1
|
Púčiková V, Witzel K, Rohn S, Hanschen FS. Season-dependent variation in the contents of glucosinolates and S-methyl-l-cysteine sulfoxide and their hydrolysis in Brassica oleracea. Food Chem 2025; 465:142100. [PMID: 39602945 DOI: 10.1016/j.foodchem.2024.142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Brassica vegetables contain glucosinolates and S-methyl-l-cysteine sulfoxide, which can be enzymatically hydrolyzed to form bioactive compounds. Glucosinolate hydrolysis can result in formation of health-promoting isothiocyanates, however, often less desirable nitriles and epithionitriles are formed due to presence of specifier proteins. Also, S-methyl-l-cysteine sulfoxide yields beneficial volatile organosulfur compounds (VOSC), such as S-methyl methanethiosulfinate. To optimize the nutritional value of Brassica oleracea vegetables, the outcome of these hydrolysis pathways was monitored over the harvest seasons of different cultivars in three consecutive years. Strong seasonal shifts in glucosinolate hydrolysis were observed only in red cabbages. They formed up to 40-fold more isothiocyanates in summer than in autumn, when nitriles and epithionitriles increased due to the induction of epithiospecifier proteins. Further, higher VOSC levels were found in autumn red cabbage. By elucidating the impact of abiotic growth factors on the regulation of the hydrolyses, the health value of Brassica vegetables can be improved.
Collapse
Affiliation(s)
- Vanda Púčiková
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.; Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany..
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Biotic Interactions, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany..
| | - Sascha Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany..
| | - Franziska Sabine Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany..
| |
Collapse
|
2
|
Wessler CF, Weiland M, Einfeldt S, Wiesner-Reinhold M, Schreiner M, Neugart S. The effect of supplemental LED lighting in the range of UV, blue, and red wavelengths at different ratios on the accumulation of phenolic compounds in pak choi and swiss chard. Food Res Int 2025; 200:115438. [PMID: 39779088 DOI: 10.1016/j.foodres.2024.115438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Phenolic compounds are known for their health-promoting effects on humans. Pak choi (Brassica rapa ssp. chinensis) and Swiss chard (Beta vulgaris subsp. vulgaris) are used here as model plants, as they are eaten raw as baby leaf lettuce and differ in their phenolic compound profile while showing similar morphology. In a greenhouse an artificial light source with UV-B (215 mW m-2), blue (104 μmol m-2 s-1) and red (245 μmol m-2 s-1) LEDs was implemented to increase phenolic compounds during the last days before harvest. Pak choi shows an increase or trend towards an increase in the monoacylated triglycosides of kaempferol and quercetin after 4 days of irradiation for 4 h each. For example kaempferol-3-caffeoyl-sophoroside-7-glucoside was increased at low PAR values in the third run and red-dominated light treatment by up to 120 %. In addition, it was observed that the red variety 'Amur' has higher concentrations of quercetin glycosides which were increased often. In swiss chard, on the other hand, there was only a sporadic increase in vitexin glycosides. Despite very different concentrations in some samples, 2″-glucosyl-vitexin and 2″-glucosyl-6″-malonyl-vitexin showed significant increases of up to 350 % in the two chard varieties Lukullus and Rhubarb chard. The results suggest that the exposure time or intensity of UV-B radiation needs to be optimized for each species and has not yet consistently led to an increase but trends in phenolic compounds and in antioxidant activity in this study.
Collapse
Affiliation(s)
- Caspar-Friedrich Wessler
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; Leibniz Institute of Vegetable and Ornamental Crops e.V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Martin Weiland
- Leibniz Institute of Vegetable and Ornamental Crops e.V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Sven Einfeldt
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany.
| | - Melanie Wiesner-Reinhold
- Leibniz Institute of Vegetable and Ornamental Crops e.V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops e.V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany.
| |
Collapse
|
3
|
Gong F, Meng J, Xu H, Zhou X. The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5. Int J Mol Sci 2024; 25:13383. [PMID: 39769148 PMCID: PMC11677096 DOI: 10.3390/ijms252413383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids. The v-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF) may participate in a plant's response to UV-B damage through its regulation of flavonoid biosynthesis. In this study, we discovered that the photosynthetic activity of Rhododendron chrysanthum Pall. (R. chrysanthum) decreased when assessing parameters of chlorophyll (PSII) fluorescence parameters under UV-B stress. Concurrently, antioxidant system enzyme expression increased under UV-B exposure. A multi-omics data analysis revealed that acetylation at the K68 site of the RcTRP5 (telomeric repeat binding protein of Rhododendron chrysanthum Pall.) transcription factor was upregulated. This acetylation modification of RcTRP5 activates the antioxidant enzyme system, leading to elevated expression levels of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Upregulation is also observed at the K95 site of the chalcone isomerase (CHI) enzyme and the K178 site of the anthocyanidin synthase (ANS) enzyme. We hypothesize that RcTRP5 influences acetylation modifications of CHI and ANS in flavonoid biosynthesis, thereby indirectly regulating flavonoid production. This study demonstrates that R. chrysanthum can be protected from UV-B stress by accumulating flavonoids. This could serve as a useful strategy for enhancing the plant's flavonoid content and provide a valuable reference for research on the metabolic regulation mechanisms of other secondary substances.
Collapse
Affiliation(s)
| | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (F.G.)
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (F.G.)
| |
Collapse
|
4
|
Arora R. Glucosinolate Hydrolytic Products-A Multi-Arm Warrior. J AOAC Int 2024; 107:876-883. [PMID: 38964347 DOI: 10.1093/jaoacint/qsae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Glucosinolates (GSLs) are the most controversial yet ignored class of phytochemicals. These are the middleman phytochemicals that have low bioactivity. But once there is any injury in the plant-manmade, insect caused, or natural-magic happens. The compound is broken down into smaller phytochemicals referred to as glucosinolate hydrolytic products (GHPs; nitriles, isothiocyanates [ITCs], and thiocyanates). These hydrolytic products are like a showstopper of the fashion industry. These compounds have some of the highest bioactivity in nature. They have been associated with a varied range of bioactivities (anticancer, antioxidant, insecticidal, weedicide, etc.) by researchers across the globe. OBJECTIVE The objective of the current article is to provide a critical review to highlight some of the important bioactivities of these ignored compounds and for promoting researchers to at least give these compounds a chance-to glow in the dark. METHODS This review has been written from analysis of accessible literature, mostly from the last 5 years (2018-2023), with some critically essential exceptions. RESULTS The review highlighted a brief background of GSLs and its hydrolysis. Efforts were made to include most of the biological properties of the compound. Special emphasis has been given to the anticancer activities of the compound with details of the involved mechanism. CONCLUSIONS Considering the wide array of bioactivities of GHPs, it is essential to consider it as a prospective medicinal compound. More GHPs-in a similar manner as sulforaphane-can be proceeded to phase trials. HIGHLIGHTS The mechanistic pathway for production of GHPs and related biological activities have been discussed in detail. The bioactivities have been further explained using the involved mechanism.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
5
|
Geng D, Sun Y, Liu S, Chen W, Gao F, Bai Y, Zhang S. Study on Synthesis and Regulation of PPVI and PPVII in Paris polyphylla with UV. Metabolites 2024; 14:427. [PMID: 39195523 DOI: 10.3390/metabo14080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Paris polyphylla Smith var. Chinensis (Franch.) Hara is a medicinal plant that belongs to the Liliaceae family. Its main components are parissaponins, which have excellent medicinal effects such as anti-inflammatory, anti-tumor, etc. Improving the quality of parissaponins through artificial directional regulation has emerged as a practice to meet medical demand and is a new research hotspot. In this paper, P. polyphylla plants were treated with UVA, UVB, and UVC, and the contents of PolyPhyllin VI (PPVI) and PolyPhyllin VII (PPVII), saponin synthase (squalene synthase, SS; cycloartenol synthase, CAS; cytochrome P450, CYP450; and glycosyl transferases, GT) activity, MDA, and the photosynthetic pigment indexes were measured and analyzed. The results showed that PPVII content increased by 32.43% with UVC treatment after 4 h (3.43 mg/g), but the PPVI and PPVII contents in the other groups decreased compared with CK (control group) and they did not return to the original level after 4 h. SS, CAS, CYP450, and GT synthases were activated in varying degrees via UV treatment and increased, respectively, by 22.93%, 10.83%, 20.15%, and 25.98%. Among them, GT, as the last of the synthetases, had a shorter response time to UVB (30 min) and UVC (15 min); the difference was sensible compared with CK. Moreover, UV had a stressing effect and promoted the rapid accumulation of MDA content (increased 17.66%, 34.53%, and 9.65%) and carotenoid (increased 7.58, 5.60, and 7.76 times) within 4 h compared to CK. UVB and UVC radiation visibly improved chlorophyll a content (42.56% and 35.45%), but UVA did not, and the change in chlorophyll b content showed no overt statistical difference. In addition, PPVI and PPVII were negatively correlated with SS, CAS, carotenoids, and MDA (p < 0.05) and positively correlated with CYP450, GT, and chlorophyll a (p < 0.05). This study provides a theoretical basis for using UV light to regulate secondary metabolism in P. polyphylla, which is of great value for production management.
