1
|
Prudinnik DS, Kussanova A, Vorobjev IA, Tikhonov A, Ataullakhanov FI, Barteneva NS. Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Aging Dis 2025:AD.2024.0526. [PMID: 39012672 DOI: 10.14336/ad.2024.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is interrelated with changes in red blood cell parameters and functionality. In this article, we focus on red blood cells (RBCs) and provide a review of the known changes associated with the characterization of RBC deformability in aging and related pathologies. The biophysical parameters complement the commonly used biochemical parameters and may contribute to a better understanding of the aging process. The power of the deformability measurement approach is well established in clinical settings. Measuring RBCs' deformability has the advantage of relative simplicity, and it reflects the complex effects developing in erythrocytes during aging. However, aging and related pathological conditions also promote heterogeneity of RBC features and have a certain impact on the variance in erythrocyte cell properties. The possible applications of deformability as an early biophysical biomarker of pathological states are discussed, and modulating PIEZO1 as a therapeutic target is suggested. The changes in RBCs' shape can serve as a proxy for deformability evaluation, leveraging single-cell analysis with imaging flow cytometry and artificial intelligence algorithms. The characterization of biophysical parameters of RBCs is in progress in humans and will provide a better understanding of the complex dynamics of aging.
Collapse
Affiliation(s)
- Dmitry S Prudinnik
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aigul Kussanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Alexander Tikhonov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Fazly I Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Zhang S, Wang X, Liu S, Hu C, Meng Y. Phlorizin ameliorates cognitive and behavioral impairments via the microbiota-gut-brain axis in high-fat and high-fructose diet-induced obese male mice. Brain Behav Immun 2024; 123:193-210. [PMID: 39277023 DOI: 10.1016/j.bbi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. Phlorizin, a well-studied natural compound found in apples and other plants, is recognized for its bioactive properties, including modulation of glucose and lipid metabolism. Despite its established role in mitigating metabolic disorders, the neuroprotective effects of phlorizin, particularly against diabetes-related cognitive dysfunction, have not been fully elucidated. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. We found that dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Therefore, phlorizin shows promise as a potential nutritional therapy for addressing cognitive impairment associated with metabolic disorders. Further research is needed to explore its effectiveness in preventing and alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuqing Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory for Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Shenlin Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chingyuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
3
|
Shafe MO, Gumede NM, Nyakudya TT, Chivandi E. Lycopene: A Potent Antioxidant with Multiple Health Benefits. J Nutr Metab 2024; 2024:6252426. [PMID: 38883868 PMCID: PMC11179732 DOI: 10.1155/2024/6252426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Lycopene is a naturally occurring carotenoid predominantly found in tomatoes and tomato-based products. Like other phytochemicals, it exhibits health beneficial biological activities that can be exploited when it is used as a dietary supplement. In vitro and in vivo, lycopene has been demonstrated to mitigate oxidative stress-induced metabolic dysfunctions and diseases including inflammation, obesity, and diabetes mellitus. Lycopene has been shown to alleviate metabolic diseases that affect the bone, eye, kidney, liver, lungs, heart, and nervous system. This review presents the state of the art regarding lycopene's health benefits and its potential applications in health system delivery. Furthermore, lycopene's protective effects against toxins, safety in its use, and possible toxicity are explored.
Collapse
Affiliation(s)
- Mercy Omoye Shafe
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine and Allied Health Sciences, Bingham University, P.M.B. 005, New Karu, Nasarawa 961002, Nigeria
| | - Nontobeko Myllet Gumede
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
4
|
Wang J, Behl T, Rana T, Sehgal A, Wal P, Saxena B, Yadav S, Mohan S, Anwer MK, Chigurupati S, Zaheer I, Shen B, Singla RK. Exploring the pathophysiological influence of heme oxygenase-1 on neuroinflammation and depression: A study of phytotherapeutic-based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155466. [PMID: 38461764 DOI: 10.1016/j.phymed.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Computer Science and Information Technology, University of A Coruña, A Coruña, Spain
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Punjab, India; Government Pharmacy College, Seraj-175123, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar-141104, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah-51452, Kingdom of Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai-602105, India
| | - Imran Zaheer
- Department of Pharmacology, College of Medicine, (Al-Dawadmi Campus), Shaqra University, Al-Dawadmi, 11961, Kingdom of Saudi Arabia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| |
Collapse
|
5
|
Li M, Tang S, Peng X, Sharma G, Yin S, Hao Z, Li J, Shen J, Dai C. Lycopene as a Therapeutic Agent against Aflatoxin B1-Related Toxicity: Mechanistic Insights and Future Directions. Antioxidants (Basel) 2024; 13:452. [PMID: 38671900 PMCID: PMC11047733 DOI: 10.3390/antiox13040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene's potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain.
