellaceae, and Rikenellaceae. Additionally, correlation analysis demonstrated that several of these probiotic bacteria were closely related to serum immunity. In conclusion, fermented feed supplementation rebuilt the intestinal microbiota of Bamei piglets, thereby reducing the feed/weight ratio, improving feed intake, and enhancing immunity.
Collapse
Affiliation(s)
- Miao Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Zhenyu Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Fafang Xu
- Bamei Pig Original Breeding Base of Huzhu County, Haidong 810600, China;
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Yuhong Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Huili Pang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Yaoke Duan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Jun Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Yimin Cai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
- Japan International Research Center for Agricultural Sciences, Crop, Livestock and Environment Division, Tsukuba 305-8686, Japan
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Zhongfang Tan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| |
Collapse
|
6
|
Yin C, Wen X, Dang G, Zhong R, Meng Q, Feng X, Liu L, Wu S, He J, Chen L, Zhang H. Modulation of pectin on intestinal barrier function via changes in microbial functional potential and bile acid metabolism. J Nutr Biochem 2024; 124:109491. [PMID: 37865382 DOI: 10.1016/j.jnutbio.2023.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/25/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Weaning is one of the major factors that cause stress and intestinal infection in infants and in young animals due to an immature intestine and not fully developed immune functions. Pectin (PEC), a prebiotic polysaccharide, has attracted considerable attention in intestinal epithelial signaling and function via modulation of the microbial community. A total of 16 weaned piglets (21-d-old) were randomly assigned into two groups: control group and PEC group. Supplementation of 5% pectin improved intestinal mucosal barrier function by modulating the composition of the bile acid pool in piglets. Specifically, piglets in PEC group had less serum D-lactate content and alkaline phosphatase activity. In the ileum, dietary pectin increased the number of crypt PAS/AB-positive goblet cells and the mRNA expressions of MUC2, ZO-1, and Occludin. Piglets in PEC group displayed a decreased abundance of Enterococcus (2.71 vs. 65.92%), but the abundances of Lactobacillus (30.80 vs. 7.93%), Streptococcus (21.41 vs. 14.81%), and Clostridium_sensu_stricto_1 (28.34 vs. 0.01%) were increased. Elevated concentrations of bile acids especially hyocholic acid species (HCAs) including HCA, HDCA, and THDCA were also observed. Besides, correlation analysis revealed that dietary pectin supplementation may have beneficial effects through stimulation of the crosstalk between gut microbes and bile acid synthesis within the enterohepatic circulation. Thus, dietary pectin supplementation exhibited a further positive effect on the healthy growth and development of weaned piglets. These findings suggest pectin supplementation as the prebiotic is beneficial for gut health and improvement of weaned stress via regulating microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Chang Yin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guoqi Dang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shusong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
7
|
Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed. Part I: Serum proteomes. J Proteomics 2023; 270:104740. [PMID: 36191802 DOI: 10.1016/j.jprot.2022.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
This study examines whether maternal low ω6:ω3 ratio diet and offspring SW supplementation can improve offspring immunity and performance by elucidating the effects on piglet serum proteome. A total of 16 sows were given either a standard (CR, 13:1) or low ω6:ω3 ratio diet (LR, 4:1) during pregnancy and lactation and their male weaned piglets were supplemented with SW powder (4 g/kg, SW) or not (CT) in a 21-day post-weaning (PW) diet. Four PW piglet groups were then identified based on dam and piglet treatment, namely CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet serum collected at weaning and d21 PW were analysed (n = 5 each) using TMT-based quantitative proteomics and validated by appropriate assays. The differentially abundant proteins (n = 122) displayed positive effects of maternal LR diet on anti-inflammatory properties and innate immune stimulation. Progeny SW diet activated the innate immunity and enhance the host defence during inflammation. These data demonstrate the value of decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet to boost their immunity and anti-inflammation properties. SIGNIFICANCE: This novel proteomic study in post-weaned piglets addresses the interplay between maternal and offspring nutritional interventions in a context of rapid and dynamic alterations in piglet metabolic status around weaning. Decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet can boost their immunity and anti-inflammation properties. This study also provides new insights into piglet serum proteome regulation during post-weaning, a critical development period in swine.