Collapse
Affiliation(s)
- Dongjie Geng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yiqun Sun
- Chun'an County Forestry Bureau, Chun'an 311330, China
| | - Shouzan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wen Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yan Bai
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shaobo Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311300, China
| |
Collapse
|
6
|
Dong S, Fang S, Li J, Zheng W, Wang Z, Hu J, Zhao X, Liu Z, Feng H, Zhang Y. Comparative metabolic profiling of different pakchoi cultivars reveals nutritional diversity via widely targeted metabolomics. Food Chem X 2024; 22:101379. [PMID: 38645937 PMCID: PMC11031806 DOI: 10.1016/j.fochx.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Pakchoi (Brassica rapa ssp. chinensis) is cultivated for its high nutritional value; however, the nutritional diversity of different pakchoi cultivars is rarely investigated. Herein, we performed widely targeted metabolic profiling analyses of five popular pakchois. A total of 670 metabolites were detected, which could be divided into 13 categories. The accumulation patterns of main nutritional metabolites among the five pakchois were significantly different and complementary. Moreover, the pakchoi cultivar 'QYC' showed quite different metabolomic profiles compared with other pakchois. The Venn diagram showed that the 75 differential metabolites were shared among the comparison groups ('QYC' vs. 'MET'/ 'NBC'/ 'PPQ'/ 'XQC'), of which 52 metabolites were upregulated in 'QYC'. The phenolic acids had the largest variations between 'QYC' and the other pakchoi cultivars. These findings expand metabolomic information on different pakchoi cultivars and further provide new insights into the selection and breeding of excellent pakchoi cultivars.
Collapse
Affiliation(s)
| | | | - Jinyan Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, SY, China
| | - Wenfeng Zheng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, SY, China
| | - Zhe Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, SY, China
| | - Junlong Hu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, SY, China
| | - Xiuqi Zhao
- Department of Horticulture, Shenyang Agricultural University, Shenyang, SY, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, SY, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, SY, China
| | - Yun Zhang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, SY, China
| |
Collapse
|
7
|
Muthusamy M, Lee SI. Abiotic stress-induced secondary metabolite production in Brassica: opportunities and challenges. FRONTIERS IN PLANT SCIENCE 2024; 14:1323085. [PMID: 38239210 PMCID: PMC10794482 DOI: 10.3389/fpls.2023.1323085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024]
Abstract
Over the decades, extensive research efforts have been undertaken to understand how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Understanding the genetic basis of stress-response metabolite biosynthesis is crucial for sustainable agriculture production amidst frequent occurrence of climatic anomalies. Although it is known that environmental factors influence phytochemical profiles and their content, studies of plant compounds in relation to stress mitigation are only emerging and largely hindered by phytochemical diversities and technical shortcomings in measurement techniques. Despite these challenges, considerable success has been achieved in profiling of secondary metabolites such as glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids. In this study, we aimed to understand the roles of glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids in relation to their abiotic stress response, with a focus on the developing of stress-resilient crops. The focal genus is the Brassica since it (i) possesses variety of specialized phytochemicals that are important for its plant defense against major abiotic stresses, and (ii) hosts many economically important crops that are sensitive to adverse growth conditions. We summarize that augmented levels of specialized metabolites in Brassica primarily function as stress mitigators against oxidative stress, which is a secondary stressor in many abiotic stresses. Furthermore, it is clear that functional characterization of stress-response metabolites or their genetic pathways describing biosynthesis is essential for developing stress-resilient Brassica crops.
Collapse
Affiliation(s)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Fitzner M, Schreiner M, Baldermann S. Between eustress and distress: UVB induced changes in carotenoid accumulation in halophytic Salicornia europaea. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154124. [PMID: 37944241 DOI: 10.1016/j.jplph.2023.154124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Halophytes are potential future crops with a valuable nutritional profile. Produced in indoor farming, they are considered to contribute to sustainable and resilient food systems. Indoor farms operate using artificial light. In this context narrowband and low dose UVB radiation can be used to increase plant secondary metabolites, such as carotenoids, and provide an improved nutritional profile for a human diet. UVB radiation can cause eustress or distress in the plant depending on the lighting situation. The aim of this study was to identify the doses of UVB that lead to either eustress or distress and to analyze these responses in Salicornia europaea. Therefore, S. europaea plants were exposed to different UVB radiation levels, low, medium and high, and analyzed for reactive oxygen species (ROS), plant hormones, amino acids, and photosynthetic pigments. High UVB treatment was found to affect phenotype and growth, and the metabolite profile was affected in a UVB dose-dependent manner. Specifically, medium UVB radiation resulted in an increase in carotenoids, whereas high UVB resulted in a decrease. We also observed an altered oxidative stress status and increased SA and decreased ABA contents in response to UVB treatment. This was supported by the results of menadione treatment that induces oxidative stress in plants, which also indicated an altered oxidative stress status in combination with altered carotenoid content. Thus, we show that a moderate dose of UVB can increase the carotenoid content of S. europaea. Furthermore, the UVB stress-dependent response led to a better understanding of carotenoid accumulation upon UVB exposure, which can be used to improve lighting systems and in turn the nutritional profile of future crops in indoor farming.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Institute of Nutritional Science, Food Chemistry, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Faculty of Life Science: Food, Nutrition and Health, Food Metabolome, University of Bayreuth, Fritz-Hornschuch-Straße 13, 95326, Kulmbach, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| |
Collapse
|
9
|
Púčiková V, Rohn S, Hanschen FS. Glucosinolate Accumulation and Hydrolysis in Leafy Brassica Vegetables Are Influenced by Leaf Age. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11466-11475. [PMID: 37462686 DOI: 10.1021/acs.jafc.3c01997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The health-beneficial effects of Brassica vegetables are mainly attributed to their high contents of glucosinolates and the products of their hydrolysis, especially isothiocyanates. Distribution of glucosinolates across plant organs can strongly vary. Here, we investigated the effect of leaf age on glucosinolate accumulation and hydrolysis in two leafy Brassica vegetables, pak choi and giant red mustard. We also evaluated the activity of the hydrolyzing enzyme myrosinase across the leaves. Finally, we assessed whether glucosinolates are transported from older leaves to younger leaves. Young leaves of both species contained more than 3-fold more glucosinolates than older ones. Accordingly, more isothiocyanates were released in the young leaves. Myrosinases fully hydrolyzed all of the amounts of glucosinolates regardless of the leaf age. Moreover, older leaves were observed to supply younger leaves with glucosinolates. Thus, this study suggests that consumers can improve the nutritional value of food by incorporating young leaves of leafy Brassicas in their diet.
Collapse
Affiliation(s)
- Vanda Púčiková
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| |
Collapse
|
10
|
Weiland M, Weßler CF, Filler T, Glaab J, Lobo Ploch N, Winterwerber U, Wiesner-Reinhold M, Schreiner M, Neugart S. A comparison of consistent UV treatment versus inconsistent UV treatment in horticultural production of lettuce. Photochem Photobiol Sci 2023; 22:1611-1624. [PMID: 36988788 DOI: 10.1007/s43630-023-00402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
UV radiation is an underrated radiation currently missing in many horticultural production systems of vegetables in protected cultivation. It can be added e.g., in LED light sources. Using lettuce as a model plant, this study determined whether the use of UVB LEDs is suitable (1) for use in consistent systems (indoor farming) or (2) inconsistent systems (greenhouse). Blue and red LEDs were selected as additional artificial lighting to UVB LEDs. Both approaches led to a reproducible increase of desired flavonol glycosides, such as quercetin-3-O-(6''-O-malonyl)-glucoside or quercetin-3-O-glucuronide and the anthocyanin cyanidin-3-O-(6''-O-malonyl)-glucoside in lettuce. The impact of the consistent UVB treatment is higher with up to tenfold changes than that of the inconsistent UVB treatment in the greenhouse. Varying natural light and temperature conditions in greenhouses might affect the efficiency of the artificial UVB treatment. Here, UVB LEDs have been tested and can be recommended for further development of lighting systems in indoor farming and greenhouse approaches.
