1
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
2
|
Williamson E, Ross IL, Wall BT, Hankamer B. Microalgae: potential novel protein for sustainable human nutrition. TRENDS IN PLANT SCIENCE 2024; 29:370-382. [PMID: 37690907 DOI: 10.1016/j.tplants.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
To support a global population of ~10 billion people in 2050, dietary protein demand is forecast to increase 32-78% compared to 2017, requiring significantly higher planetary resources. Microalgae are an attractive sustainable protein source compared with current plant and animal sources. Benefits include mass scalability, low CO2 emissions, and significantly reduced land and freshwater use per unit protein. Microalgae are already used as food products and numerous species exhibit high total protein contents and well-balanced essential amino acid (EAA) compositions for human dietary requirements. Microalgae proteins are also bioavailable for human digestion, and downstream processing steps are likely to further enhance protein digestibility. Species, cultivation, and process/product optimisation are actively being developed to enhance their nutritional, social, and environmental benefits.
Collapse
Affiliation(s)
- Ellen Williamson
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian L Ross
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin T Wall
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Benjamin Hankamer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024; 13:733. [PMID: 38472846 DOI: 10.3390/foods13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are receiving increased attention in the food sector as a sustainable ingredient due to their high protein content and nutritional value. They contain up to 70% proteins with the presence of all 20 essential amino acids, thus fulfilling human dietary requirements. Microalgae are considered sustainable and environmentally friendly compared to traditional protein sources as they require less land and a reduced amount of water for cultivation. Although microalgae's potential in nutritional quality and functional properties is well documented, no reviews have considered an in-depth analysis of the pros and cons of their addition to foods. The present work discusses recent findings on microalgae with respect to their protein content and nutritional quality, placing a special focus on formulated food products containing microalgae proteins. Several challenges are encountered in the production, processing, and commercialization of foods containing microalgae proteins. Solutions presented in recent studies highlight the future research and directions necessary to provide solutions for consumer acceptability of microalgae proteins and derived products.
Collapse
Affiliation(s)
- Ornella Kongi Mosibo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Giovanna Ferrentino
- Faculty of Agriculture, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| |
Collapse
|
4
|
Alavianghavanini A, Shayesteh H, Bahri PA, Vadiveloo A, Moheimani NR. Microalgae cultivation for treating agricultural effluent and producing value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169369. [PMID: 38104821 DOI: 10.1016/j.scitotenv.2023.169369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Wastewater generated within agricultural sectors such as dairies, piggeries, poultry farms, and cattle meat processing plants is expected to reach 600 million m3 yr-1 globally. Currently, the wastewater produced by these industries are primarily treated by aerobic and anaerobic methods. However, the treated effluent maintains a significant concentration of nutrients, particularly nitrogen and phosphorus. On the other hand, the valorisation of conventional microalgae biomass into bioproducts with high market value still requires expensive processing pathways such as dewatering and extraction. Consequently, cultivating microalgae using agricultural effluents shows the potential as a future technology for producing value-added products and treated water with low nutrient content. This review explores the feasibility of growing microalgae on agricultural effluents and their ability to remove nutrients, specifically nitrogen and phosphorus. In addition to evaluating the market size and value of products from wastewater-grown microalgae, we also analysed their biochemical characteristics including protein, carbohydrate, lipid, and pigment content. Furthermore, we assessed the costs of both upstream and downstream processing of biomass to gain a comprehensive understanding of the economic potential of the process. The findings from this study are expected to facilitate further techno-economic and feasibility assessments by providing insights into optimized processing pathways and ultimately leading to the reduction of costs.