Collapse
|
8
|
Yu W, Xiao X, Chen D, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Yi X, Wang J, Wang H, Wang Q, Mao X. Effect of Dietary Lactose Supplementation on Growth Performance and Intestinal Epithelium Functions in Weaned Pigs Challenged by Rotavirus. Animals (Basel) 2022; 12:ani12182336. [PMID: 36139196 PMCID: PMC9495109 DOI: 10.3390/ani12182336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to investigate whether dietary lactose supplementation relieves rotavirus (RV)-induced diarrhea and gut dysfunction. Thirty-six crossbred weaned piglets were randomly allocated into three groups and fed diets containing 0, 4%, and 6% lactose for 20 days. On Day 15, half of the piglets in each group were orally infused with RV. RV infection impaired growth performance; induced severe diarrhea; decreased serum D-xylose concentration and morphology and sIgA level of jejunal mucosa; downregulated MUC1, MUC2, occludin, Bcl-2, IL-4, pBD3, pBD2, and pBD1 mRNA expression of jejunal mucosa and/or mesenteric lymph nodes; upregulated Bax, caspase-3, IL-2, IFN-γ, and IFN-β mRNA expression of jejunal mucosa and/or mesenteric lymph nodes; and damaged microbiota and metabolites of cecal digesta in weaned piglets (p < 0.05). Dietary lactose supplementation improved nutrient digestibility and growth performance and relieved the negative influence of RV challenge on intestinal barrier function, mRNA expression of cytokines, and host defense peptides of jejunal mucosa and/or mesenteric lymph nodes in weaned piglets (p < 0.05). Dietary administration of 6% lactose tended to relieve diarrhea (p = 0.07). These results suggest that lactose in feed increases growth performance and has a tendency to alleviate RV-induced diarrhea, derived from the improvement of nutrient utilization, gut barrier function, and immunity.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuechun Xiao
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewu Yi
- College of Life Sciences, Leshan Normal University, Leshan 614000, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Huifen Wang
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Quyuan Wang
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-18783536530; Fax: +86-2886290922
| |
Collapse
|
9
|
Wen X, Zhong R, Dang G, Xia B, Wu W, Tang S, Tang L, Liu L, Liu Z, Chen L, Zhang H. Pectin supplementation ameliorates intestinal epithelial barrier function damage by modulating intestinal microbiota in lipopolysaccharide-challenged piglets. J Nutr Biochem 2022; 109:109107. [PMID: 35863585 DOI: 10.1016/j.jnutbio.2022.109107] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022]
Abstract
During weaning, infants and young animals are susceptible to severe enteric infections, thus inducing intestinal microbiota dysbiosis, intestinal inflammation, and impaired intestinal barrier function. Pectin (PEC), a prebiotic polysaccharide, enhances intestinal health with the potential for therapeutic effect on intestinal diseases. One 21-days study was conducted to investigate the protective effect of pectin against intestinal injury induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) in a piglet model. A total of 24 piglets (6.77±0.92 kg BW; Duroc × Landrace × Large White; barrows; 21 d of age) were randomly assigned into three groups: control group, LPS-challenged group, and PEC + LPS group. Piglets were administrated with LPS or saline on d14 and d21 of the experiment. All piglets were slaughtered and intestinal samples were collected after 3 h administration on d21. Pectin supplementation ameliorated the LPS-induced inflammation response and damage to the ileal morphology. Meanwhile, pectin also improved intestinal mucin barrier function, increased the mRNA expression of MUC2, and improved intestinal mucus glycosylation. LPS challenge reduced the diversity of intestinal microbiota and enriched the relative abundance of Helicobacter. Pectin restored alpha diversity improved the structure of the gut microbiota by enriching anti-inflammatory bacteria and short-chain fatty acid (SCFA)-producing bacteria, and increased the concentrations of acetate. In addition, Spearman rank correlation analysis also revealed the potential relationship between intestinal microbiota and intestinal morphology, intestinal inflammation, and intestinal glycosylation in piglets. Taken together, these results indicate that pectin enhances intestinal integrity and barrier function by altering intestinal microbiota composition and their metabolites, which subsequently alleviates intestinal injury and finally improves the growth performance of piglets.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, 5030, Belgium
| | - Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixin Tang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengqun Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Yan H, Jin JQ, Yang P, Yu B, He J, Mao XB, Yu J, Chen DW. Fermented soybean meal increases nutrient digestibility via the improvement of intestinal function, anti-oxidative capacity and immune function of weaned pigs. Animal 2022; 16:100557. [PMID: 35687941 DOI: 10.1016/j.animal.2022.100557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The nutritional components of fermented soybean meal (FSBM) vary because of the complex process of microbial fermentation. The objective of this study was to investigate the nutritional value of FSBM from two sources and explore the mode of actions of FSBM on the improvement of nutrient digestibility with the measurements of digestive enzymes and serum biomarkers. Eight weaned barrows (initial BW: 14.12 ± 0.24 kg) equipped with T-cannula in the distal ileum were allotted to a duplicated 4 × 4 Latin-square design with four experimental diets and four periods. Four experimental diets included a soybean meal control diet, two FSBM diets, and a nitrogen-free diet. The two sources of FSBM increased the contents of CP, amino acid and lactic acid, while decreased the levels of anti-nutritional factors, including glycinin, β-conglycinin and trypsin inhibitors. Compared to soybean meal control diet, both FSBM diets significantly increased the apparent and standardised ileal digestibility of CP and amino acids (P < 0.05), increased the activities of lipase, maltase and invertase in digesta (P < 0.05), increased total antioxidant capacity, activities of glutathione peroxidase and superoxide dismutase, the levels of interleukin-4, IgA, IgG and IgM in serum (P < 0.05), while decreased the levels of diamine oxidase, malondialdehyde, interleukin-6, and interleukin-2 in serum (P < 0.05). Additionally, the standardised ileal digestibility of amino acids were highly correlated with the aforementioned digestive enzymes and health-related serum biomarkers. In summary, FSBM diets showed an improved nutritional value evidenced by the higher nutrient digestibility, which may be partially derived from its beneficial effects on intestinal integrity, anti-oxidative capacity and immune function.