Collapse
Affiliation(s)
- Meng Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, China;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Shutao Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China;
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| |
Collapse
|
6
|
Maeso L, Antezana PE, Hvozda Arana AG, Evelson PA, Orive G, Desimone MF. Progress in the Use of Hydrogels for Antioxidant Delivery in Skin Wounds. Pharmaceutics 2024; 16:524. [PMID: 38675185 PMCID: PMC11053627 DOI: 10.3390/pharmaceutics16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the largest organ of the body, and it acts as a protective barrier against external factors. Chronic wounds affect millions of people worldwide and are associated with significant morbidity and reduced quality of life. One of the main factors involved in delayed wound healing is oxidative injury, which is triggered by the overproduction of reactive oxygen species. Oxidative stress has been implicated in the pathogenesis of chronic wounds, where it is known to impair wound healing by causing damage to cellular components, delaying the inflammatory phase of healing, and inhibiting the formation of new blood vessels. Thereby, the treatment of chronic wounds requires a multidisciplinary approach that addresses the underlying causes of the wound, provides optimal wound care, and promotes wound healing. Among the promising approaches to taking care of chronic wounds, antioxidants are gaining interest since they offer multiple benefits related to skin health. Therefore, in this review, we will highlight the latest advances in the use of natural polymers with antioxidants to generate tissue regeneration microenvironments for skin wound healing.
Collapse
Affiliation(s)
- Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
| | - Ailen Gala Hvozda Arana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Pablo Andrés Evelson
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
- NanoBioCel Research Group, Bioaraba, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
7
|
Tian X, Dong W, Zhou W, Yan Y, Lu L, Mi J, Cao Y, Sun Y, Zeng X. The polysaccharides from the fruits of Lycium barbarum ameliorate high-fat and high-fructose diet-induced cognitive impairment via regulating blood glucose and mediating gut microbiota. Int J Biol Macromol 2024; 258:129036. [PMID: 38151081 DOI: 10.1016/j.ijbiomac.2023.129036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
High-fat and high-fructose diet (HFFD) consumption can induce cognitive dysfunction and gut microbiota disorder. In the present study, the effects of the polysaccharides from the fruits of Lycium barbarum L. (LBPs) on HFFD-induced cognitive deficits and gut microbiota dysbiosis were investigated. The results showed that intervention of LBPs (200 mg/kg/day) for 14 weeks could significantly prevent learning and memory deficits in HFFD-fed mice, evidenced by a reduction of latency and increment of crossing parameters of platform quadrant in Morris water maze test. Moreover, oral administration of LBPs enhanced the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor and reduced the activation of glial cells in hippocampus. Besides, LBPs treatment enriched the relative abundances of Allobaculum and Lactococcus and reduced the relative abundance of Proteobacteria in gut bacterial community of HFFD-fed mice, accompanied by increased levels of short-chain fatty acids (SCFAs) as well as expression of associated G protein-coupled receptors. Furthermore, LBPs intervention prevented insulin resistance, obesity and colonic inflammation. Finally, a significant correlation was observed among neuroinflammation associated parameters, gut microbiota and SCFAs through Pearson correlation analysis. Collectively, these findings suggested that the regulation of gut microbiota might be the potential mechanism of LBPs on preventing cognitive dysfunction induced by HFFD.
Collapse
Affiliation(s)
- Xinyi Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Wang L, Liu Y, Gao H, Ge S, Yao X, Liu C, Tan X. Chronotoxicity of Acrylamide in Mice Fed a High-Fat Diet: The Involvement of Liver CYP2E1 Upregulation and Gut Leakage. Molecules 2023; 28:5132. [PMID: 37446793 PMCID: PMC10343525 DOI: 10.3390/molecules28135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Acrylamide (ACR) is produced under high-temperature cooking of carbohydrate-rich foods via the Maillard reaction. It has been reported that ACR has hepatic toxicity and can induce liver circadian disorder. A high fat diet (HFD) could dysregulate liver detoxification. The current study showed that administration of ACR (100 mg/kg) reduced the survival rate in HFD-fed mice, which was more pronounced when treated during the night phase than during the day phase. Furthermore, ACR (25 mg/kg) treatment could cause chronotoxicity in mice fed a high-fat diet, manifested as more severe mitochondrial damage of liver during the night phase than during the day phase. Interestingly, HFD induced a higher CYP2E1 expressions for those treated during the night phase, leading to more severe DNA damage. Meanwhile, the expression of gut tight junction proteins also significantly decreases at night phase, leading to the leakage of LPSs and exacerbating the inflammatory response at night phase. These results indicated that a HFD could induce the chronotoxicity of ACR in mice liver, which may be associated with increases in CYP2E1 expression in the liver and gut leak during the night phase.