Collapse
Affiliation(s)
- Martin Weiland
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
- Leibniz Institute of Vegetable and Ornamental Crops e.v., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Caspar Friedrich Weßler
- Leibniz Institute of Vegetable and Ornamental Crops e.v., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas Filler
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Johannes Glaab
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Neysha Lobo Ploch
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Ulrike Winterwerber
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Melanie Wiesner-Reinhold
- Leibniz Institute of Vegetable and Ornamental Crops e.v., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops e.v., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075, Goettingen, Germany.
| |
Collapse
|
11
|
Fitzner M, Schreiner M, Baldermann S. The interaction of salinity and light regime modulates photosynthetic pigment content in edible halophytes in greenhouse and indoor farming. FRONTIERS IN PLANT SCIENCE 2023; 14:1105162. [PMID: 37082347 PMCID: PMC10110887 DOI: 10.3389/fpls.2023.1105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Given its limited land and water use and the changing climate conditions, indoor farming of halophytes has a high potential to contribute significantly to global agriculture in the future. Notably, indoor farming and classical greenhouse cultivation differ in their light regime between artificial and solar lighting, which can influence plant metabolism, but how this affects the cultivation of halophytes has not yet been investigated. To address this question, we studied the yield and content of abscisic acid, carotenoids, and chlorophylls as well as chloride of three halophyte species (Cochlearia officinalis, Atriplex hortensis, and Salicornia europaea) differing in their salt tolerance mechanisms and following four salt treatments (no salt to 600 mM of NaCl) in two light regimes (greenhouse/indoor farming). In particular, salt treatment had a strong influence on chloride accumulation which is only slightly modified by the light regime. Moreover, fresh and dry mass was influenced by the light regime and salinity. Pigments exhibited different responses to salt treatment and light regime, reflecting their differing functions in the photosynthetic apparatus. We conclude that the interaction of light regime and salt treatment modulates the content of photosynthetic pigments. Our study highlights the potential applications of the cultivation of halophytes for indoor farming and underlines that it is a promising production system, which provides food alternatives for future diets.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
- Food Metabolome, Faculty of Life Science: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| |
Collapse
|
12
|
Zheng S, Szymański J, Shahaf N, Malitsky S, Meir S, Wang X, Aharoni A, Rogachev I. Metabolic diversity in a collection of wild and cultivated Brassica rapa subspecies. Front Mol Biosci 2022; 9:953189. [DOI: 10.3389/fmolb.2022.953189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Brassica rapa (B. rapa) and its subspecies contain many bioactive metabolites that are important for plant defense and human health. This study aimed at investigating the metabolite composition and variation among a large collection of B. rapa genotypes, including subspecies and their accessions. Metabolite profiling of leaves of 102 B. rapa genotypes was performed using ultra-performance liquid chromatography coupled with a photodiode array detector and quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF-MS/MS). In total, 346 metabolites belonging to different chemical classes were tentatively identified; 36 out of them were assigned with high confidence using authentic standards and 184 were those reported in B. rapa leaves for the first time. The accumulation and variation of metabolites among genotypes were characterized and compared to their phylogenetic distance. We found 47 metabolites, mostly representing anthocyanins, flavonols, and hydroxycinnamic acid derivatives that displayed a significant correlation to the phylogenetic relatedness and determined four major phylometabolic branches; 1) Chinese cabbage, 2) yellow sarson and rapid cycling, 3) the mizuna-komatsuna-turnip-caitai; and 4) a mixed cluster. These metabolites denote the selective pressure on the metabolic network during B. rapa breeding. We present a unique study that combines metabolite profiling data with phylogenetic analysis in a large collection of B. rapa subspecies. We showed how selective breeding utilizes the biochemical potential of wild B. rapa leading to highly diverse metabolic phenotypes. Our work provides the basis for further studies on B. rapa metabolism and nutritional traits improvement.
Collapse
|
13
|
Hu Y, Li X, He X, He R, Li Y, Liu X, Liu H. Effects of Pre-Harvest Supplemental UV-A Light on Growth and Quality of Chinese Kale. Molecules 2022; 27:molecules27227763. [PMID: 36431864 PMCID: PMC9695120 DOI: 10.3390/molecules27227763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of supplemental UV-A (385 nm) period and UV-A intensity for 5 days before harvest (DBH) on growth, antioxidants, antioxidant capacity, and glucosinolates contents in Chinese kale (Brassica oleracea var. alboglabra Bailey) were studied in plant factory. In the experiment of the UV-A period, three treatments were designed with 10 W·m-2 UV-A supplement, T1(5 DBH), T2 (10 DBH), and no supplemental UV-A as control. In the experiment of UV-A intensity, four treatments were designed with 5 DBH, control (0 W·m-2), 5 w (5 W·m-2), 10 w (10 W·m-2), and 15 w (15 W·m-2). The growth light is as follows: 250 μmol·m-2·s-1; red light: white light = 2:3; photoperiod: 12/12. The growth and quality of Chinese kale were improved by supplemental UV-A LED. The plant height, stem diameter, and biomass of Chinese kale were the highest in the 5 W·m-2 treatment for 5 DBH. The contents of chlorophyll a, chlorophyll b, and total chlorophyll were only highly increased by 5 W·m-2 UV-A for 5 DBH, while there was no significant difference in the content of carotenoid among all treatments. The contents of soluble sugar and free amino acid were higher only under 10 DBH treatments than in control. The contents of total phenolic and total antioxidant capacity were the highest in 5 W·m-2 treatment for 5 DBH. There was a significant positive correlation between total phenolic content and DPPH and FRAP value. After 5 DBH treatments, the percentages and contents of total aliphatic glucosinolates, sinigrin (SIN), gluconapin (GNA), and glucobrassicanapin (GBN) were highly increased, while the percentages and contents of glucobrassicin (GBS), 4-methoxyglucobrassicin (4-MGBS), and Progoitrin (PRO) were significantly decreased, especially under 10 W·m-2 treatment. Our results show that UV-A LED supplements could improve the growth and quality of Chinese kale, and 5 W·m-2 UV-A LED with 5 DBH might be feasible for Chinese kale growth, and 10 W·m-2 UV-A LED with 5 DBH was better for aliphatic glucosinolates accumulation in Chinese kale.
Collapse
|
14
|
Sun Q, Liu M, Cao K, Xu H, Zhou X. UV-B Irradiation to Amino Acids and Carbohydrate Metabolism in Rhododendron chrysanthum Leaves by Coupling Deep Transcriptome and Metabolome Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2730. [PMID: 36297754 PMCID: PMC9607639 DOI: 10.3390/plants11202730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Under natural environmental conditions, excess UV-B stress can cause serious injuries to plants. However, domestication conditions may allow the plant to better cope with the upcoming UV-B stress. The leaves of Rhododendron chrysanthum are an evergreen plant that grows at low temperatures and high altitudes in the Changbai Mountains, where the harsh ecological environment gives it different UV resistance properties. Metabolites in R. chrysanthum have a significant impact on UV-B resistance, but there are few studies on the dynamics of their material composition and gene expression levels. We used a combination of gas chromatography time-of-flight mass spectrometry and transcriptomics to analyze domesticated and undomesticated R. chrysanthum under UV-B radiation. A total of 404 metabolites were identified, of which amino acids were significantly higher and carbohydrates were significantly lower in domesticated R. chrysanthum. Transcript profiles throughout R. chrysanthum under UV-B were constructed and analyzed, with an emphasis on sugar and amino acid metabolism. The transcript levels of genes associated with sucrose and starch metabolism during UV-B resistance in R. chrysanthum showed a consistent trend with metabolite content, while amino acid metabolism was the opposite. We used metabolomics and transcriptomics approaches to obtain dynamic changes in metabolite and gene levels during UV-B resistance in R. chrysanthum. These results will provide some insights to elucidate the molecular mechanisms of UV tolerance in plants.