Collapse
Affiliation(s)
- H Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - J Q Jin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - P Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - B Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - J He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - X B Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - J Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - D W Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
11
|
Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS One 2022; 17:e0266524. [PMID: 35511825 PMCID: PMC9070874 DOI: 10.1371/journal.pone.0266524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
The intense nature of pig production has increased the animals’ exposure to stressful conditions, which may be detrimental to their welfare and productivity. Some of the most common sources of stress in pigs are extreme thermal conditions (thermal stress), density and mixing during housing (social stress), or exposure to pathogens and other microorganisms that may challenge their immune system (immune-related stress). The stress response can be monitored based on the animals’ coping mechanisms, as a result of specific environmental, social, and health conditions. These animal-based indicators may support decision making to maintain animal welfare and productivity. The present study aimed to systematically review animal-based indicators of social, thermal, and immune-related stresses in farmed pigs, and the methods used to monitor them. Peer-reviewed scientific literature related to pig production was collected using three online search engines: ScienceDirect, Scopus, and PubMed. The manuscripts selected were grouped based on the indicators measured during the study. According to our results, body temperature measured with a rectal thermometer was the most commonly utilized method for the evaluation of thermal stress in pigs (87.62%), as described in 144 studies. Of the 197 studies that evaluated social stress, aggressive behavior was the most frequently-used indicator (81.81%). Of the 535 publications examined regarding immune-related stress, cytokine concentration in blood samples was the most widely used indicator (80.1%). Information about the methods used to measure animal-based indicators is discussed in terms of validity, reliability, and feasibility. Additionally, the introduction and wide spreading of alternative, less invasive methods with which to measure animal-based indicators, such as cortisol in saliva, skin temperature and respiratory rate via infrared thermography, and various animal welfare threats via vocalization analysis are highlighted. The information reviewed was used to discuss the feasible and most reliable methods with which to monitor the impact of relevant stressors commonly presented by intense production systems on the welfare of farmed pigs.
Collapse
|
12
|
Fan X, Xiao X, Chen D, Yu B, He J, Yu J, Luo J, Luo Y, Wang J, Yan H, Mao X. Yucca schidigera extract decreases nitrogen emission via improving nutrient utilisation and gut barrier function in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2021; 106:1036-1045. [PMID: 34668247 DOI: 10.1111/jpn.13647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022]
Abstract
Yucca schidigera extract (YE) can decrease ammonia concentration in livestock housing, which could be associated with the inhibition of urease. The aim of this study was to investigate the other possible reasons of dietary YE supplementation reducing nitrogen emission in weaned piglets. A total of 14 crossbred weaned barrows were allotted into two groups fed the diets supplementing 0 and 120 mg/kg YE for 14 days. The YE administration decreased F/G ratio and hindgut NH3 -N production in weaned piglets (p < 0.05). Dietary YE supplementation decreased serum urea nitrogen levels, and increased nutrient digestibility, which could be related to the improvement of morphology, digestive and absorptive enzyme activities, and nutrient transporter mRNA expression in jejunal mucosa of weaned piglets (p < 0.05). The mRNA expression of tight junction proteins, mucins and apoptosis-related genes was also improved by YE treatment in jejunal mucosa of weaned piglets (p < 0.05). In addition, dietary YE supplementation regulated the microbiota structure and volatile fatty acid content in distal intestine of weaned piglets (p < 0.05). These results suggest that YE administration can decrease hindgut NH3 -N production in weaned piglets, which is associated with the increased nutrient utilization and gut-barrier function.
Collapse
Affiliation(s)
- Xiangqi Fan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiangjun Xiao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China, Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Aline de Moura F, Teixeira Macagnan F, Klein B, Wagner R, Picolli da Silva L. Metabolic properties of partially hydrolyzed pectin from passion fruit peel. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2021; 25:100256. [DOI: 10.1016/j.bcdf.2020.100256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Wang J, Zhang C, Zhao S, Ding X, Bai S, Zeng Q, Zhang K, Zhuo Y, Xu S, Mao X, Peng H, Shan Z. Dietary apple pectic oligosaccharide improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders. Poult Sci 2021; 100:100976. [PMID: 33607317 PMCID: PMC7900577 DOI: 10.1016/j.psj.2020.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022] Open
Abstract
Reproduction performance is one of the most important economic traits for the poultry industry. Intriguingly, apple pectic oligosaccharide (APO) could promote gastrointestinal function and immune function to improve performance; however, literature about APO on reproduction performance in breeders is limited. This study aimed to determine whether APO administration can improve reproduction performance and ovary function of broiler breeders with different egg laying rates. Two hundred and fifty six Arbor Acres broiler breeders (48-week-old) were used in a 2 × 2 factorial design with 2 egg laying rates (average [AR] and low [LR]) and 2 dietary levels of APO (0 and 200 mg/kg APO). Results showed that the LR breeders presented higher egg weight but lower egg laying rate, qualified egg rate, and feed efficiency than the AR breeders (P(laying) < 0.05). Also, the LR breeders had decreased serum Anti-Müllerian hormone, leptin, and antioxidant enzyme (superoxide