Collapse
Affiliation(s)
- Luanfeng Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Yanhong Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Huajing Gao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Shuqi Ge
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xinru Yao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Chang Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xintong Tan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| |
Collapse
|
9
|
Abdel-Naim AB, Hassanein EHM, Binmahfouz LS, Bagher AM, Hareeri RH, Algandaby MM, Fadladdin YAJ, Aleya L, Abdel-Daim MM. Lycopene attenuates chlorpyrifos-induced hepatotoxicity in rats via activation of Nrf2/HO-1 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115122. [PMID: 37329850 DOI: 10.1016/j.ecoenv.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Chlorpyrifos (CPF), is an organophosphate pesticide that is widely used for agricultural purposes. However, it has well-documented hepatotoxicity. Lycopene (LCP) is a plant-derived carotenoid with antioxidant and anti-inflammatory activities. The present work was designed to evaluate the potential hepatoprotective actions of LCP against CPF-induced hepatotoxicity in rats. Animals were assigned into five groups namely: Group I (Control), Group II (LCP), Group III (CPF), Group IV (CPF + LCP 5 mg/kg), and Group V (CPF + LCP 10 mg/kg). LCP offered protection as evidenced by inhibiting the rise in serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) induced by CPF. This was confirmed histologically as LCP-treated animals showed liver tissues with less proliferation of bile ducts and periductal fibrosis. LCP significantly prevented the rise in hepatic content of malondialdehyde (MDA), depletion of reduced glutathione (GSH), and exhaustion of glutathione-s-transferase (GST) and superoxide dismutase (SOD). Further, LCP significantly prevented hepatocyte death as it ameliorated the increase in Bax and the decrease in Bcl-2 expression induced by CPF in liver tissues as determined immunohistochemically. The observed protective effects of LCP were further confirmed by a significant enhancement in heme oxygenase-1 (HO-1) and NF-E2-related factor 2 (Nrf2) expression. In conclusion, LCP possesses protective effects against CPF-induced hepatotoxicity. These include antioxidation and activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan H Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mardi M Algandaby
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yousef A J Fadladdin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, Cedex F-25030 Besançon, France
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Wang J, Shen Y, Li M, Li T, Shi D, Lu S, Qiu F, Wu Z. Lycopene attenuates D-galactose-induced cognitive decline by enhancing mitochondrial function and improving insulin signalling in the brains of female CD-1 mice. J Nutr Biochem 2023; 118:109361. [PMID: 37087073 DOI: 10.1016/j.jnutbio.2023.109361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
The incidence of neurodegenerative diseases is severely increasing with ageing. Lycopene (LYC), a carotenoid pigment, has been reported to have antioxidant, anti-inflammatory and neuroprotective properties. In the present study, we aimed to investigate the ameliorative effect of LYC on D-galactose (D-gal) induced cognitive defects and the underlying mechanisms. Forty-five female CD-1 mice (two months old) were separated into three groups to be fed with either a normal diet or a LYC diet (0.03%, w/w, mixed into normal diet). Meanwhile, the mice were treated by intraperitoneal injection of normal saline or D-gal 150 mg/kg/day for 8 weeks. The behavioural test results indicated that LYC alleviated D-gal induced cognitive impairments. LYC ameliorated brain ageing by decreasing the number of SA-β-gal- stained neurons, downregulating the protein expression of the cellular senescence associated genes P19/P21/P53, increasing the activities of the antioxidant enzymes GSH and SOD, downregulating the level of ROS, inhibiting the activation of MAPKs signalling and downregulating the levels of the inflammatory cytokines IL-1β and TNFɑ in mouse brains. LYC ameliorated synaptic dysfunction by increasing the expression of the neurotrophic factor BDNF and synaptic proteins. Moreover, LYC attenuated D-gal-induced mitochondrial morphological damage, and promoted the expression of mitochondrial functional proteins. LYC also promoted insulin signal transduction in mouse brains through the regulation of IRS-1/AKT/GSK3β signalling.
Collapse
Affiliation(s)
- Jia Wang
- First Hospital of Shanxi Medical University Department of Nuclear Medicine, Taiyuan, Shanxi, 030001, China; Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yuqi Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Mengling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Dongxing Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shangyun Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Fubin Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhifang Wu
- First Hospital of Shanxi Medical University Department of Nuclear Medicine, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
11
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
12
|
Promising hepatoprotective effects of lycopene in different liver diseases. Life Sci 2022; 310:121131. [DOI: 10.1016/j.lfs.2022.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
13
|
Chen X, Yu J, Zheng L, Deng Z, Li H. Quercetin and lycopene co-administration prevents oxidative damage induced by d-galactose in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Wang J, Li T, Li M, Fu Z, Chen L, Shi D, Qiu F, Tan X. Lycopene attenuates oxidative stress-induced hepatic dysfunction of insulin signal transduction: involvement of FGF21 and mitochondria. J Nutr Biochem 2022; 110:109144. [PMID: 36057413 DOI: 10.1016/j.jnutbio.2022.109144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023]
Abstract
Lycopene (LYC) has been regarded as a nutraceutical that has powerful antioxidant and hepatoprotective bioactivities. In the present study, we aimed to investigate the beneficial effects of LYC on hepatic insulin signal transduction under oxidative stress conditions and the possible involvement of FGF21 and mitochondria pathways. Two-month-old CD-1 mice were treated by intraperitoneal injection of D-galactose (D-gal) 150 mg/kg/day for 8 weeks and received 0.03% LYC (w/w, mixed into diet). The results showed that LYC increased the expression of FGF21, alleviated mitochondrial dysfunction and improved hepatic insulin signal transduction in D-gal-treated mice. Furthermore, knockdown of FGF21 by small interfering RNA notably suppressed mitochondrial function and blunted LYC-stimulated insulin signal transduction in H2O2-treated HepG2 cells. Moreover, suppressed mitochondrial function via oligomycin also inhibited insulin signal transduction, indicating that LYC supplementation ameliorated oxidative stress-induced hepatic dysfunction of insulin signal transduction by up-regulating FGF21 and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Jia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mengling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhendong Fu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Likai Chen
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Dongxing Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fubin Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
15
|
Lycopene Scavenges Cellular ROS, Modulates Autophagy and Improves Survival through 7SK snRNA Interaction in Smooth Muscle Cells. Cells 2022; 11:cells11223617. [PMID: 36429045 PMCID: PMC9688495 DOI: 10.3390/cells11223617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The chance of survival rate and autophagy of smooth muscle cells under calcium stress were drastically improved with a prolonged inclusion of Lycopene in the media. The results showed an improved viability from 41% to 69% and a reduction in overall autophagic bodies from 7% to 3%, which was well in agreement with the LC3II and III mRNA levels. However, the proliferation was slow compared to the controls. The fall in the major inflammatory marker TNF-α and improved antioxidant enzyme GPx were regarded as significant restoration markers of cell survival. The reactive oxygen species (ROS) were reduced from 8 fold to 3 fold post addition of lycopene for 24 h. Further, the docking studies revealed binding of lycopene molecules with 7SK snRNA at 7.6 kcal/mol docking energy with 300 ns stability under physiological conditions. Together, these results suggest that Lycopene administration during ischemic heart disease might improve the functions of the smooth muscle cells and 7SK snRNA might be involved in the binding of lycopene and its antioxidant protective effects.