Collapse
|
15
|
Badmus UO, Ač A, Klem K, Urban O, Jansen MAK. A meta-analysis of the effects of UV radiation on the plant carotenoid pool. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:36-45. [PMID: 35561499 DOI: 10.1016/j.plaphy.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Induction of metabolite biosynthesis and accumulation is one of the most prominent UV-mediated changes in plants, whether during eustress (positive response) or distress (negative response). However, despite evidence suggesting multiple linkages between UV exposure and carotenoid induction in plants, there is no consensus in the literature concerning the direction and/or amplitude of these effects. Here, we compiled publications that characterised the relative impact of UV on the content of individual carotenoids and subjected the created database to a meta-analysis in order to acquire new, fundamental insights in responses of the carotenoid pool to UV exposure. Overall, it was found that violaxanthin was the only carotenoid compound that was significantly and consistently induced as a result of UV exposure. Violaxanthin accumulation was accompanied by a UV dose dependent decrease in antheraxanthin and zeaxanthin. The resulting shift in the state of the xanthophyll cycle would normally occur when plants are exposed to low light and this is associated with increased susceptibility to photoinhibition. Although UV induced violaxanthin accumulation is positively linked to the daily UV dose, the current dataset is too small to establish a link with plant stress, or even experimental growth conditions. In summary, the effects of UV radiation on carotenoids are multifaceted and compound-specific, and there is a need for a systematic analysis of dose-response and wavelength dependencies, as well as of interactive effects with further environmental parameters.
Collapse
Affiliation(s)
- Uthman O Badmus
- School of Biological, Earth and Environmental Sciences & Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - Alexander Ač
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Karel Klem
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences & Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| |
Collapse
|
16
|
Yoon HI, Kim J, Oh MM, Son JE. Prediction of Phenolic Contents Based on Ultraviolet-B Radiation in Three-Dimensional Structure of Kale Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:918170. [PMID: 35755700 PMCID: PMC9228028 DOI: 10.3389/fpls.2022.918170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) radiation has been known as an elicitor to enhance bioactive compound contents in plants. However, unpredictable yield is an obstacle to the application of UV-B radiation to controlled environments such as plant factories. A typical three-dimensional (3D) plant structure causes uneven UV-B exposure with leaf position and age-dependent sensitivity to UV-B radiation. The purpose of this study was to develop a model for predicting phenolic accumulation in kale (Brassica oleracea L. var. acephala) according to UV-B radiation interception and growth stage. The plants grown under a plant factory module were exposed to UV-B radiation from UV-B light-emitting diodes with a peak at 310 nm for 6 or 12 h at 23, 30, and 38 days after transplanting. The spatial distribution of UV-B radiation interception in the plants was quantified using ray-tracing simulation with a 3D-scanned plant model. Total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), UV-B absorbing pigment content (UAPC), and the antioxidant capacity were significantly higher in UV-B-exposed leaves. Daily UV-B energy absorbed by leaves and developmental age was used to develop stepwise multiple linear regression models for the TPC, TFC, TAC, and UAPC at each growth stage. The newly developed models accurately predicted the TPC, TFC, TAC, and UAPC in individual leaves with R 2 > 0.78 and normalized root mean squared errors of approximately 30% in test data, across the three growth stages. The UV-B energy yields for TPC, TFC, and TAC were the highest in the intermediate leaves, while those for UAPC were the highest in young leaves at the last stage. To the best of our knowledge, this study proposed the first statistical models for estimating UV-B-induced phenolic contents in plant structure. These results provided the fundamental data and models required for the optimization process. This approach can save the experimental time and cost required to optimize the control of UV-B radiation.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Hao J, Lou P, Han Y, Zheng L, Lu J, Chen Z, Ni J, Yang Y, Xu M. Ultraviolet-B Irradiation Increases Antioxidant Capacity of Pakchoi (Brassica rapa L.) by Inducing Flavonoid Biosynthesis. PLANTS 2022; 11:plants11060766. [PMID: 35336648 PMCID: PMC8949486 DOI: 10.3390/plants11060766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
As an important abiotic stress factor, ultraviolet-B (UV-B) light can stimulate the accumulation of antioxidants in plants. In this study, the possibility of enhancing antioxidant capacity in pakchoi (Brassica rapa L.) by UV-B supplementation was assessed. Irradiation with 4 µmol·m−2·s−1 UV-B for 4 h or 2 µmol·m−2·s−1 UV-B for 24 h significantly increased the 1,1–diphenyl–2–picrylhydrazyl (DPPH) scavenging activity and total reductive capacity, as a result of inducing a greater accumulation of total polyphenols and flavonoids without affecting the plant biomass. A high performance liquid chromatography (HPLC) analysis showed that the concentrations of many flavonoids significantly increased in response to UV-B treatment. The activities of three enzymes involved in the early steps of flavonoid biosynthesis, namely phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate: coenzyme A (CoA) ligase (4CL), were significantly increased after the corresponding UV-B treatment. Compared with the control, the expression levels of several flavonoid biosynthesis genes (namely BrPAL, BrC4H, Br4CL, BrCHS, BrF3H, BrF3′H, BrFLS, BrDFR, BrANS, and BrLDOX) were also significantly up–regulated in the UV-B treatment group. The results suggest that appropriate preharvest UV-B supplementation could improve the nutritional quality of greenhouse-grown pakchoi by promoting the accumulation of antioxidants.
Collapse
Affiliation(s)
- Juan Hao
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Panpan Lou
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Yidie Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Lijun Zheng
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Zhehao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Jun Ni
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Yanjun Yang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Maojun Xu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: ; Tel.: +86-0571-2886-5335
| |
Collapse
|
18
|
Renner IE, Gardner G, Fritz VA. Manipulation of Continuous and End-of-Day Red/Far-Red Light Ratios Affects Glucobrassicin and Gluconasturtiin Accumulation in Cabbage ( Brassica oleracea) and Watercress ( Nasturtium officinale), Respectively. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14126-14142. [PMID: 34787406 DOI: 10.1021/acs.jafc.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cabbage (Brassica oleracea) and watercress (Nasturtium officinale) produce glucobrassicin (GBS) and gluconasturtiin (GNST), precursors of chemopreventive compounds. Their accumulation is affected by environmental signals. We studied the impact of the red to far-red light (R/FR) ratio on GBS concentration in red ″Ruby Ball″ and green ″Tiara″ cabbage. Foliar shading, via weed surrogates that competed with cabbage plants for specific durations, induced R/FR variation among treatments. ″Ruby Ball″ GBS concentrations were the highest when R/FR within the canopy was the lowest. ″Tiara″ was unaffected by competition. The same trend was observed in a controlled environment using R and FR LEDs without weeds present. ″Ruby Ball″ subjected to an R/FR = 0.3 treatment had 2.5- and 1.4-fold greater GBS concentration compared to R/FR = 1.1 and 5.0 treatments combined. Watercress given end-of-day (EOD) R and/or FR pulses after the main photoperiod had the lowest GNST concentrations after an EOD FR pulse but the highest concentrations after an R followed by FR pulse.
Collapse
Affiliation(s)
- Ilse E Renner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Gary Gardner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Vincent A Fritz
- Southern Research and Outreach Center, University of Minnesota-Twin Cities, 35838 120th Street, Waseca, Minnesota 56093, United States
| |
Collapse
|
19
|
Aloo SO, Ofosu FK, Oh DH. Elicitation: a new perspective into plant chemo-diversity and functional property. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34802360 DOI: 10.1080/10408398.2021.2004388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sprouts are consumed as fresh foods or their flours can be added in processed products as determinants of sensory perception, product differentiation, and shelf life. Elicitation technique can be used to accumulate phytochemicals in plant sprouts thereby improving their functionality. This review summarized the recent state of knowledge on the use of elicitors to produce sprouts with improved functional properties. Elicitation using abiotic or biotic elicitors has been applied to increase the yield of sprout secondary metabolites (glucosinolates, aminobutyric acid, phenolic compounds), biological activities (antioxidant, anti-obesity, antidiabetic properties), and growth. Elicitors trigger the synthesis of plant metabolites by changing enzyme activities or gene expression related to the plant defence system. They also promote sprout growth by enhancing the levels of plant growth hormones. Elicitation is an effective method to produce sprouts with improved health benefits, and enhance their growth. Future studies are needed to identify early plant signaling pathways to fully understand elicitors' mechanisms on plant metabolites. Moreover, further investigation can be impetus in revealing the lower and upper limits of elicitor that can be applied in sprouts without compromising health and environmental safety.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
20
|
Wiesner-Reinhold M, Dutra Gomes JV, Herz C, Tran HTT, Baldermann S, Neugart S, Filler T, Glaab J, Einfeldt S, Schreiner M, Lamy E. Subsequent treatment of leafy vegetables with low doses of UVB-radiation does not provoke cytotoxicity, genotoxicity, or oxidative stress in a human liver cell model. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Genzel F, Dicke MD, Junker-Frohn LV, Neuwohner A, Thiele B, Putz A, Usadel B, Wormit A, Wiese-Klinkenberg A. Impact of Moderate Cold and Salt Stress on the Accumulation of Antioxidant Flavonoids in the Leaves of Two Capsicum Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6431-6443. [PMID: 34081868 DOI: 10.1021/acs.jafc.1c00908] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The horticultural production of bell peppers generates large quantities of residual biomass. Abiotic stress stimulates the production of protective flavonoids, so the deliberate application of stress to the plants after fruit harvest could provide a strategy to valorize horticultural residuals by increasing flavonoid concentrations, facilitating their industrial extraction. Here we exposed two Capsicum cultivars, a chilli and a bell pepper, to cold and salt stress and combinations thereof to determine their valorization potential. Noninvasive image-based phenotyping and multiparametric fluorescence measurements indicated that all stress treatments inhibited plant growth and reduced the leaf chlorophyll fluorescence index, with the chilli cultivar showing greater sensitivity. The fluorescence-based FLAV index allowed the noninvasive assessment of foliar luteolin glycosides. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis showed that moderate cold increased the levels of two foliar antioxidant luteolin glycosides in both cultivars, with bell pepper containing the highest amounts (induced to maximum 5.5 mg g-1 DW cynaroside and 37.0 mg g-1 DW graveobioside A) after combined stress treatment. These data confirm the potential of abiotic stress for the valorization of residual leaf biomass to enhance the industrial extraction of antioxidant and bioactive flavonoids.