dismutase, total antioxidant capacity) levels than the AR breeders (P(laying) ≤ 0.05). Dietary supplementation with APO improved egg weight, feed efficiency, as well as egg albumen quality (higher albumen height and Haugh unit) (P(APO) < 0.05), and decreased the concentration of pro-inflammatory cytokine levels (interleukin [IL]-1β, IL-8) in serum (P(APO) ≤ 0.05). The apoptosis rate and pro-apoptosis-related gene expression (caspase 9 and Bax) in the ovary of LR breeders were higher, while the anti-apoptosis-related gene expression (Bcl-2, PCNA) was lower in LR compared with the AR breeders (P(laying) < 0.05). Dietary supplementation with APO decreased the caspase 9 and Bax expression in LR breeders (P(interaction) < 0.05), and increased the Bcl-2 and PCNA expression in the 2 breeders (P(APO) < 0.05). These findings indicate that breeders with a lower egg laying rate exhibit lower antioxidant capacity and high cell apoptosis in the ovary. Dietary supplementation with APO might improve albumen quality and antioxidant capacity, and decrease the inflammatory factors and ovary apoptosis-related genes expression to improve ovary function. Moreover, the effect of APO on decreasing ovarian pro-apoptosis-related gene expression was more pronounced in lower reproductive breeders.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Zhang
- College of Agriculture and Forestry, Pu'er Unviersity, Pu'er City 665000, China
| | - Shuju Zhao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanwei Peng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er Unviersity, Pu'er City 665000, China
| |
Collapse
|
15
|
Fan X, Hu H, Chen D, Yu B, He J, Yu J, Luo J, Eckhardt E, Luo Y, Wang J, Yan H, Mao X. Lentinan administration alleviates diarrhea of rotavirus-infected weaned pigs via regulating intestinal immunity. J Anim Sci Biotechnol 2021; 12:43. [PMID: 33750472 PMCID: PMC7945689 DOI: 10.1186/s40104-021-00562-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lentinan (LNT) may regulate many important physiological functions of human and animals. This study aimed to verify whether LNT administration could relieve diarrhea via improving gut immunity in rotavirus (RV)-challenged weaned pigs. METHODS Twenty-eight weaned pigs were randomly fed 2 diets containing 0 or 84 mg/kg LNT product for 19 d (n = 14). RV infection was executed on d 15. After extracting polysaccharides from LNT product, its major monosaccharides were analyzed. Then, LNT polysaccharide was used to administrate RV-infected IPEC-J2 cells. RESULTS Dietary LNT supplementation supported normal function of piglets even when infected with RV, as reflected by reduced growth performance loss and diarrhea prevalence, and maintained gut immunity (P < 0.05). The polysaccharide was isolated from LNT product, which molecular weight was 5303 Da, and major monosaccharides included glucose, arabinose and galactose. In RV-infected IPEC-J2 cells, this polysaccharide significantly increased cell viability (P < 0.05), and significantly increased anti-virus immunity via regulating pattern recognition receptors and host defense peptides (P < 0.05). CONCLUSION Those results suggest that LNT administration increases the piglets' resistance to RV-induced stress, likely by supporting intestinal immunity.
Collapse
Affiliation(s)
- Xiangqi Fan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Haiyan Hu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Erik Eckhardt
- Adisseo SAS, Center of Excellence and Research in Nutrition, 03600 Malicorne, France
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, 611130 Sichuan Province People’s Republic of China
| |
Collapse
|
16
|
Li HH, Jiang XR, Qiao JY. Effect of dietary Bacillus subtilis on growth performance and serum biochemical and immune indexes in weaned piglets. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1877717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hai-Hua Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Xian-Ren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jia-Yun Qiao
- College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
| |
Collapse
|
17
|
Mao X, Ding X, Zeng Q, Bai S, Zhang K, Chen D, Yu B, He J, Yu J, Yan H, Luo J, Luo Y, Wang J. The effect of dietary pectic oligosaccharide supplementation on intestinal health of broiler breeders with different egg-laying rates. Poult Sci 2021; 100:100938. [PMID: 33518299 PMCID: PMC7936170 DOI: 10.1016/j.psj.2020.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
This study was conducted to explore whether dietary pectic oligosaccharide (POS) supplementation could improve gut health of broiler breeders with different egg-laying rates. A 2 × 2 factorial design was used in this study. Two hundred fifty-six Arbor Acres broiler breeders (48 wk of age), including 128 average egg-laying rate and 128 low egg-laying rate (LELR) birds, were randomly fed with the diets supplemented with or without 200 mg kg−1 of POS (n = 8). The trial lasted for 8 wk. Compared with average egg-laying rate broiler breeders, LELR broiler breeders had lower laying rate and qualified egg rate (P < 0.05), higher egg weight and feed conversion ratio (P < 0.05), higher malondialdehyde (MDA) levels in the jejunum (P < 0.05), higher IL-6 (P < 0.05) and tumor necrosis factor α (TNF-α) (P = 0.07) mRNA expressions in the jejunal mucosa, and lower microflora diversity in cecal digesta. Dietary POS supplementation increased egg weight of broiler breeders (P < 0.05), enhanced superoxide dismutase activity in the jejunum (P < 0.05), decreased MDA level in the jejunum (P < 0.05), upregulated zonula occluden 1 mRNA expression in the jejunal mucosa (P < 0.05), downregulated IL-6 and TNF-α mRNA expressions in the jejunal mucosa (P < 0.05), and regulated relative abundance of some microbiota (including the phylum and genus, P < 0.05). In addition, in LELR broiler breeders, POS administration enhanced villus height (P = 0.08) and ZO-2 mRNA expression (P = 0.09) in the jejunal mucosa, alleviated the increasing MDA level in the jejunum (P < 0.05) and IL-6 and TNF-α mRNA expressions in the jejunal mucosa (P < 0.05), and regulated relative abundance of some microbiota (including the phylum and genus, P < 0.05). These results suggest that supplementing POS in diets may elevate gut health via improvement of intestinal barrier function, antioxidant capacity, and microbiota composition in broiler breeders with different egg-laying rates.