Collapse
Affiliation(s)
- Arsalan Alavianghavanini
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia
| | - Hajar Shayesteh
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
5
|
Hadidi M, Hossienpour Y, Nooshkam M, Mahfouzi M, Gharagozlou M, Aliakbari FS, Aghababaei F, McClement DJ. Green leaf proteins: a sustainable source of edible plant-based proteins. Crit Rev Food Sci Nutr 2023; 64:10855-10872. [PMID: 37395603 DOI: 10.1080/10408398.2023.2229436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The rise in the global population, which is projected to reach 9.7 billion by 2050, has resulted in an increased demand for proteins in the human diet. The green leaves of many plants are an affordable, abundant, and sustainable source of proteins suitable for human consumption. This article reviews the various sources of green leaf proteins that may play an important role in alleviating global malnutrition, including those from alfalfa, amaranth, cabbage, cassava, duckweed, moringa, olive, radish, spinach, sugar beet, and tea. The structure of green leaves and the location of the proteins within these leaves are described, as well as methods for extracting and purifying these proteins. The composition, nutritional profile, and functional attributes of green leaf proteins are then discussed. The potential advantages and disadvantages of using green leaf proteins as functional food ingredients are highlighted. The importance of obtaining a better understanding of the composition and structure of different green leaves and the proteins extracted from them is highlighted. This includes an assessment of non-protein nitrogen and anti-nutritional compounds that may be present. Furthermore, the impact of isolation and purification techniques on the functionality of the plant protein ingredients obtained must be carefully evaluated.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yasaman Hossienpour
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Maryam Mahfouzi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Maryam Gharagozlou
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Faezeh Sadat Aliakbari
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources
| | - Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
6
|
Sandgruber F, Gielsdorf A, Schenz B, Müller SM, Schwerdtle T, Lorkowski S, Griehl C, Dawczynski C. Variability in Macro- and Micronutrients of 15 Rarely Researched Microalgae. Mar Drugs 2023; 21:355. [PMID: 37367680 DOI: 10.3390/md21060355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Microalgae have enormous potential for human nutrition, yet the European Commission has authorized the consumption of only eleven species. Strains of fifteen rarely researched microalgae from two kingdoms were screened regarding their nutritional profile and value for human health in two cultivation phases. Contents of protein, fiber, lipids, fatty acids, minerals, trace elements and heavy metals were determined. In the growth phase, microalgae accumulated more arginine, histidine, ornithine, pure and crude protein, Mg, Mn, Fe and Zn and less Ni, Mo and I2 compared to the stationary phase. Higher contents of total fat, C14:0, C14:1n5, C16:1n7, C20:4n6, C20:5n3 and also As were observed in microalgae from the chromista kingdom in comparison to microalgae from the plantae kingdom (p < 0.05). Conversely, the latter had higher contents of C20:0, C20:1n9 and C18:3n3 as well as Ca and Pb (p < 0.05). More precisely, Chrysotila carterae appeared to have great potential for human nutrition because of its high nutrient contents such as fibers, carotenoids, C20:6n3, Mg, Ca, Mn, Fe, Se, Zn, Ni, Mo and I2. In summary, microalgae may contribute to a large variety of nutrients, yet the contents differ between kingdoms, cultivation phases and also species.
Collapse
Affiliation(s)
- Fabian Sandgruber
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany
- Competence Cluster for Nutritional and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany
| | - Annekathrin Gielsdorf
- Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Benjamin Schenz
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany
- Competence Cluster for Nutritional and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany
| | - Sandra Marie Müller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutritional and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Carola Griehl
- Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany
- Competence Cluster for Nutritional and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany
| |
Collapse
|
7
|
Van De Walle S, Broucke K, Baune MC, Terjung N, Van Royen G, Boukid F. Microalgae protein digestibility: How to crack open the black box? Crit Rev Food Sci Nutr 2023; 64:7149-7171. [PMID: 38975868 DOI: 10.1080/10408398.2023.2181754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Microalgae are booming as a sustainable protein source for human nutrition and animal feed. Nevertheless, certain strains were reported to have robust cell walls limiting protein digestibility. There are several disruption approaches to break down the cell integrity and increase digestive enzyme accessibility. This review's intent is to discuss the digestibility of microalgae proteins in intact cells and after their disruption. In intact single cells, the extent of protein digestibility is chiefly related to cell wall structural properties (differing among strains) as well as digestion method and when added to food or feed protein digestibility changes depending on the matrix's composition. The degree of effectiveness of the disruption method varies among studies, and it is complicated to compare them due to variabilities in digestibility models, strains, disruption method/conditions and their consequent impact on the microalgae cell structure. More exhaustive studies are still required to fill knowledge gaps on the structure of microalgal cell walls and to find efficient and cost-effective disruption technologies to increase proteins availability without hindering their quality.