Collapse
|
16
|
Kapoor B, Gulati M, Rani P, Kochhar RS, Atanasov AG, Gupta R, Sharma D, Kapoor D. Lycopene: Sojourn from kitchen to an effective therapy in Alzheimer's disease. Biofactors 2022; 49:208-227. [PMID: 36318372 DOI: 10.1002/biof.1910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 01/03/2023]
Abstract
Reports on a significant positive correlation between consumption of carotenoid-rich food and prevention of Alzheimer's disease (AD) led to the investigation of carotenoids for the treatment and prevention of AD. More than 1100 types of carotenoids are found naturally, out of which only around 50 are absorbed and metabolized in human body. Lycopene is one of the most commonly ingested members of fat-soluble carotenoid family that gives vegetables and fruits their red, yellow, or orange color. Lycopene has established itself as a promising therapy for AD owing to its neuroprotective activities, including antioxidant, anti-inflammatory, and antiamyloidogenic properties. In this review, we highlight the various in vitro and preclinical studies demonstrating the neuroprotective effect of lycopene. Also, some epidemiological and interventional studies investigating the protective effect of lycopene in AD have been discussed. Diving deeper, we also discuss various significant mechanisms, through which lycopene exerts its remissive effects in AD. Finally, to overcome the issue of poor chemical stability and bioavailability of lycopene, some of the novel delivery systems developed for lycopene have also been briefly highlighted.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Deepika Sharma
- Institute of Nanoscience and Technology, Mohali, Punjab, India
| | - Deepak Kapoor
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
- Punjab State Council for Science & Technology (PSCST), Chandigarh, India
| |
Collapse
|
17
|
The Role of the NRF2 Pathway in Maintaining and Improving Cognitive Function. Biomedicines 2022; 10:biomedicines10082043. [PMID: 36009590 PMCID: PMC9405981 DOI: 10.3390/biomedicines10082043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a redox-sensitive transcription factor that binds to the antioxidant response element consensus sequence, decreasing reactive oxygen species and regulating the transcription of a wide array of genes, including antioxidant and detoxifying enzymes, regulating genes involved in mitochondrial function and biogenesis. Moreover, NRF2 has been shown to directly regulate the expression of anti-inflammatory mediators reducing the expression of pro-inflammatory cytokines. In recent years, attention has turned to the role NRF2 plays in the brain in different diseases such Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and others. This review focused on the evidence, derived in vitro, in vivo and from clinical trials, supporting a role for NRF2 activation in maintaining and improving cognitive function and how its activation can be used to elicit neuroprotection and lead to cognitive enhancement. The review also brings a critical discussion concerning the possible prophylactic and/or therapeutic use of NRF2 activators in treating cognitive impairment-related conditions.
Collapse
|
18
|
Duan J, Pan J, Sun M, Fang Y. Comparative Multiomics Study of the Effects of Ellagic Acid on the Gut Environment in Young and Adult Mice. Food Res Int 2022; 161:111819. [DOI: 10.1016/j.foodres.2022.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
19
|
Wang J, Li T, Li M, Shi D, Tan X, Qiu F. Lycopene attenuates D-galactose-induced insulin signaling impairment by enhancing mitochondrial function and suppressing the oxidative stress/inflammatory response in mouse kidneys and livers. Food Funct 2022; 13:7720-7729. [PMID: 35762205 DOI: 10.1039/d2fo00706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lycopene (LYC) possesses bioactivity to improve the pathogenesis of several chronic diseases via antioxidant-associated mechanisms. The purpose of this study was to investigate whether LYC could attenuate D-galactose (D-gal)-induced mitochondrial dysfunction and insulin signaling impairment in mouse kidneys and livers. Two-month-old CD-1 mice were treated by intraperitoneal injection of 150 mg kg-1 day-1D-gal for 8 weeks and received 0.03% LYC (w/w, mixed into diet). The results showed that LYC ameliorated oxidative stress triggered by D-gal by enhancing the Nrf2 antioxidant defense pathway and increasing the expression of the antioxidant response genes HO-1 and NQO1 in mouse kidneys and livers. LYC inhibited the MAPK and NFκB pathways and attenuated renal and hepatic inflammatory responses. Moreover, LYC upregulated the expression of genes related to mitochondrial biosynthesis and oxidative phosphorylation and improved insulin signal transduction through the IRS-1/AKT/GSK3β pathway in mouse kidneys and livers.