Collapse
Affiliation(s)
- Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
18
|
Liu M, Mao X, Chen D, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Wang J, Wang Q, Wang H. Dietary pectic oligosaccharide supplementation improves rat reproductive performance via regulating intestinal volatile fatty acids during middle gestation. ACTA ACUST UNITED AC 2020; 6:210-216. [PMID: 32542202 PMCID: PMC7283514 DOI: 10.1016/j.aninu.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
As a kind of green additive, pectic oligosaccharide (POS) may regulate some physiological functions of animals, such as gut health, antioxidant capacity, immunity and lipid metabolism. This study aimed to identify whether POS administration can improve maternal reproduction, and to determine the possible metabolism. A total of 48 pregnant Wistar rats randomly allotted into 2 groups, and each group was fed a diet supplemented with 0 or 800 mg/kg of POS. Pectic oligosaccharide administration increased rat born number (P < 0.05), did not affect rat embryo number on d 7 of gestation, but increased rat fetus number on d 14 of gestation (P < 0.05). On d 14 of gestation, POS treatment improved Lactobacillus and Bifidobacterium populations and volatile fatty acid concentrations of cecal digesta (P < 0.05), hormone (progesterone and nitric oxide) and cytokine (interleukin 2) concentrations of serum (P < 0.05), and antioxidant capacity of serum (increased total antioxidant capacity and decreased malondialdehyde) and placenta (increased total superoxide dismutase, decreased malondialdehyde) (P < 0.05) in pregnant rats. These results suggest that POS administration improved rat reproduction via decreasing fetus loss in middle gestation. This was due to the increased volatile fatty acid concentrations in rat gut improving hormone and inflammatory-cytokine productions, and antioxidant capacity.
Collapse
Affiliation(s)
- Minghui Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition and Feed, Chinese Ministry of Agriculture and Rural Affairs, Chengdu, 611130, China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan, Chengdu, 611130, China
| | - Quyuan Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huifen Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
19
|
Zhao S, Zhang K, Ding X, Celi P, Yan L, Bai S, Zeng Q, Mao X, Xu S, Wang J. The impact of dietary supplementation of different feed additives on performances of broiler breeders characterized by different egg-laying rate. Poult Sci 2020; 98:6091-6099. [PMID: 31198968 DOI: 10.3382/ps/pez316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/21/2019] [Indexed: 02/02/2023] Open
Abstract
This study was conducted to determine the impact of different feed additives on reproductive performance, egg quality, intestinal morphology, and blood metabolic profile of broiler breeder with different egg-laying rate. A total of 512 AA broiler breeders (48 wk old) were used in a 2 × 4 factorial design which encompassed 2 egg-laying rate levels [average (AR) and low (LR)] and 4 different dietary groups [control (no additive), 6 × 108 CFU/kg Enterococcus faecium (EF), 200 mg/kg apple pectic oligosaccharide (APO), and 1,000 mg/kg tributyrin (TRI)]. As expected, the LR breeders presented higher egg weight, eggshell thickness (P < 0.05), and feed conversion ratio as well as lower egg-laying and qualified egg rate than the AR breeders (P < 0.01). Dietary supplementation with the 3 additives improved egg weight (P ≤ 0.01). Dietary APO addition improved albumen height and Haugh units (P < 0.05) in both AR and LR breeders. Compared with APO and TRI, dietary EF addition increased eggshell thickness (P ≤ 0.01). An effect of the egg-laying rate and dietary additives on eggshell thickness (P < 0.01) was noted, with the addition of EF enhancing the eggshell thickness, which is more pronounced in the AR group. The duodenum of AR breeders presented a lower crypt depth and a higher villus/crypt ratio (P < 0.05); moreover, an effect of the laying rate and dietary additives on crypt depth was noted (P < 0.05), with the addition of APO to the diet resulting in a lower crypt depth. Compared with the APO and TRI, dietary EF addition increased follicle-stimulating hormone (FSH) level in serum (P < 0.05). Overall, the results gathered in this study indicate that LR breeders have lower production performance, eggshell thickness and decreased gastrointestinal tract functionality in compared with the AR breeders. Dietary supplementation with APO might improve albumen quality and decrease duodenal morphology, while EF improved eggshell quality and FSH secretion, and the improvement was more pronounced in the breeders with an average egg-laying rate.