Collapse
Affiliation(s)
- Simon Van De Walle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Keshia Broucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | - Nino Terjung
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Geert Van Royen
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | |
Collapse
|
8
|
Lima VS, de Oliveira DRB, da Silva CAS, Santana RDC, Soares NDFF, de Oliveira EB, Martins MA, Coimbra JSDR. Stabilization of oil-water emulsions with protein concentrates from the microalga Tetradesmus obliquus. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:797-808. [PMID: 36712212 PMCID: PMC9873893 DOI: 10.1007/s13197-023-05666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/07/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
The present work used water-soluble protein concentrates from the microalga Tetradesmus obliquus to stabilize sunflower oil emulsions. Microalgal cells were disrupted by sonication, and proteins were separated from the biomass using two methods, isoelectric and solvent precipitations. The protein extracts were concentrated by lyophilization, and the concentrates were used to produce emulsions with three amounts of Tetradesmus obliquus protein concentrate (TobPC) (0.1, 0.5, and 1.0% w/v). Emulsions were homogenized through sonication and characterized for creaming index, optical microscopy, size distribution, ζ-potential, and rheology. Isoelectric precipitation resulted in TobPC with a high protein content (51.46 ± 2.37%) and a better dispersibility profile. Emulsion stability was higher for both the isoelectric TobPC and control systems than for the TobPC solvent. Solvent TobPC does not efficiently stabilize emulsions at low protein concentrations that showed microscopically larger oil droplets and flocculation spots. A high phase separation velocity was observed for solvent TobPC, probably due to the higher hydrodynamic droplet diameters. The increase in TobPC content in the emulsions resulted in more stable emulsions for all samples. Therefore, Tetradesmus obliquus protein concentrates are a potential emulsifying agent.
Collapse
Affiliation(s)
- Viviane Sobreira Lima
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Davi Rocha Bernardes de Oliveira
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - César Augusto Sodré da Silva
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Rejane de Castro Santana
- Departamento de Química (DEQ), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Nilda de Fátima Ferreira Soares
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Eduardo Basílio de Oliveira
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Marcio Aredes Martins
- Departamento de Engenharia Agrícola (DEA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Jane Sélia dos Reis Coimbra
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| |
Collapse
|
9
|
Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microalgae are a known source of proteins, prebiotics, lipids, small molecules, anti-oxidants and bioactives with health benefits that can be harnessed for the development of functional foods, feeds, cosmeceuticals and pharmaceuticals. This review collates information on the supply, processing costs, target markets and value of microalgae, as well as microalgal proteins, lipids, vitamins and minerals. It discusses the potential impact that microalgae could have on global food and feed supply and highlights gaps that exist with regards to the use of microalgal proteins and ingredients as foods and supplements.
Collapse
|
10
|
Ribeiro C, Santos ET, Costa L, Brazinha C, Saraiva P, Crespo JG. Nannochloropsis sp. Biorefinery: Recovery of Soluble Protein by Membrane Ultrafiltration/Diafiltration. MEMBRANES 2022; 12:membranes12040401. [PMID: 35448371 PMCID: PMC9032216 DOI: 10.3390/membranes12040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
Abstract
This work proposes a way to maximize the potential of a Nannochloropsis sp. biorefinery process, through membrane technology, producing an extract enriched in soluble proteins, free from the insoluble protein fraction, with a low lipid content and eliminating the colored chlorophyll-a. This procedure, following the principles of a circular economy approach, allows for the valorization of a stream from the biorefining of Nannochloropsis sp. that, otherwise, would be considered a residue without commercial value. The process proposed minimizes fouling phenomena at the membrane surface, making it possible to achieve high permeate fluxes, thus reducing the need for membrane cleaning and, therefore, contributing to an extended membrane lifetime. Supernatant obtained after centrifugation of a suspension of ruptured Nannochloropsis sp. cells was processed by ultrafiltration using a membrane with a cut-off of 100 kDa MWCO. Two different operating approaches were evaluated—controlled transmembrane pressure and controlled permeate flux—under concentration and diafiltration modes. Ultrafiltration operated in a diafiltration mode, under controlled permeate flux conditions, led to the highest soluble protein recovery (78%) with the highest constant permeate flux (12 L·m−2·h−1) and low membrane fouling.
Collapse
Affiliation(s)
- Cláudia Ribeiro
- LAQV/Requimte, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (C.R.); (J.G.C.)
- A4F—Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal;
| | - Edgar T. Santos
- A4F—Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal;
- Correspondence: (E.T.S.); (C.B.); Tel.: +351-21-807-24-99 (E.T.S.); +351-21-294-83-85 (C.B.)
| | - Luís Costa
- A4F—Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal;
| | - Carla Brazinha
- LAQV/Requimte, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (C.R.); (J.G.C.)