Collapse
Affiliation(s)
- Jia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Mengling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Dongxing Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Fubin Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
20
|
Liu X, Dilxat T, Shi Q, Qiu T, Lin J. The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling. Gene X 2022; 822:146348. [PMID: 35183682 DOI: 10.1016/j.gene.2022.146348] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Aging is referred to progressive dysfunction of body organs, including the brain. This study aims to explore the anti-aging effect of combing nicotinamide mononucleotide (NMN) and lycopene (Lyco) (NMN + Lyco) on aging rats and senescent PC12 cells. Both in vivo and in vitro aging models were established using D-galactose (D-gal). The combination showed a trend to superiority over monotherapy in preventing aging in vivo and in vitro. Morris water maze test showed that NMN + Lyco effectively improved the ability of spatial location learning and memory of aging model rats. NMN + Lyco mitigated the oxidative stress of rat brains, livers, and PC12 cells by elevating the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), GSH, as well as total antioxidant capacity (T-AOC), and reducing malondialdehyde (MDA) content. CCK-8 assay, senescence-associated β-galactosidase staining, and flow cytometer confirmed the cellular senescence of PC12 cells after exposing D-gal, and indicated the anti-senescence effect of NMN + Lyco in vitro. Moreover, NMN + Lyco effectively down-regulated the expressions of p53, p21, and p16 (senescence-related genes), and activated Keap1-Nrf2 signaling in both in vivo and in vitro aging models. In total, NMN + Lyco protected rats and PC12 cells from cognitive impairment and cellular senescence induced by D-gal, of which effects might be linked to the reduction of oxidative stress and the activation of Keap1-Nrf2 signaling.
Collapse
Affiliation(s)
- Xuxin Liu
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang, China.
| | - Tursunay Dilxat
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang, China.
| | - Qiang Shi
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang, China.
| | - Taoyu Qiu
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang, China.
| | - Junping Lin
- Xinjiang Changji National High-Tech Industrial Development Zone, Changji, Xinjiang, China.
| |
Collapse
|
21
|
Bajaj S, Zameer S, Jain S, Yadav V, Vohora D. Effect of the MAGL/FAAH Dual Inhibitor JZL-195 on Streptozotocin-Induced Alzheimer's Disease-like Sporadic Dementia in Mice with an Emphasis on Aβ, HSP-70, Neuroinflammation, and Oxidative Stress. ACS Chem Neurosci 2022; 13:920-932. [PMID: 35316021 DOI: 10.1021/acschemneuro.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is identified by pathological hallmarks such as intracellular neurofibrillary tangles (NFTs) and extracellular amyloid β plaques. Several hypotheses exist to define the neurodegeneration including microglial activation associated with neuroinflammatory processes. Recently, pharmacological inhibition of endocannabinoid (eCB)-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), is being investigated to modulate the pathology of Alzheimer's disease. While MAGL inhibitors upregulate 2-acyl glycerol (2-AG) levels and reduce neuroinflammation, FAAH inhibitors elevate anandamide (AEA) levels and prevent the degradation of HSP-70, thereby preventing the phosphorylation of tau protein and formation of NFTs in neural cells. We investigated the possible neuroprotective potential of the dual MAGL/FAAH inhibitor JZL-195 (20 mg/kg) against ICV-STZ-induced sporadic Alzheimer's disease (SAD) in Swiss albino mice using donepezil (5 mg/kg) as the standard. The protective effects of JZL-195 were observed by the reversal of altered levels of Aβ1-42, HSP-70, neuroinflammatory cytokines, and oxidative stress markers. However, JZL-195 expressed no cognitive improvement when assessed by spontaneous alternation behavior and Morris water maze tests and no effects on the AChE enzyme level in the hippocampal tissues of mice. Therefore, the findings of the present study indicate that although JZL-195 exhibited no improvement in cognitive deficits associated with sporadic Alzheimer's disease, it displayed significant reversal of the biochemical anomalies, thereby suggesting its therapeutic potential against the sporadic Alzheimer's disease model.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Zameer
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shreshta Jain
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Vaishali Yadav
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
22
|
Zhang J, Zhao Y, Sun N, Song M, Chen Y, Li L, Cui H, Yang H, Wang C, Zhang H, Fan H. Lycopene Alleviates Chronic Stress-Induced Spleen Apoptosis and Immunosuppression via Inhibiting the Notch Signaling Pathway in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2889-2897. [PMID: 35212537 DOI: 10.1021/acs.jafc.1c07550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chronic stress induction in immunosuppression and splenocyte apoptosis is commonly associated with increased susceptibility to various diseases. Lycopene (LYC) is a member of the carotenoid family with immune restoration and anti-apoptotic function. However, little is known about the mechanisms underlying the protective roles of LYC against spleen injury induced by chronic stress. Herein, male Wistar rats were undergoing chronic restraint stress and/or administered LYC (10 mg/kg) for 21 days. The effective model establishment was validated by open-field tests and levels of corticosterone in serum. Histopathological staining observation displayed that LYC could reduce chronic stress-induced spleen structure damage. Furthermore, LYC treatment significantly reduced the number of apoptotic-positive splenocytes caused by chronic stress via the death receptor apoptotic pathway. We detected the interleukin 4 and interferon γ levels in serum and spleen to determine the ratio of Th1 and Th2 and found that LYC can alleviate the immunosuppression induced by chronic stress. Notably, western blot and real-time polymerase chain reaction indicated that LYC can reduce the expression of the Notch-pathway-related proteins and mRNA in rats exposed to chronic stress. Further study of the potential mechanisms by adding the Notch pathway inhibitor DAPT revealed that LYC alleviates the structure damage, apoptosis, and immunosuppression caused by chronic stress via the suppression of the Notch pathway. Overall, this study presents a strong rationale to target LYC as a treatment strategy to relieve chronic stress-induced spleen injury.