Collapse
Affiliation(s)
- Shuju Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Pietro Celi
- DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD 21045, USA
| | - Lei Yan
- DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD 21045, USA
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| |
Collapse
|
20
|
Wang J, Ji H. Tight Junction Proteins in the Weaned Piglet Intestine: Roles and Regulation. Curr Protein Pept Sci 2019; 20:652-660. [PMID: 30678619 DOI: 10.2174/1389203720666190125095122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial barrier plays a crucial role in the health and growth of weaned piglets. Proper epithelial function mainly depends on tight junctions (TJs), which act as both ion channels and a barrier against noxious molecules. TJs are multiprotein complexes consisting of transmembrane and membrane-associated proteins. Because the intestine in piglets is immature and incomplete, its structure and function are easily impaired by various stresses, infections, and food-related factors. Certain nutrients have been demonstrated to participate in intestinal TJ regulation. Probiotics, amino acids, fibers, oligosaccharide, and certain micronutrients can enhance barrier integrity and counteract infections through elevated TJ protein expression and distribution. In this review, the distribution and classification of intestinal TJs is described, the factors influencing TJs after weaning are summarized, and the regulation of weaning piglet intestinal TJs by nutrients is discussed.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
21
|
Wang J, Wang S, Liu H, Zhang D, Wang Y, Ji H. Effects of oligosaccharides on the growth and stress tolerance of Lactobacillus plantarum ZLP001 in vitro, and the potential synbiotic effects of L. plantarum ZLP001 and fructo-oligosaccharide in post-weaning piglets1. J Anim Sci 2019; 97:4588-4597. [PMID: 31410455 PMCID: PMC6827270 DOI: 10.1093/jas/skz254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, we evaluated the effects of seven oligosaccharides on the growth rate and stress tolerance of Lactobacillus plantarum ZLP001 in vitro, and the potential synbiotic effects of the most effective oligosaccharide [fructo-oligosaccharide (FOS)] and L. plantarum ZLP001 on the growth performance, apparent nutrient digestibility, fecal microbiota, and serum immune index in weaning piglets. Most oligosaccharides were utilized as carbohydrate sources by L. plantarum ZLP001, but we observed obvious differences in the bacterial growth depending on oligosaccharide type and concentration. Oligosaccharides and glucose significantly alleviated the decrease in L. plantarum ZLP001 viability in artificial gastric fluid, whereas none of the sugars affected viability in artificial intestinal fluid. FOS and galacto-oligosaccharide significantly improved the viability of L. plantarum ZLP001 under heat stress (65 °C for 15 and 30 min). FOS and soybean oligosaccharide significantly increased the viability of L. plantarum ZLP001 in response to cold stress (4 °C for 30 and 60 days). On the basis of the findings of in vitro experiments, we selected FOS for in vivo studies. Eighty-four weaned piglets were randomly assigned to one of the following groups: control (basal diet, no additives), freeze-dried L. plantarum ZLP001 (4.2 × 109 CFU/g, 2 g/kg diet), FOS (5 g/kg diet), and combination (0.2% L. plantarum ZLP001 + 0.5% FOS). Body weight and feed consumption were recorded for determinations of the average daily gain (ADG), average daily feed intake (ADFI), and feed-to-gain ratio (F/G). On day 28, fresh fecal samples were collected to evaluate the apparent digestibility of nutrients and microbiota, and serum samples were collected to determine the immune status. L. plantarum ZLP001 plus FOS significantly increased ADG and decreased the F/G ratio compared with the no-additive control. The combination treatment also increased the apparent nutrient digestibility of dry matter and crude protein. Compared with the control and single supplementation, the combination treatment had a significant regulatory effect on the intestinal microbiota, as evidenced by increases in Lactobacillus spp. and a decrease in Enterobacteriaceae. In addition, the combination treatment increased the concentrations of serum IFN-γ and immunoglobulin G. In conclusion, FOS can be utilized well by L. plantarum ZLP001 and can be combined with it as a potential synbiotic that shows synergistic effects in weaning piglets.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
22
|
San Andres JV, Mastromano GA, Li Y, Tran H, Bundy JW, Miller PS, Burkey TE. The effects of prebiotics on growth performance and in vitro immune biomarkers in weaned pigs. Transl Anim Sci 2019; 3:1315-1325. [PMID: 32704894 PMCID: PMC7200398 DOI: 10.1093/tas/txz129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The objective of the experiment was to investigate the effects of prebiotics in nursery pigs on growth performance and immune biomarkers. Sixty-four weaned pigs (31 ± 1 d; BW 8 ± 0.1 kg) of mixed gender were housed (4 pigs/pen) in an environmentally controlled nursery with ad libitum access to feed and water over a 35-d study. Pigs were randomly assigned to one of four treatments: control (53% corn, 32% SBM, 7% fishmeal, 8% others), control + 2.5% GroBiotic-S (GS), control + 0.05% chicory (CL), or control + 0.5% chicory (CH). Feeders and pigs were weighed weekly. On day 21, blood samples were obtained from three pigs/treatment for collection of peripheral blood mononuclear cells (PBMC). Isolated PBMC were cultured and subsequently challenged with lipopolysaccharide (LPS; 20 ng/mL). Cell culture supernatants were collected for quantification of the pro- and anti-inflammatory cytokines, interleukin (IL)-8 and IL-10, respectively. Dietary treatment had no effect on BW. At days 28 to 35, pigs fed GS (790 ± 15 g), CL (704 ± 15 g), or CH (692 ± 15 g) had greater (P < 0.05) ADG compared with control (643 ± 15 g) pigs. In addition, overall (days 0–35), pigs fed GS (823 ± 18 g), CL (783 ± 18 g), or CH (782 ± 18 g) had greater (P < 0.05) ADFI compared with control, and ADFI for GS-fed pigs was greater (P < 0.05) than either CL or CH. There was no difference in G:F among treatments. In vitro LPS challenge increased (P < 0.05) IL-8 secretion from PBMC isolated from CL (23,731 ± 3,221 pg/mL) pigs compared with control (10,061 ± 3,221 pg/mL) and CH (12,411 ± 3,221 pg/mL) pigs. Secretion of IL-10 from PBMC isolated from CL (63 ± 9 pg/mL) pigs was greater (P < 0.05) compared with control (22 ± 9 pg/mL) pigs and tended (P < 0.1) to be greater compared with CH (34 ± 9 pg/mL) pigs. Results indicate that inclusion of prebiotics in nursery pig diets has positive effects on growth performance and may have immunomodulatory effects (in vitro) on cells isolated from prebiotic-fed pigs.