- Correspondence: (E.T.S.); (C.B.); Tel.: +351-21-807-24-99 (E.T.S.); +351-21-294-83-85 (C.B.)
| | - Pedro Saraiva
- CIEPQPF, Chemical Engineering Department, FCT, University of Coimbra, 3030-790 Coimbra, Portugal;
- Dean of NOVA IMS, NOVA University of Lisbon, 1070-312 Lisboa, Portugal
| | - João G. Crespo
- LAQV/Requimte, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (C.R.); (J.G.C.)
| |
Collapse
|
11
|
Anjos L, Estêvão J, Infante C, Mantecón L, Power DM. Extracting protein from microalgae (Tetraselmis chuii) for proteome analysis. MethodsX 2022; 9:101637. [PMID: 35242618 PMCID: PMC8886058 DOI: 10.1016/j.mex.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/10/2022] [Indexed: 11/26/2022] Open
|
12
|
An efficient protein isolation process for use in Limnospira maxima: A biorefinery approach. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Recovery of soluble proteins from Chlorella vulgaris by bead-milling and microfiltration: Impact of the concentration and the physicochemical conditions during the cell disruption on the whole process. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Geada P, Moreira C, Silva M, Nunes R, Madureira L, Rocha CMR, Pereira RN, Vicente AA, Teixeira JA. Algal proteins: Production strategies and nutritional and functional properties. BIORESOURCE TECHNOLOGY 2021; 332:125125. [PMID: 33865652 DOI: 10.1016/j.biortech.2021.125125] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal-based proteins are the most consumed worldwide given their well-balanced nutritional composition. However, the growing demand for animal proteins will not be sustainable due to their low conversion efficiency and high environmental footprint. Specific consumers' dietary restrictions and modern trends emphasize the importance of finding alternative sustainable non-animal sources to meet future food (and, in particular, protein) global needs. Algal biomass is considered a relevant alternative, presenting advantages over terrestrial biomass such as higher growth rate, low water consumption, no competition for arable land, carbon-neutral emissions, and production of numerous bioactive compounds. This review provides an overview of recent research advances on algae as source of proteins, including production strategies from relevant protein-producing species. Particular emphasis will be given to algae protein current applications and forthcoming challenges of their use. Nutritional and functional aspects of algae biomass or its protein-enriched fractions will be overviewed.
Collapse
Affiliation(s)
- Pedro Geada
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Catarina Moreira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Maria Silva
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rafaela Nunes
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Leandro Madureira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - António A Vicente
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - José A Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
15
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
16
|
Böcker L, Bertsch P, Wenner D, Teixeira S, Bergfreund J, Eder S, Fischer P, Mathys A. Effect of Arthrospira platensis microalgae protein purification on emulsification mechanism and efficiency. J Colloid Interface Sci 2021; 584:344-353. [PMID: 33070074 DOI: 10.1016/j.jcis.2020.09.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
In light of environmental concerns and changing consumer demands, efforts are increasing to replace frequently used animal-based emulsifiers. We demonstrate the interfacial network formation and emulsifying potential of Arthrospira platensis protein extracts and hypothesize a mechanistic change upon progressing purification. A microalgae suspension of A. platensis powder in phosphate buffer solution (pH 7, 0.1 M) was homogenized and insoluble components separated by centrifugation. Proteins were precipitated at the identified isoelectric point at pH 3.5 and diafiltrated. In interfacial shear rheology measurements, the build-up of an interfacial viscoelastic network was faster and final network strength increased with the degree of purification. It is suggested that isolated A. platensis proteins rapidly form an interconnected protein layer while coextracted surfactants impede protein adsorption for crude and soluble extracts. Emulsions with 20 vol % medium chain triglycerides (MCT) oil could be formed with all extracts of different degrees of purification. Normalized by protein concentration, smaller droplets could be stabilized with the isolated fractions. For potential applications in food, pharma and cosmetic product categories, the enhanced functionality has to be balanced against the loss in biomass while purifying microalgae proteins or other alternative single cell proteins.