Collapse
Affiliation(s)
- Franziska Genzel
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Max Daniel Dicke
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Laura Verena Junker-Frohn
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andrea Neuwohner
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Björn Thiele
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexander Putz
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Björn Usadel
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Bio- and Geosciences-Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexandra Wormit
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Biology I-Botany, RWTH Aachen University, 52074 Aachen, Germany
| | - Anika Wiese-Klinkenberg
- Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Bio- and Geosciences-Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
22
|
Lu Y, Dong W, Yang T, Luo Y, Chen P. Preharvest UVB Application Increases Glucosinolate Contents and Enhances Postharvest Quality of Broccoli Microgreens. Molecules 2021; 26:molecules26113247. [PMID: 34071404 PMCID: PMC8197856 DOI: 10.3390/molecules26113247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Broccoli microgreens have shown potential health benefits due to their high glucosinolate (GL) levels. Previously, we observed that postharvest UVB treatment did not have much effect on increasing GLs in broccoli microgreens. In this study, we investigated the influence of preharvest UVB irradiation on GL levels in broccoli microgreens. UHPLC-ESI/ITMS analysis showed that preharvest UVB treatments with UVB 0.09 and 0.27 Wh/m2 significantly increased the glucoraphanin (GLR), glucoerucin (GLE), and total aliphatic GL levels by 13.7 and 16.9%, respectively, in broccoli microgreens when measured on harvest day. The nutritional qualities of UVB-treated microgreens were stable during 21-day storage, with only small changes in their GL levels. Broccoli microgreens treated before harvest with UVB 0.27 Wh/m2 and 10 mM CaCl2 spray maintained their overall quality, and had the lowest tissue electrolyte leakage and off-odor values during the storage. Furthermore, preharvest UVB 0.27 Wh/m2 treatment significantly increased GL biosynthesis genes when evaluated before harvest, and reduced the expression level of myrosinase, a gene responsible for GL breakdown during postharvest storage. Overall, preharvest UVB treatment, together with calcium chloride spray, can increase and maintain health-beneficial compound levels such as GLs and prolong the postharvest quality of broccoli microgreens.
Collapse
Affiliation(s)
- Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210095, China;
- Beltsville Agricultural Research Center, Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.D.); (Y.L.)
| | - Wen Dong
- Beltsville Agricultural Research Center, Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.D.); (Y.L.)
| | - Tianbao Yang
- Beltsville Agricultural Research Center, Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.D.); (Y.L.)
- Correspondence:
| | - Yaguang Luo
- Beltsville Agricultural Research Center, Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.D.); (Y.L.)
- Beltsville Agricultural Research Center, Environmental Microbial & Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Pei Chen
- Beltsville Human Nutrition Research Center, Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| |
Collapse
|
23
|
Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous Microgreens. Foods 2021; 10:foods10051032. [PMID: 34068729 PMCID: PMC8151805 DOI: 10.3390/foods10051032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Microgreens constitute novel gastronomic ingredients that combine visual, kinesthetic and bioactive qualities. The definition of the optimal developmental stage for harvesting microgreens remains fluid. Their superior phytochemical content against mature leaves underpins the current hypothesis of significant changes in compositional profile during the brief interval of ontogeny from the appearance of the first (S1) to the second true leaf (S2). Microgreens of four brassicaceous genotypes (Komatsuna, Mibuna, Mizuna and Pak Choi) grown under controlled conditions and harvested at S1 and S2 were appraised for fresh and dry yield traits. They were further analyzed for macro- and micromineral content using inductively coupled plasma optical emission spectrometry (ICP-OES), carotenoid content using high-performance liquid chromatography with a diode-array detector (HPLC-DAD), volatile organic compounds using solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC/MS), anthocyanins and polyphenols using liquid chromatography-high resolution-tandem mass spectrometry (LC-MS/MS) with Orbitrap technology and for chlorophyll and ascorbate concentrations, well as antioxidant capacity by spectrophotometry. Analysis of compositional profiles revealed genotype as the principal source of variation for all constituents. The response of mineral and phytochemical composition and of antioxidant capacity to the growth stage was limited and largely genotype-dependent. It is, therefore, questionable whether delaying harvest from S1 to S2 would significantly improve the bioactive value of microgreens while the cost-benefit analysis for this decision must be genotype-specific. Finally, the lower-yielding genotypes (Mizuna and Pak Choi) registered higher relative increase in fresh yield between S1 and S2, compared to the faster-growing and higher-yielding genotypes. Although the optimal harvest stage for specific genotypes must be determined considering the increase in yield against reduction in crop turnover, harvesting at S2 seems advisable for the lower-yielding genotypes.
Collapse
|
24
|
Yoon HI, Kim HY, Kim J, Oh MM, Son JE. Quantitative Analysis of UV-B Radiation Interception in 3D Plant Structures and Intraindividual Distribution of Phenolic Contents. Int J Mol Sci 2021; 22:2701. [PMID: 33800078 PMCID: PMC7962183 DOI: 10.3390/ijms22052701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Ultraviolet-B (UV-B) acts as a regulatory stimulus, inducing the dose-dependent biosynthesis of phenolic compounds such as flavonoids at the leaf level. However, the heterogeneity of biosynthesis activation generated within a whole plant is not fully understood until now and cannot be interpreted without quantification of UV-B radiation interception. In this study, we analyzed the spatial UV-B radiation interception of kales (Brassica oleracea L. var. Acephala) grown under supplemental UV-B LED using ray-tracing simulation with 3-dimension-scanned models and leaf optical properties. The UV-B-induced phenolic compounds and flavonoids accumulated more, with higher UV-B interception and younger leaves. To distinguish the effects of UV-B energy and leaf developmental age, the contents were regressed separately and simultaneously. The effect of intercepted UV-B on flavonoid content was 4.9-fold that of leaf age, but the effects on phenolic compound biosynthesis were similar. This study confirmed the feasibility and relevance of UV-B radiation interception analysis and paves the way to explore the physical and physiological base determining the intraindividual distribution of phenolic compound in controlled environments.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Hyun Young Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju 28644, Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
25
|
Meyer P, Förster N, Huyskens‐Keil S, Ulrichs C, Geilfus C. Phenolic compound abundance in Pak choi leaves is controlled by salinity and dependent on pH of the leaf apoplast. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:36-44. [PMID: 37283845 PMCID: PMC10168030 DOI: 10.1002/pei3.10039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 06/08/2023]
Abstract
Onset of salinity induces the pH of the leaf apoplast of Pak choi transiently to increase over a period of 2 to 3 hr. This pH event causes protein abundances in leaves to increase. Among them are enzymes that are key for the phenylpropanoid pathway. To answer the questions whether this short-term salt stress also influences contents of the underlying phenylpropanoids and for clarifying as to whether the apoplastic pH transient plays a role for such a putative effect, Pak choi plants were treated with 37.5 mM CaCl2 against a non-stressed control. A third experimental group, where the leaf apoplast of plants treated with 37.5 mM CaCl2, was clamped in the acidic range by means of infiltration of 5 mM citric acid/sodium citrate (pH 3.6), enabled validation of pH-dependent effects. Microscopy-based live cell imaging was used to quantify leaf apoplastic pH in planta. Phenolics were quantified shortly after the formation of the leaf apoplastic pH transient by means of HPLC-DAD-ESI-MS. Results showed that different phenolic compounds were modulated at 150 and 200 min after the onset of chloride salinity. A pH-independent reduction in phenolic acid abundance as well as an accumulation of phenolic acid:malate conjugates was quantified after 200 min of salt stress. However, at 150 min after the onset of salt stress, flavonoids were significantly reduced by salinity in a pH-dependent manner. These results provided a strong indication that the pH of the apoplast is a relevant component for the short-term metabolic response to chloride salinity.