Collapse
Affiliation(s)
- Joice V San Andres
- Department of Animal Science, University of Nebraska, Lincoln, NE.,Department of Animal Science, Central Luzon State University, Philippines
| | | | - Yanshuo Li
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Huyen Tran
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Justin W Bundy
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Phillip S Miller
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE
| |
Collapse
|
23
|
Zhang S, Hu H, He W, Muhammad Z, Wang L, Liu F, Pan S. Regulatory Roles of Pectin Oligosaccharides on Immunoglobulin Production in Healthy Mice Mediated by Gut Microbiota. Mol Nutr Food Res 2019; 63:e1801363. [PMID: 31116489 DOI: 10.1002/mnfr.201801363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Indexed: 12/11/2022]
Abstract
SCOPE The prebiotic regulation of the gut microbiota is a promising strategy to induce protective humoral and mucosal immune responses. The potential immune-improving effects of pectin oligosaccharides (POS) in healthy mice and the potential mechanism mediated by specific intestinal bacteria are investigated. METHODS AND RESULTS POS is prepared using a hydrogen-peroxide-assisted degradation. Mice that consumed diets containing POS are tested for microbial community shifts, short-chain fatty acids (SCFAs), and immunoglobulin (Ig) production using quantitative real-time polymerase chain reaction, gas chromatography, and ELISA kits. Pearson's correlation analyses are performed between Ig production and specific intestinal bacteria or SCFAs. POS treatment significantly improves the growth of healthy mice. Moreover, 4-week POS administration results in a profound change in intestinal microbial composition and a significantly higher fecal concentration of acetate, which leads to substantial increases of the levels of fecal secretory immunoglobulin A and serum IgG. CONCLUSIONS The results suggest that the inclusion of POS in a diet can increase Ig production and optimize the composition of the gut microbiota. A significant correlation is observed between changes in Ig production and specific intestinal bacteria or acetate, providing insight into the mechanism of POS as a potential immune-enhancing supplement.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wanying He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zafarullah Muhammad
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
24
|
Wang ZC, Yu HM, Xie JJ, Cui H, Nie H, Zhang T, Gao XH. Effect of dietary zinc pectin oligosaccharides chelate on growth performance, enzyme activities, Zn accumulation, metallothionein concentration, and gene expression of Zn transporters in broiler chickens1. J Anim Sci 2019; 97:2114-2124. [PMID: 30753602 PMCID: PMC6488314 DOI: 10.1093/jas/skz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/16/2019] [Indexed: 11/14/2022] Open
Abstract
This study was to investigate the effect of zinc pectin oligosaccharides chelate (Zn-POS) on growth performance, serum enzyme activities, tissue zinc accumulation, metallothionein (MT) concentrations, and gene expression of zinc transporters (ZnT) in broilers. Five hundred forty 1-d-old Arbor Acres broiler chicks were randomly assigned to 5 dietary groups with 6 replicates of 18 birds per replicate. The diets were formulated with the same supplemental Zn level (80 mg/kg diet) but different amount of the Zn-POS: 0, 200, 400, 600, and 800 mg Zn-POS/kg diet. ZnSO4 was used to adjust to the desired amount of the Zn (80 mg/kg) in the Zn-POS diets. Broilers were fed with the experimental diets for 42 d including the starter (days 1 to 21) and grower (days 22 to 42) phases. Our results showed that dietary supplementation of Zn-POS linearly and quadratically increased (P < 0.05) the average daily gain and gain-to-feed ratio during 22 to 42 d and 1 to 42 d as well as body weight on day 42, whereas reduced (P < 0.05) the sum of mortality and lag abnormalities in broilers on day 42. Besides, serum alkaline phosphatase and copper-zinc superoxide dismutase activities increased (P < 0.05) linearly and quadratically in response to dietary Zn-POS supplemental level on day 42. Dietary Zn-POS supplementation increased Zn accumulation in serum (linear, P < 0.05), liver (linear, P < 0.05), and pancreas (linear and quadratic, P < 0.05). In addition, Zn-POS supplementation linearly and quadratically increased (P < 0.01, P < 0.05, respectively) MT concentrations in liver and pancreas of broilers. Pancreatic mRNA levels of MT, ZnT-1, and ZnT-2 increased (P < 0.05) linearly and quadratically, and the mRNA expression of metal response element-binding transcription factor-1 increased linearly (P < 0.05), in response to dietary Zn-POS supplementation. In conclusion, supplementation of Zn-POS in the diet increases Zn enrichment in the metabolic organs such as liver and pancreas and promotes productive performance in broilers.