Collapse
Affiliation(s)
- Jiuyan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ning Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Manyu Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lin Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Hailin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haotian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chuqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haiyang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
23
|
Zhang SQ, Tian D, Hu CY, Meng YH. Chlorogenic Acid Ameliorates High-Fat and High-Fructose Diet-Induced Cognitive Impairment via Mediating the Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2600-2615. [PMID: 35188379 DOI: 10.1021/acs.jafc.1c07479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chlorogenic acid (CGA) displays cognition-improving properties, but the underlying mechanisms remain unclear. Herein, CGA supplementation (150 mg/kg body weight) for 14 weeks significantly prevented obesity and insulin resistance, cognitive-behavioral disturbances, and synaptic dysfunction induced by a high-fat and high-fructose diet (HFFD). Moreover, CGA supplementation enhanced the expression of genes enriched in the neuroactive ligand-receptor interaction pathway and reduced inflammatory factor expressions. Furthermore, CGA treatment increased gut microbiota diversity and the level of bacterial genera producing SCFAs. CGA also decreased the concentration of energy metabolism substrates, while it increased phosphorylcholine. Finally, we observed a significant correlation among synaptic transmission genes, gut microbiota, and neurotransmission in the CGA supplementation group by targeted multiomics analysis. Together, our results supported that the alteration of gut microbiota and metabolite composition is the underlying mechanism of CGA improving cognitive function. CGA is also a promising intervention strategy to prevent HFFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Shu Qing Zhang
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| | - Dan Tian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| |
Collapse
|
24
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
25
|
Sun CC, Yin ZP, Chen JG, Wang WJ, Zheng GD, Li JE, Chen LL, Zhang QF. Dihydromyricetin Improves Cognitive Impairments in d-Galactose-Induced Aging Mice through Regulating Oxidative Stress and Inhibition of Acetylcholinesterase. Mol Nutr Food Res 2022; 66:e2101002. [PMID: 34932880 DOI: 10.1002/mnfr.202101002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Indexed: 02/05/2023]
Abstract
SCOPE Alzheimer's disease (AD) is a neurodegenerative disease with phenomena of cognitive impairments. Oxidative stress and cholinergic system dysfunction are two widely studied pathogenesis of AD. Dihydromyricetin (DMY) is a natural dihydroflavonol with many bioactivities. In this study, it is aimed to investigate the effects of DMY on cognitive impairment in d-galactose (d-gal) induced aging mice. METHODS AND RESULTS Mice are intraperitoneally injected with d-gal for 16 weeks, and DMY is supplemented in drinking water. The results show that DMY significantly improves d-gal-induced cognitive impairments in novel object recognition and Y-maze studies. H&E and TUNEL staining show that DMY could improve histopathological changes and cell apoptosis in mice brain. DMY effectively induces the activities of catalase, superoxide dismutase and glutathione peroxidase, and reduces malondialdehyde level in mice brain and liver. Furthermore, DMY reduces cholinergic injury by inhibiting the activity of Acetylcholinesterase (AChE) in mice brain. In vitro studies show that DMY is a non-competitive inhibitor of AChE with IC50 value of 161.2 µg mL-1 . CONCLUSION DMY alleviates the cognitive impairments in d-gal-induced aging mice partly through regulating oxidative stress and inhibition of acetylcholinesterase.
Collapse
Affiliation(s)
- Cui-Cui Sun
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ling-Li Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
26
|
Huang T, Yu J, Ma Z, Fu Q, Liu S, Luo Z, Liu K, Yu L, Miao W, Yu D, Song Z, Li Y, Zhou L, Xu G. Translatomics Probes Into the Role of Lycopene on Improving Hepatic Steatosis Induced by High-Fat Diet. Front Nutr 2021; 8:727785. [PMID: 34796193 PMCID: PMC8594419 DOI: 10.3389/fnut.2021.727785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Liver is an important organ for fat metabolism. Excessive intake of a high-fat/energy diet is a major cause of hepatic steatosis and its complications such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Supplementation with lycopene, a natural compound, is effective in lowering triglyceride levels in the liver, although the underlying mechanism at the translational level is unclear. In this study, mice were fed a high-fat diet (HFD) to induce hepatic steatosis and treated with or without lycopene. Translation omics and transcriptome sequencing were performed on the liver to explore the regulatory mechanism of lycopene in liver steatosis induced by HFD, and identify differentially expressed genes (DEGs). We identified 1,358 DEGs at the translational level. Through transcriptomics and translatomics joint analysis, we narrowed the range of functional genes to 112 DEGs and found that lycopene may affect lipid metabolism by regulating the expression of LPIN1 at the transcriptional and translational levels. This study provides a powerful tool for translatome and transcriptome integration and a new strategy for the screening of candidate genes.