Collapse
Affiliation(s)
- Lukas Böcker
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Pascal Bertsch
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Food Process Engineering Laboratory, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - David Wenner
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Stephanie Teixeira
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Jotam Bergfreund
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Food Process Engineering Laboratory, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Severin Eder
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Food Biochemistry Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Peter Fischer
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Food Process Engineering Laboratory, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Alexander Mathys
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| |
Collapse
|
17
|
Bertsch P, Böcker L, Mathys A, Fischer P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Qudus B Aroyehun A, Abdul Razak S, Palaniveloo K, Nagappan T, Suraiza Nabila Rahmah N, Wee Jin G, Chellappan DK, Chellian J, Kunnath AP. Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Properties, Antioxidative Capacity and Anti-Diabetic Potential. Foods 2020; 9:E1313. [PMID: 32961907 PMCID: PMC7555259 DOI: 10.3390/foods9091313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022] Open
Abstract
Caulerpa racemosa (Forsskal) J. Agardh is a green seaweed used as food and folk medicine since ancient times in the Indo-Pacific region, particularly in southeast Asia. In this study, the proximate nutrient composition, phytochemical, anti-oxidant and anti-diabetic properties of sea grape C. racemosa collected from culture fishponds in Johor, Malaysia were analysed. The contents (dry weight basis) of carbohydrate, crude protein, crude lipids, ash and caloric value obtained were 33.42 ± 1.34%, 20.27 ± 0.14%, 4.20 ± 0.32%, 28.25 ± 0.27% and 2544.67 ± 7.04 cal g-1, respectively. The amino acid score (AAs) and biological protein value (213.43 mg g-1) indicated that C. racemosa presented a better protein quality. The most abundant fatty acids were C16:0 (palmitic acid: 63.27%), followed by C18:1 (oleic acid: 5.80%), and C18:2 ῳ6 (linoleic acid: 5.33%). The analysis of the ash content indicated that essential minerals and trace elements, such as Ca, Fe, and Mn, were present in the seaweed. The total phenolic content (TPC) and total flavonoid content (TFC) observed in the ethyl acetate extract were 17.88 ± 0.78 mg GAE g-1 and 59.43 ± 2.45 mg QE g-1, respectively. The ethyl acetate extract of C. racemosa demonstrated notable anti-diabetic activity in diabetic induced rats. The low (100 mg kg-1) and high (200 mg kg-1) doses of cultivated C. racemosa extract exhibited a significant decrease (p < 0.05) in blood glucose levels while preventing weight loss, reducing plasma AST, ALT levels as a sign of hepatoprotective effect and recording albumin levels similar to positive control in diabetic induced rats. The results support the usefulness of cultivated C. racemosa as a potential functional food.
Collapse
Affiliation(s)
- Abdul Qudus B Aroyehun
- Nutrition and Dietetics Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Shariza Abdul Razak
- Nutrition and Dietetics Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Wilayah Persekutuan, Kuala Lumpur 50603, Malaysia
| | - Thilahgavani Nagappan
- Faculty of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Nur Suraiza Nabila Rahmah
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (N.S.N.R.); (G.W.J.)
| | - Gan Wee Jin
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (N.S.N.R.); (G.W.J.)
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (D.K.C.); (J.C.)
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (D.K.C.); (J.C.)
| | - Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|
19
|
Tessier R, Calvez J, Khodorova N, Gaudichon C. Protein and amino acid digestibility of 15N Spirulina in rats. Eur J Nutr 2020; 60:2263-2269. [PMID: 32870353 DOI: 10.1007/s00394-020-02368-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Spirulina is often used as dietary supplement for its protein content and quality. However, in vivo data on protein digestibility are lacking. This study aims to determine nitrogen and amino acid digestibility in rats. A secondary objective was to test the effect of sonication prior to ingestion to break cell walls. METHODS Wistar rats were fed a single test meal containing 15N Spirulina that was either sonicated (n = 11) or not (control, n = 13). Rats were euthanized 6 h after the meal ingestion. Spirulina nitrogen digestibility was measured by assessment of 15N recovery in digestive contents. Amino acid digestibility was measured by quantification of the caecal amino acid content and their 15N enrichment. RESULTS Real fecal nitrogen digestibility was 86.0 ± 0.7%, without any differences between groups. Mean 15N amino acid caecal digestibility was 82.8 ± 1.3%, and values ranged between 77.9 ± 1.9% for serine and 89.4 ± 1.0% for methionine. No effect of sonication was observed. The most limiting AA was histidine, with a chemical score of 0.98 and a PD-CAAS of 0.84. Lysine was also limiting in a lesser extent. CONCLUSION The nitrogen and amino acid digestibility of Spirulina is relatively low, and showed no effect of prior sonication. Its amino acid composition is relatively well balanced but not enough to compensate for the poor digestibility.