Collapse
Affiliation(s)
- Zhong Cheng Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hui Min Yu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Jing Xie
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hu Cui
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hao Nie
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tietao Zhang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiu Hua Gao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
25
|
Mao X, Gu C, Ren M, Chen D, Yu B, He J, Yu J, Zheng P, Luo J, Luo Y, Wang J, Tian G, Yang Q. l-Isoleucine Administration Alleviates Rotavirus Infection and Immune Response in the Weaned Piglet Model. Front Immunol 2018; 9:1654. [PMID: 30061901 PMCID: PMC6054962 DOI: 10.3389/fimmu.2018.01654] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 01/25/2023] Open
Abstract
Rotavirus (RV) infection is one of the main pathogenic causes of severe gastroenteritis and diarrhea in infants and young animals. This study aimed to determine how dietary l-isoleucine supplementation improves the growth performance and immune response in weaned piglets with RV infection. In cell culture experiment, after IPEC-J2 and 3D4/31 cells were treated by 8 mM l-isoleucine for 24 h, the gene expressions of β-defensins and pattern recognition receptors (PRR) signaling pathway were significantly increased. Then, in the in vivo experiment, 28 crossbred weaned pigs were randomly divided into two groups fed with basal diet with or without l-isoleucine for 18 days. On the 15th day, the oral RV gavage was executed in the half of piglets. Average daily feed intake and gain of piglets were impaired by RV infection (P < 0.05). RV infection also induced severe diarrhea and the increasing serum urea nitrogen concentration (P < 0.05), and decreased CD4+ lymphocyte and CD4+/CD8+ ratio of peripheral blood (P < 0.05). However, dietary l-isoleucine supplementation attenuated diarrhea and decreasing growth performance (P < 0.05), decreased the NSP4 concentration in ileal mucosa, and enhanced the productions and/or expressions of immunoglobulins, RV antibody, cytokines, and β-defensins in serum, ileum, and/or mesenteric lymph nodes of weaned piglets (P < 0.05), which could be relative with activation of PRR signaling pathway and the related signaling pathway (P < 0.05) in the weaned pigs orally infused by RV. These results indicate that dietary l-isoleucine could improve the growth performance and immune function, which could be derived from l-isoleucine treatment improving the innate and adaptive immune responses via activation of PRR signaling pathway in RV-infected piglets. It is possible that l-isoleucine can be used in the therapy of RV infection in infants and young animals.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Changsong Gu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Qing Yang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
26
|
Mao X, Xiao X, Chen D, Yu B, He J, Chen H, Xiao X, Luo J, Luo Y, Tian G, Wang J. Dietary apple pectic oligosaccharide improves gut barrier function of rotavirus-challenged weaned pigs by increasing antioxidant capacity of enterocytes. Oncotarget 2017; 8:92420-92430. [PMID: 29190927 PMCID: PMC5696193 DOI: 10.18632/oncotarget.21367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023] Open
Abstract
Rotavirus can lead to decreasing gut barrier function and diarrhea of children and young animals. Apple pectic oligosaccharide treatment reduced diarrhea in rotavirus-infected piglets. This study was conducted to explore whether apple pectic oligosaccharide administration could protect gut barrier function of piglets against rotavirus infection. A total of 28 crossbred weaned barrows were allotted into 2 treatments fed the diets supplementing 0 and 200 mg/kg apple pectic oligosaccharide. Half of pigs in each diet treatment were challenged by rotavirus on d 15. The whole duration of this experiment is 18 days. Rotavirus challenge increased average diarrhea index, and impaired microbiota in cecal digesta, and histology, expressions of tight-junction proteins, mucins and glucagon like peptide-2 concentrations, antioxidant capacity, endoplasmic reticulum stress, autophagy and apoptosis in jejunal mucosa of piglets. However, dietary apple pectic oligosaccharide supplementation relieved effects of rotavirus challenge on diarrhea, gut health, and antioxidant capacity, endoplasmic reticulum stress, autophagy and apoptosis of jejunal mucosa in piglets. These results suggest that apple pectic oligosaccharide administration can prevent diarrhea and damage of gut barrier function via improving antioxidant capacity that might reduce endoplasmic reticulum stress, autophagy and apoptosis of intestinal epithelial cells in rotavirus-infected piglets.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Xiangjun Xiao
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Hao Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Xuechun Xiao
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| |
Collapse
|