Collapse
Affiliation(s)
- Tengda Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qinghua Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weiwei Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dongling Yu
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Gaoxiao Xu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China
| |
Collapse
|
27
|
Sarker MT, Wan X, Yang H, Wang Z. Dietary Lycopene Supplementation Could Alleviate Aflatoxin B 1 Induced Intestinal Damage through Improving Immune Function and Anti-Oxidant Capacity in Broilers. Animals (Basel) 2021; 11:3165. [PMID: 34827896 PMCID: PMC8614560 DOI: 10.3390/ani11113165] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aims to evaluate the effects of lycopene (LYC) supplementation on the intestinal immune function, barrier function, and antioxidant capacity of broilers fed with aflatoxinB1 (AFB1) contaminated diet. A total of 144 one-day-old male Arbor Acres broilers were randomly divided into three dietary treatment groups; each group consisted of six replicates (eight birds in each cage). Treatments were: (1) a basal diet containing neither AFB1 nor LYC (Control), (2) basal diet containing 100 µg/kg AFB1, and (3) basal diets with 100 µg/kg AFB1 and 200 mg/kg LYC (AFB1 and LYC). The results showed that dietary LYC supplementation ameliorated the AFB1 induced broiler intestinal changes by decreasing the inflammatory cytokines interferon-γ (IFN-γ), interleukin 1beta (IL-1β), and increasing mRNA abundances of cludin-1 (CLDN-1) and zonula occludens-1 (ZO-1) in the jejunum mucosa. On the other hand, AFB1-induced increases in serum diamine oxidase (DAO) activities, D-lactate concentration, mucosal malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations were reversed by dietary LYC supplementation (p < 0.05). Additionally, LYC supplementation ameliorated the redox balance through increasing the antioxidant enzyme activities and their related mRNA expression abundances compared to AFB1 exposed broilers. In conclusion, dietary supplementation with LYC could alleviate AFB1 induced broiler intestinal immune function and barrier function damage and improve antioxidants status.
Collapse
Affiliation(s)
| | | | | | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, No. 48 Wenhui East Road, Yangzhou 225009, China; (M.T.S.); (X.W.); (H.Y.)
| |
Collapse
|
28
|
Zhang H, Jiao W, Cui H, Sun Q, Fan H. Combined exposure of alumina nanoparticles and chronic stress exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway in rats. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125179. [PMID: 33858114 DOI: 10.1016/j.jhazmat.2021.125179] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (AlNPs) exposure causes hippocampal-dependent cognitive dysfunction. However, whether chronic stress exacerbates AlNPs-induced hippocampal lesion and its mechanism remains unclear. This study was aimed to investigate the combined effects and mechanisms of AlNPs and chronic stress on the hippocampal lesion. The behavioral tests demonstrated that combined exposure to AlNPs and chronic restraint stress (CRS) worsened both cognition and depression-like behavior than exposed to AlNPs and CRS alone. Microstructural and ultrastructural observations showed that combined exposure to AlNPs and CRS exacerbated hippocampal damage. Both AlNPs and CRS induced hippocampal neuronal ferroptosis, presenting as iron and glutamate metabolism disorder, GPX4 fluorescence of neurons decrease, LPO and ROS levels increase, and FJB-positive neurons increase. Meanwhile, combined exposure to AlNPs and CRS exacerbated hippocampal neuronal ferroptosis. Mechanism investigation revealed that combined exposure to AlNPs and CRS activated IFN-γ/ASK1/JNK signaling pathway. Furthermore, IFN-γ neutralizing antibody R4-6A2 effectively inhibited the activation of IFN-γ/ASK1/JNK signaling pathway, alleviated hippocampal neuronal ferroptosis and improved cognition ability. ASK1 inhibitor GS-4997 also improved hippocampal neuronal ferroptosis and cognitive dysfunction by inhibiting ASK1/JNK signaling pathway. Together, these results demonstrate that combined exposure to AlNPs and CRS exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hailin Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qinghong Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
29
|
Ren B, Wang L, Shi L, Jin X, Liu Y, Liu RH, Yin F, Cadenas E, Dai X, Liu Z, Liu X. Methionine restriction alleviates age-associated cognitive decline via fibroblast growth factor 21. Redox Biol 2021; 41:101940. [PMID: 33765615 PMCID: PMC8022247 DOI: 10.1016/j.redox.2021.101940] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Methionine restriction (MR) extends lifespan and delays the onset of aging-associated pathologies. However, the effect of MR on age-related cognitive decline remains unclear. Here, we find that a 3-month MR ameliorates working memory, short-term memory, and spatial memory in 15-month-old and 18-month-old mice by preserving synaptic ultrastructure, increasing mitochondrial biogenesis, and reducing the brain MDA level in aged mice hippocampi. Transcriptome data suggest that the receptor of fibroblast growth factor 21 (FGF21)-related gene expressions were altered in the hippocampi of MR-treated aged mice. MR increased FGF21 expression in serum, liver, and brain. Integrative modelling reveals strong correlations among behavioral performance, MR altered nervous structure-related genes, and circulating FGF21 levels. Recombinant FGF21 treatment balanced the cellular redox status, prevented mitochondrial structure damages, and upregulated antioxidant enzymes HO-1 and NQO1 expression by transcriptional activation of Nrf2 in SH-SY5Y cells. Moreover, knockdown of Fgf21 by i.v. injection of adeno-associated virus abolished the neuroprotective effects of MR in aged mice. In conclusion, the MR exhibited the protective effects against age-related behavioral disorders, which could be partly explained by activating circulating FGF21 and promoting mitochondrial biogenesis, and consequently suppressing the neuroinflammation and oxidative damages. These results demonstrate that FGF21 can be used as a potential nutritional factor in dietary restriction-based strategies for improving cognition associated with neurodegeneration disorders. MR suppresses age-associated cognitive impairment. MR improves synapse ultrastructure and mitochondrial biogenesis in the hippocampus. FGF21 is required for the beneficial effects of MR. FGF21 activates Nrf2 signaling and alleviates neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 710119, China