Collapse
Affiliation(s)
- Philipp Meyer
- Faculty of Life SciencesDivision of Controlled Environment HorticultureHumboldt‐Universität zu BerlinBerlinGermany
| | - Nadja Förster
- Faculty of Life SciencesDivision Urban Plant EcophysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Susanne Huyskens‐Keil
- Faculty of Life SciencesDivision Urban Plant EcophysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Christian Ulrichs
- Faculty of Life SciencesDivision Urban Plant EcophysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Christoph‐Martin Geilfus
- Faculty of Life SciencesDivision of Controlled Environment HorticultureHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
26
|
Neugart S, Bumke-Vogt C. Flavonoid Glycosides in Brassica Species Respond to UV-B Depending on Exposure Time and Adaptation Time. Molecules 2021; 26:molecules26020494. [PMID: 33477705 PMCID: PMC7831952 DOI: 10.3390/molecules26020494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there have been efforts to use ultraviolet-B radiation (UV-B) as a biotechnological tool in greenhouses. Leafy Brassica species are mainly considered for their ability to synthesize glucosinolates and are valued as baby salads. They also have a remarkable concentration of chemically diverse flavonoid glycosides. In this study, the effect of short-term UV-B radiation at the end of the production cycle was investigated without affecting plant growth. The aim was to verify which exposure and adaptation time was suitable and needs to be further investigated to use UV as a biotechnological tool in greenhouse production of Brassica species. It is possible to modify the flavonoid glycoside profile of leafy Brassica species by increasing compounds that appear to have potentially high antioxidant activity. Exemplarily, the present experiment shows that kaempferol glycosides may be preferred over quercetin glycosides in response to UV-B in Brassica rapa ssp. chinensis, for example, whereas other species appear to prefer quercetin glycosides over kaempferol glycosides, such as Brassica oleracea var. sabellica or Brassica carinata. However, the response to short-term UV-B treatment is species-specific and conclusions on exposure and adaptation time cannot be unified but must be drawn separately for each species.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany
- Correspondence: ; Tel.: +49-0551-39-27958
| | - Christiane Bumke-Vogt
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany;
| |
Collapse
|
27
|
Yoon HI, Kim HY, Kim J, Son JE. Quantitative Analysis of UV-B Radiation Interception and Bioactive Compound Contents in Kale by Leaf Position According to Growth Progress. FRONTIERS IN PLANT SCIENCE 2021; 12:667456. [PMID: 34305968 PMCID: PMC8297650 DOI: 10.3389/fpls.2021.667456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
UV-B (280-315 nm) radiation has been used as an effective tool to improve bioactive compound contents in controlled environments, such as plant factories. However, plant structure changes with growth progress induce different positional distributions of UV-B radiation interception, which cause difficulty in accurately evaluating the effects of UV-B on biosynthesis of bioactive compounds. The objective of this study was to quantitatively analyze the positional distributions of UV-B radiation interception and bioactive compound contents of kales (Brassica oleracea L. var. acephala) with growth progress and their relationships. Short-term moderate UV-B levels did not affect the plant growth and photosynthetic parameters. Spatial UV-B radiation interception was analyzed quantitatively by using 3D-scanned plant models and ray-tracing simulations. As growth progressed, the differences in absorbed UV-B energy between leaf positions were more pronounced. The concentrations of total phenolic compound (TPC) and total flavonoid compound (TFC) were higher with more cumulative absorbed UV-B energy. The cumulative UV energy yields for TFC were highest for the upper leaves of the older plants, while those for TPC were highest in the middle leaves of the younger plants. Despite the same UV-B levels, the UV-B radiation interception and UV-B susceptibility in the plants varied with leaf position and growth stage, which induced the different biosynthesis of TFC and TPC. This attempt to quantify the relationship between UV-B radiation interception and bioactive compound contents will contribute to the estimation and production of bioactive compounds in plant factories.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Hyun Young Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Jung Eek Son,
| |
Collapse
|
28
|
Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. FRONTIERS IN PLANT SCIENCE 2020; 11:597642. [PMID: 33384704 PMCID: PMC7769811 DOI: 10.3389/fpls.2020.597642] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Park JE, Kim J, Purevdorj E, Son YJ, Nho CW, Yoo G. Effects of long light exposure and drought stress on plant growth and glucosinolate production in pak choi (Brassica rapa subsp. chinensis). Food Chem 2020; 340:128167. [PMID: 33007694 DOI: 10.1016/j.foodchem.2020.128167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 11/26/2022]
Abstract
Glucosinolates (GLs), found in Brassicaceae family, are precursor metabolites with anti-cancer properties. Increased GLs have been studied under various environmental growth conditions. Pak choi (Brassica rapa subsp. chinensis) is a GL-rich vegetable. We hypothesize that long exposure to light and drought will increase the biomass of, and GL production in, pak choi. The experiment was conducted for 6 weeks. Long light exposure (20 h/day) increased, whilst drought exposure (12 h/week) decreased the plant growth. The plants exposed to a combination of drought and long light conditions showed similar growth pattern as control plants. GL production increased at week 6 in plants exposed to long light, while drought exposure had no impact on GL production, with the exception of glucoraphanin. Significant positive correlations were observed between plant growth and GL yield with accumulated light exposure time. Our findings suggest that long exposure to light can be used to increase both the biomass and GL production in pak choi.
Collapse
Affiliation(s)
- Jai-Eok Park
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Junho Kim
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Erdenetsogt Purevdorj
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Yang-Ju Son
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Gyhye Yoo
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| |
Collapse
|
30
|
Managa MG, Sultanbawa Y, Sivakumar D. Effects of Different Drying Methods on Untargeted Phenolic Metabolites, and Antioxidant Activity in Chinese Cabbage ( Brassica rapa L. subsp. chinensis) and Nightshade ( Solanum retroflexum Dun.). Molecules 2020; 25:molecules25061326. [PMID: 32183223 PMCID: PMC7145292 DOI: 10.3390/molecules25061326] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Chinese cabbage (Brassica rapa L. subsp. chinensis) and Nightshade (Solanum retroflexum are popular traditional leafy vegetables consumed predominantly by rural Africans. Sun drying is adopted as a traditional method of postharvest preservation to store theses leaves during off seasons. The influence of different types of postharvest processing treatments, such as conventional oven drying, solar cabinet drying, sun drying and freeze drying, on the changes on colour properties and antioxidant components were investigated. Freeze-drying retained the ascorbic acid content, antioxidant activities, total chlorophyll content, green colour by reducing the colour difference (∆E). With regard to Chinese cabbage and Nightshade leaves, sun and microwave drying respectively had the most negative impact on all the identified phenolic compounds. The OPLS-DA and the UPLC–QTOF/MS and chemometric approach showed kaempferol-3-O-sophoroside, kaempferol-3-sophorotrioside-7-glucoside and hydroxyoctadecenedioic acid as the markers responsible for the separation of sun-dried samples from the other drying treatments in Chinese cabbage. Sinapoyl malate was not detected in sun-dried samples. Caffeoylmalic acid was identified as the marker compound to separate the other drying treatments from the microwave dried samples of Nightshade leaves. Trihydroxyoctadecadiene derivative and hydroxyoctadecanedioic acid were detected in microwaved samples. Due to the cost effectiveness, solar dryer cabinet treatment was recommended for drying both vegetables. The proximate analysis of solar dried functional powder of Chinese cabbage and Nightshade vegetables demonstrated higher contents of protein and dietary fibre.