Collapse
Affiliation(s)
- Romain Tessier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Juliane Calvez
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Nadezda Khodorova
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France.
| |
Collapse
|
20
|
Amorim ML, Soares J, Vieira BB, Batista-Silva W, Martins MA. Extraction of proteins from the microalga Scenedesmus obliquus BR003 followed by lipid extraction of the wet deproteinized biomass using hexane and ethyl acetate. BIORESOURCE TECHNOLOGY 2020; 307:123190. [PMID: 32213445 DOI: 10.1016/j.biortech.2020.123190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A current problem of the lipid extraction from wet biomass is the formation of emulsions during the mixing of the microalgal biomass and organic solvents. It has been suggested that microalgal proteins play an important role in the formation and stability of such emulsions. Herein, the extraction of proteins of the freshwater microalga Scenedesmus obliquus BR003 was optimized for further extraction of lipids from the wet deproteinized biomass. The optimal (pH 12 at 60 °C for 3 h) and moderate (pH 10.5 at 50 °C for 2 h) conditions of protein extraction resulted in protein yields of 20.6% and 15.4%, respectively. Wet lipid extraction of deproteinized biomass resulted in a less stable emulsion that released twice the solvent than the control biomass. However, the faster separation of phases that occurred during the wet lipid extraction of the deproteinized biomass resulted in a lipid yield twice lower than the control biomass.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Bruno Bezerra Vieira
- Department of Chemical Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Willian Batista-Silva
- Department of Plant Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
21
|
Nham Tran TL, Miranda AF, Mouradov A, Adhikari B. Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake. Foods 2020; 9:foods9060779. [PMID: 32545411 PMCID: PMC7353575 DOI: 10.3390/foods9060779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023] Open
Abstract
The oil from thraustochytrids, unicellular heterotrophic marine protists, is increasingly used in the food and biotechnological industries as it is rich in omega-3 fatty acids, squalene and a broad spectrum of carotenoids. This study showed that the oilcake, a by-product of oil extraction, is equally valuable as it contained 38% protein/dry mass, and thraustochytrid protein isolate can be obtained with 92% protein content and recovered with 70% efficiency. The highest and lowest solubilities of proteins were observed at pH 12.0 and 4.0, respectively, the latter being its isoelectric point. Aspartic acid, glutamic acid, histidine, and arginine were the most abundant amino acids in proteins. The arginine-to-lysine ratio was higher than one, which is desired in heart-healthy foods. The denaturation temperature of proteins ranged from 167.8–174.5 °C, indicating its high thermal stability. Proteins also showed high emulsion activity (784.1 m2/g) and emulsion stability (209.9 min) indices. The extracted omega-3-rich oil melted in the range of 30–34.6 °C and remained stable up to 163–213 °C. This study shows that thraustochytrids are not only a valuable source of omega 3-, squalene- and carotenoid-containing oils, but are also rich in high-value protein with characteristics similar to those from oilseeds.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (B.A.)
- Faculty of Agriculture Bac Lieu University, 8 wards, Bac Lieu 960000, Vietnam
| | - Ana F. Miranda
- School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (B.A.)
| | - Aidyn Mouradov
- School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (B.A.)
- Correspondence: ; Tel.: +61-3-99257144
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (B.A.)
| |
Collapse
|
22
|
Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr 2019; 60:2961-2989. [DOI: 10.1080/10408398.2019.1672137] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lutz Grossmann
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Hinrichs
- Department of Soft Matter Science and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
23
|
Teuling E, Schrama JW, Gruppen H, Wierenga PA. Characterizing emulsion properties of microalgal and cyanobacterial protein isolates. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Lorenzo-Hernando A, Ruiz-Vegas J, Vega-Alegre M, Bolado-Rodríguez S. Recovery of proteins from biomass grown in pig manure microalgae-based treatment plants by alkaline hydrolysis and acidic precipitation. BIORESOURCE TECHNOLOGY 2019; 273:599-607. [PMID: 30481659 DOI: 10.1016/j.biortech.2018.11.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
The influence of three variables on key parameters of the protein extraction process (an alkaline hydrolysis followed by an acidic precipitation) for biomass from innovative photo-bioreactors for pig manure treatment was evaluated. Alkaline hydrolysis provided high solubilisation values (up to 66.5% of the biomass), augmenting with increasing values of the three studied variables (NaOH concentration, temperature and time). Nevertheless, moderate total (13.2%) and protein extraction yields (16.9%) were obtained, which was attributable to protein denaturation or to the low effectivity of the precipitation method. Extracts rich in proteins (53.5%-77.9%) with suitable amino acid profiles were obtained, but significant amounts of the initial lipids (up to 44.6%) were co-extracted probably due to fatty acids saponification. These results establish the first step for future studies in enhancing cell wall disruption and protein recovery by coupling alkaline hydrolysis with other mechanical pre-treatments, while considering alternative separation and purification methods.