Collapse
Affiliation(s)
- Millicent G. Managa
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa;
| | - Yasmina Sultanbawa
- Australian Research Council (ARC), Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, QLD 4108 Brisbane, Australia;
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa;
- Correspondence: ; Tel.: +27-012-382-5303 or +27-012-382-5302
| |
Collapse
|
31
|
Neugart S, Hideg É, Czégény G, Schreiner M, Strid Å. Ultraviolet-B radiation exposure lowers the antioxidant capacity in the Arabidopsis thaliana pdx1.3-1 mutant and leads to glucosinolate biosynthesis alteration in both wild type and mutant. Photochem Photobiol Sci 2020; 19:217-228. [PMID: 31961357 DOI: 10.1039/c9pp00342h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pyridoxine (vitamin B6) and its vitamers are used by living organisms both as enzymatic cofactors and as antioxidants. We used Arabidopsis pyridoxine biosynthesis mutant pdx1.3-1 to study the involvement of the PLP-synthase main polypeptide PDX1 in plant responses to ultraviolet radiation of two different qualities, one containing primarily UV-A (315-400 nm) and the other containing both UV-A and UV-B (280-315 nm). The antioxidant capacity and the flavonoid and glucosinolate (GS) profiles were examined. As an indicator of stress, Fv/Fm of photosystem II reaction centers was used. In pdx1.3-1, UV-A + B exposure led to a significant 5% decrease in Fv/Fm on the last day (day 15), indicating mild stress at this time point. The antioxidant capacity of Col-0 wildtype increased significantly (50-73%) after 1 and 3 days of UV-A + B. Instead, in pdx1.3-1, the antioxidant capacity significantly decreased by 44-52% over the same time period, proving the importance of a full complement of functional PDX1 genes for the detoxification of reactive oxygen species. There were no significant changes in the flavonoid glycoside profile under any light condition. However, the GS profile was significantly altered, both with respect to Arabidopsis accession and exposure to UV. The difference in flavonoid and GS profiles reflects that the GS biosynthesis pathway contains at least one pyridoxine-dependent enzyme, whereas no such enzyme is used in flavonoid biosynthesis. Also, there was strong correlation between the antioxidant capacity and the content of some GS compounds. Our results show that vitamin B6 vitamers, functioning both as antioxidants and co-factors, are of importance for the physiological fitness of plants.
Collapse
Affiliation(s)
- Susanne Neugart
- Division of Quality and Sensory of Plant Products, University of Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|
32
|
Neugart S, Majer P, Schreiner M, Hideg É. Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts. FRONTIERS IN PLANT SCIENCE 2020; 11:611247. [PMID: 33584754 PMCID: PMC7875886 DOI: 10.3389/fpls.2020.611247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B; 280-315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420-490 nm) or green (490-585 nm) light. Flavonoids act as antioxidants and shielding components in the plant's response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m-2 day-1 UV-BBE), which was followed with two subsequent (equals 2 days) doses of either blue (99 μmol m-2 s-1) or green (119 μmol m-2 s-1) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MSn. Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while-contrary to this-in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Göttingen, Germany
- *Correspondence: Susanne Neugart,
| | - Petra Majer
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops e.V., Grossbeeren, Germany
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| |
Collapse
|
33
|
Zhao Y, Yue Z, Zhong X, Lei J, Tao P, Li B. Distribution of primary and secondary metabolites among the leaf layers of headed cabbage (Brassica oleracea var. capitata). Food Chem 2019; 312:126028. [PMID: 31896454 DOI: 10.1016/j.foodchem.2019.126028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
The present study investigated the distribution of several primary metabolites (soluble sugar, protein, and mineral) and secondary metabolites (carotenoids, vitamin C, anthocyanin, flavonoids, and total phenolic compounds) among the leaf layers of headed cabbage. The leaf layers of two cultivars were separated and numbered sequentially from the outer to the inner leaves. The fructose and glucose content of the inner leaf layers was significantly greater than that of the outer layers. Similarly, the level of glucosinolates increased gradually from the outer leaves to the umbilicus of the leaf head. However, the content of antioxidants decreased from the outer leaves to the core of the leaf head, in line with the antioxidant capacity. The levels of soluble protein and mineral shared the similar decreasing trend. These results provide a reference for consumers to choose optimal fractions of whole cabbage heads in order to cater to their particular dietary needs.
Collapse
Affiliation(s)
- Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhichen Yue
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinming Zhong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Juanli Lei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Peng Tao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Biyuan Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
34
|
Ortega-Hernández E, Nair V, Welti-Chanes J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Wounding and UVB Light Synergistically Induce the Biosynthesis of Phenolic Compounds and Ascorbic Acid in Red Prickly Pears ( Opuntia ficus-indica cv. Rojo Vigor). Int J Mol Sci 2019; 20:ijms20215327. [PMID: 31731568 PMCID: PMC6862142 DOI: 10.3390/ijms20215327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated the effects of ultraviolet B (UVB) radiation and wounding stress, applied alone or combined, on the biosynthesis of phenolic compounds and ascorbic acid in the peel and pulp of red prickly pear (Opuntia ficus-indica cv. Rojo Vigor). Whole and wounded-fruit samples were treated with UVB radiation (6.4 W·m-2) for 0 and 15 min, and stored for 24 h at 16 °C. Phytochemical analyses were performed separately in the peel and pulp. The highest phenolic accumulation occurred after storage of the whole tissue treated with UVB, where the main phenolic compounds accumulated in the peel and pulp were quercetin, sinapic acid, kaempferol, rosmarinic acid, and sinapoyl malate, showing increases of 709.8%, 570.2%, 442.8%, 439.9%, and 186.2%, respectively, as compared with the control before storage. Phenylalanine ammonia-lyase (PAL) activity was increased after storage of the whole and wounded tissue treated with UVB light, and this increase in PAL activity was associated to phenolic accumulation. On the other hand, l-galactono-γ-lactone dehydrogenase (GalLDH) activity and ascorbic acid biosynthesis was enhanced due to UVB radiation, and the effect was increased when UVB was applied in the wounded tissue showing 125.1% and 94.1% higher vitamin C content after storage when compared with the control. Respiration rate was increased due to wounding stress, whereas ethylene production was increased by wounding and UVB radiation in prickly pears. Results allowed the generation of a physiological model explaining the UVB and wound-induced accumulation of phenolic compounds and ascorbic acid in prickly pears, where wounding facilitates UVB to access the underlying tissue and enhances an apparent synergistic response.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Colonia Nuevo Mexico, Zapopan 45138, Jal., Mexico;
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (V.N.); (L.C.-Z.)
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Colonia Tecnologico, Monterrey, NL 64849, Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (V.N.); (L.C.-Z.)
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Colonia Nuevo Mexico, Zapopan 45138, Jal., Mexico;
- Correspondence: ; Tel.: +52-33-3669-3000 (ext. 2396)
| |
Collapse
|
35
|
Narrow-Banded UVB Affects the Stability of Secondary Plant Metabolites in Kale ( Brassica oleracea var. sabellica) and Pea ( Pisum sativum) Leaves Being Added to Lentil Flour Fortified Bread: A Novel Approach for Producing Functional Foods. Foods 2019; 8:foods8100427. [PMID: 31547068 PMCID: PMC6835311 DOI: 10.3390/foods8100427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Young kale and pea leaves are rich in secondary plant metabolites (SPMs) whose profile can be affected by ultraviolet B (UVB) radiation. Carotenoids and flavonoids in kale and pea exposed to narrow-banded UVB, produced by innovative light-emitting diodes (LEDs), and subsequently used for breadmaking were investigated for the first time, thus combining two important strategies to increase the SPMs intake. Breads were also fortified with protein-rich lentil flour. Antioxidant activity in the ‘vegetable breads’ indicated health-promoting effects. Lentil flour increased the antioxidant activity in all of the ‘vegetable breads’. While carotenoids and chlorophylls showed a minor response to UVB treatment, kaempferol glycosides decreased in favor of increasing quercetin glycosides, especially in kale. Additionally, breadmaking caused major decreases in carotenoids and a conversion of chlorophyll to bioactive degradation products. In ‘kale breads’ and ‘pea breads’, 20% and 84% of flavonoid glycosides were recovered. Thus, kale and pea leaves seem to be suitable natural ingredients for producing innovative Functional Foods.
Collapse
|
36
|
Chen X, Hanschen FS, Neugart S, Schreiner M, Vargas SA, Gutschmann B, Baldermann S. Boiling and steaming induced changes in secondary metabolites in three different cultivars of pak choi (Brassica rapa subsp. chinensis). J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Lee JH, Oh MM, Son KH. Short-Term Ultraviolet (UV)-A Light-Emitting Diode (LED) Radiation Improves Biomass and Bioactive Compounds of Kale. FRONTIERS IN PLANT SCIENCE 2019; 10:1042. [PMID: 31481968 PMCID: PMC6710713 DOI: 10.3389/fpls.2019.01042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine the influence of two types of UV-A LEDs on the growth and accumulation of phytochemicals in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were transferred to a growth chamber and cultivated for 3 weeks. The kale plants were subsequently subjected to two types of UV-A LEDs (370 and 385 nm) of 30 W/m2 for 5 days. Growth characteristics were all significantly increased in plants exposed to UV-A LEDs, especially at the 385 nm level, for which dry weight of shoots and roots were significantly increased by 2.22 and 2.5 times, respectively, at 5 days of treatment. Maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ratio) began to decrease after 3 h of treatment compared to the control. The total phenolic content of plants exposed to the two types of UV-A LEDs increased by 25% at 370 nm and 42% at 385 nm at 5 days of treatment, and antioxidant capacity also increased. The two types of UV-A LEDs also induced increasing contents of caffeic acid, ferulic acid, and kaempferol. The reactive oxygen species (ROS) temporarily increased in plants exposed to the two types of UV-A LEDs after 3 h of treatment. Moreover, transcript levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) genes and PAL enzyme activity were higher in plants treated with UV-A LEDs. Our results suggested that short-term UV-A LEDs were effective in increasing growth and improving antioxidant phenolic compounds in kale, thereby representing a potentially effective strategy for enhancing the production of phytochemicals.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju, South Korea
- Brain Korea Center for Bio-Resource Development, Chungbuk National University, Cheongju, South Korea
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju, South Korea
- Brain Korea Center for Bio-Resource Development, Chungbuk National University, Cheongju, South Korea
| | - Ki-Ho Son
- Department of Horticultural Science, College of Life Science, Gyeongnam National University of Science and Technology, Jinju, South Korea
| |
Collapse
|
38
|
Klopsch R, Baldermann S, Hanschen FS, Voss A, Rohn S, Schreiner M, Neugart S. Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Food Chem 2019; 295:412-422. [PMID: 31174776 DOI: 10.1016/j.foodchem.2019.05.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/02/2019] [Accepted: 05/15/2019] [Indexed: 12/01/2022]
Abstract
Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread.
Collapse
Affiliation(s)
- Rebecca Klopsch
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, Germany.
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, Germany; University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| | - Alexander Voss
- NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, Germany; Institute for Food and Environmental Research (ILU) e. V., Arthur-Scheunert-Allee 40-41, 14558 Nuthetal, Germany.
| | - Sascha Rohn
- NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, Germany; Institute for Food and Environmental Research (ILU) e. V., Arthur-Scheunert-Allee 40-41, 14558 Nuthetal, Germany; Universität Hamburg, HAMBURG SCHOOL OF FOOD SCIENCE, Institute for Food Chemistry, Grindelallee 117, 20146 Hamburg, Germany.
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, Germany.
| | - Susanne Neugart
- Georg-August-Universität Göttingen, Faculty of Agricultural Science, Germany.
| |
Collapse
|
39
|
Wang F, Xu Z, Fan X, Zhou Q, Cao J, Ji G, Jing S, Feng B, Wang T. Transcriptome Analysis Reveals Complex Molecular Mechanisms Underlying UV Tolerance of Wheat ( Triticum aestivum, L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:563-577. [PMID: 30562017 DOI: 10.1021/acs.jafc.8b05104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plants have inherent tolerance to UV stress. However, very limited information is available about how wheat perceives and defends against UV disaster. To obtain the molecular mechanisms underlying UV tolerance of wheat, the phenotypic and transcriptomic responses of ZN168 and ZKM138 with contrasting UV tolerance were characterized. Compared with ZKM138, ZN168 showed significantly less UV damage. High-throughput sequencing revealed that UV stress inhibited the expression of genes related to photosynthesis and carbon fixation and a less degree for ZN168 than ZKM138. The distinctive performance of ZN168 is mediated by the selective expression of genes involved in multiple defense responses. Besides, metabolome analysis on grains suggested that UV radiation had a significant effect on anthocyanin accumulation. This study will enable us to exploit genes pinpointed as the targets of genetic engineering, thereby improving the UV tolerance of wheat. Furthermore, the anthocyanin-enriched wheat can be excellent resources to act as functional food.
Collapse
Affiliation(s)
- Fang Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhibin Xu
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
| | - Xiaoli Fan
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
| | - Qiang Zhou
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
| | - Jun Cao
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guangsi Ji
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuzhong Jing
- Crop Research Institute of Sichuan Academy of Agricultural Sciences , Chengdu 610066 , China
| | - Bo Feng
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
| | - Tao Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
- The Innovative Academy of Seed Design , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
40
|
Groenbaek M, Tybirk E, Neugart S, Sundekilde UK, Schreiner M, Kristensen HL. Flavonoid Glycosides and Hydroxycinnamic Acid Derivatives in Baby Leaf Rapeseed From White and Yellow Flowering Cultivars With Repeated Harvest in a 2-Years Field Study. FRONTIERS IN PLANT SCIENCE 2019; 10:355. [PMID: 31001295 PMCID: PMC6454053 DOI: 10.3389/fpls.2019.00355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 05/09/2023]
Abstract
Recently, new annual and biennial cultivars of rapeseed with white flowers have been introduced to the baby leaf market. The white flower trait has been bred into modern cultivars of yellow flowering rapeseed. In baby leaf production, it is common practice to perform several cuts of the same plants, thereby harvesting regrown material. Seven white and yellow flowering annual and biennial rapeseed cultivars were harvested as baby leaves, baby leaf re-growths, and intact plants in order to investigate the content of flavonoid glycosides and hydroxycinnamic acid derivatives. The field experiment was conducted over two consecutive years to obtain seasonal differences. The yields and levels of flavonoid glycosides and hydroxycinnamic acids were higher in 2016 than 2017, due to higher temperatures and radiation. Within the growing stage, the effects of flower color, cultivar, and life cycle on flavonoid glycosides and hydroxycinnamic acids varied; however, in general, life cycle was the main influence that resulted in elevated levels of flavonoid glycosides and hydroxycinnamic acids in biennial cultivars, compared to annual cultivars. The effects of the growing stage differed between years, and were influenced by climatic conditions. In conclusion, the choice of life cycle (annual or biennial cultivars) and seasonal effects was of major influence, overruling the effect of developmental stage on the content of flavonoid glycosides and hydroxycinnamic acids.
Collapse
Affiliation(s)
- Marie Groenbaek
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | | | - Susanne Neugart
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., Grossbeeren, Germany
| | | | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., Grossbeeren, Germany
| | | |
Collapse
|
41
|
Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballaré CL, Flint SD. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci 2019; 18:681-716. [DOI: 10.1039/c8pp90061b] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linkages between stratospheric ozone, UV radiation and climate change: terrestrial ecosystems.
Collapse
Affiliation(s)
- Janet F. Bornman
- College of Science
- Health
- Engineering and Education
- Murdoch University
- Perth
| | - Paul W. Barnes
- Department of Biological Sciences and Environment Program
- Loyola University
- USA
| | - T. Matthew Robson
- Research Programme in Organismal and Evolutionary Biology
- Viikki Plant Science Centre
- University of Helsinki
- Finland
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions
- School of Earth
- Atmosphere and Life Sciences and Global Challenges Program
- University of Wollongong
- Wollongong
| | - Marcel A. K. Jansen
- Plant Ecophysiology Group
- School of Biological
- Earth and Environmental Sciences
- UCC
- Cork
| | - Carlos L. Ballaré
- University of Buenos Aires
- Faculty of Agronomy and IFEVA-CONICET, and IIB
- National University of San Martin
- Buenos Aires
- Argentina
| | - Stephan D. Flint
- Department of Forest
- Rangeland and Fire Sciences
- University of Idaho
- Moscow
- USA
| |
Collapse
|
42
|
Carvalho SD, Castillo JA. Influence of Light on Plant-Phyllosphere Interaction. FRONTIERS IN PLANT SCIENCE 2018; 9:1482. [PMID: 30369938 PMCID: PMC6194327 DOI: 10.3389/fpls.2018.01482] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/21/2018] [Indexed: 05/11/2023]
Abstract
Plant-phyllosphere interactions depend on microbial diversity, the plant host and environmental factors. Light is perceived by plants and by microorganisms and is used as a cue for their interaction. Photoreceptors respond to narrow-bandwidth wavelengths and activate specific internal responses. Light-induced plant responses include changes in hormonal levels, production of secondary metabolites, and release of volatile compounds, which ultimately influence plant-phyllosphere interactions. On the other hand, microorganisms contribute making some essential elements (N, P, and Fe) biologically available for plants and producing growth regulators that promote plant growth and fitness. Therefore, light directly or indirectly influences plant-microbe interactions. The usage of light-emitting diodes in plant growth facilities is helping increasing knowledge in the field. This progress will help define light recipes to optimize outputs on plant-phyllosphere communications. This review describes research advancements on light-regulated plant-phyllosphere interactions. The effects of full light spectra and narrow bandwidth-wavelengths from UV to far-red light are discussed.
Collapse
Affiliation(s)
- Sofia D. Carvalho
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - José A. Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| |
Collapse
|