Collapse
Affiliation(s)
- Ana Lorenzo-Hernando
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain
| | - Javier Ruiz-Vegas
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Marisol Vega-Alegre
- Department of Analytical Chemistry, Campus Miguel Delibes, 8. Paseo Belén 7, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain
| | - Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
25
|
Loveday SM. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu Rev Food Sci Technol 2019; 10:311-339. [PMID: 30649962 DOI: 10.1146/annurev-food-032818-121128] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein is an essential macronutrient and a key structural component of many foods. The nutritional and technological properties of food protein ingredients depend on their source, extraction and purification, modification during food manufacture, and interactions with other food components. In addition to covering these elements, this review seeks to highlight underappreciated aspects of protein environmental sustainability and explores the potential of cultured meat and insect-derived proteins.
Collapse
Affiliation(s)
- Simon M Loveday
- Food and Bio-Based Products Group, AgResearch Limited, Palmerston North 4442, New Zealand;
| |
Collapse
|
26
|
Differential hydrolysis of proteins of four microalgae by the digestive enzymes of gilthead sea bream and Senegalese sole. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
|
28
|
Yan X, Zhu L, Yu Y, Xu Q, Huang H, Jiang L. In-Situ Biocatalytic Production of Trehalose with Autoinduction Expression of Trehalose Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1444-1451. [PMID: 29338242 DOI: 10.1021/acs.jafc.7b06031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We developed an in-situ biocatalytic process that couples autoinduction expression of trehalose synthase (TreS) and whole-cell catalysis for trehalose production. With lactose as the autoinducer, the activity of recombinant TreS in recombinant Escherichia coli was optimized through a visualization method, which resulted in a maximum value of 12 033 ± 730 U/mL in pH-stat fed-batch fermentation mode. Meanwhile, the permeability of the autoinduced E. coli increased significantly, which makes it possible to be directly used as a whole-cell biocatalyst for trehalose production, whereby the byproduct glucose can also act as an extra carbon source. In this case, the final yield of trehalose was improved to 90.5 ± 5.7% and remained as high as 83.2 ± 5.0% at the 10th batch, which is the highest value achieved using recombinant TreS. Finally, an integrated strategy for trehalose production was established, and its advantages compared to the traditional mode have been summarized.
Collapse
Affiliation(s)
- Xincheng Yan
- College of Food Science and Light Industry, ‡College of Biotechnology and Pharmaceutical Engineering, §College of Chemical and Molecular Engineering, and ⊥College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009, China
| | - Liying Zhu
- College of Food Science and Light Industry, ‡College of Biotechnology and Pharmaceutical Engineering, §College of Chemical and Molecular Engineering, and ⊥College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009, China
| | - Yadong Yu
- College of Food Science and Light Industry, ‡College of Biotechnology and Pharmaceutical Engineering, §College of Chemical and Molecular Engineering, and ⊥College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009, China
| | - Qing Xu
- College of Food Science and Light Industry, ‡College of Biotechnology and Pharmaceutical Engineering, §College of Chemical and Molecular Engineering, and ⊥College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009, China
| | - He Huang
- College of Food Science and Light Industry, ‡College of Biotechnology and Pharmaceutical Engineering, §College of Chemical and Molecular Engineering, and ⊥College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009, China
| | - Ling Jiang
- College of Food Science and Light Industry, ‡College of Biotechnology and Pharmaceutical Engineering, §College of Chemical and Molecular Engineering, and ⊥College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009, China
| |
Collapse
|
29
|
Soares J, Kriiger Loterio R, Rosa RM, Santos MO, Nascimento AG, Santos NT, Williams TCR, Nunes-Nesi A, Arêdes Martins M. Scenedesmus sp. cultivation using commercial-grade ammonium sources. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1315-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|