| | - Xin Jin
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yan Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, 14853-7201, NY, USA
| | - Fei Yin
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, 85721, AZ, USA
| | - Enrique Cadenas
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, CA, USA
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Food Science, Cornell University, Ithaca, 14853-7201, NY, USA.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
30
|
Seyed Hashemi M, Namiranian N, Tavahen H, Dehghanpour A, Rad MH, Jam-Ashkezari S, Emtiazy M, Hashempur MH. Efficacy of Pomegranate Seed Powder on Glucose and Lipid Metabolism in Patients with Type 2 Diabetes: A Prospective Randomized Double-Blind Placebo-Controlled Clinical Trial. Complement Med Res 2020; 28:226-233. [PMID: 33302270 DOI: 10.1159/000510986] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/16/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Pomegranate is known as a functional food which has multiple health-promoting activities. It has been assessed for patients with metabolic syndrome. Specifically, an antidiabetic activity of its juice and plausible mechanisms for its action have been shown in multitudinous studies. The aim of this study was assessing the effects of complementary treatment with pomegranate seed powder (PSP) oral supplementation on patients with type 2 diabetes mellitus (T2DM). METHODS Sixty patients were treated for 8 weeks by 5 g PSP or placebo, twice daily. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), total cholesterol, and triglyceride (TG) were recorded as the outcome measures at the beginning and after the intervention. The findings were analyzed using the independent t test and Mann-Whitney U test. RESULTS After 8 weeks, the mean differences of FBG, HbA1c, cholesterol, and TG were significantly decreased in the PSP group when compared with the placebo group (p value <0.05). In addition, post-intervention values of FBG and HbA1c were significantly lower in patients treated with PSP compared to the placebo group (p values = 0.02 and 0.01, respectively). However, the latter comparison regarding cholesterol and TG showed no significant differences (p values = 0.51 and 0.26, respectively). CONCLUSION It seems that complementary treatment with PSP may have beneficial effects on FBG and HbA1c of patients with T2DM. However, its effect on TG and cholesterol was equivocal.
Collapse
Affiliation(s)
- Monire Seyed Hashemi
- Department of Persian Medicine, The School of Persian Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Namiranian
- Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hemaseh Tavahen
- Department of Persian Medicine, The School of Persian Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Dehghanpour
- Department of Persian Medicine, The School of Persian Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hadi Rad
- Agricultural and Natural Resource Research and Education Center, Agriculture Research Education and Extension Organization (AREEO), Yazd, Iran
| | - Saeedeh Jam-Ashkezari
- Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Emtiazy
- Department of Persian Medicine, The School of Persian Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research Center of Persian Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hashem Hashempur
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran, .,Department of Persian Medicine, Fasa University of Medical Sciences, Fasa, Iran,
| |
Collapse
|
31
|
Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochem Int 2020; 140:104823. [DOI: 10.1016/j.neuint.2020.104823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
|
32
|
Zhao Y, Ma DX, Wang HG, Li MZ, Talukder M, Wang HR, Li JL. Lycopene Prevents DEHP-Induced Liver Lipid Metabolism Disorder by Inhibiting the HIF-1α-Induced PPARα/PPARγ/FXR/LXR System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11468-11479. [PMID: 32962341 DOI: 10.1021/acs.jafc.0c05077] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widespread pollutant that badly affects animals and human health. Lycopene (LYC) has been used as a dietary supplement that has effective antioxidant and antiobesity functions. The present goal was to understand the molecular mechanisms of LYC preventing DEHP-induced lipid metabolism of the liver. The mice were intragastrically administered with LYC (5 mg/kg) and/or DEHP (500 mg/kg or 1000 mg/kg). Here, we found that LYC attenuated DEHP-caused hepatic histopathological lesions including steatosis. Hematological and biochemical analyses revealed that LYC ameliorated DEHP-caused liver function and lipid metabolism disorders. DEHP caused lipid metabolism disorders via activating the peroxisome proliferator activated receptor α/γ (PPARα/γ) signal transducer and Farnesoid X receptor (FXR)/liver X receptor (LXR) signaling pathway. As a major regulator of lipid metabolism, hypoxia-inducible factor-1α (HIF-1α) system was elevated with increased fatty degeneration under DEHP exposure. However, LYC could decrease the levels of HIF-1α/PPARα/PPARγ/FXR/LXR signaling pathway-related factors. Our research indicated that LYC could prevent DEHP-induced lipid metabolism disorders via inhibiting the HIF-1α-mediated PPARα/PPARγ/FXR/LXR system. This study may provide a possible molecular mechanism for fatty liver induced by DEHP.
Collapse
Affiliation(s)
| | | | - Hong-Guang Wang
- The Technical Identification Station of Agricultural Products and Veterinary Drug and Animal Feed in Heilongjiang Province, Harbin 150000, P. R. China
| | | | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | | | | |
Collapse
|
33
|
Effects of lycopene on skeletal muscle-fiber type and high-fat diet-induced oxidative stress. J Nutr Biochem 2020; 87:108523. [PMID: 33039582 DOI: 10.1016/j.jnutbio.2020.108523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023]
Abstract
Increasing studies report that many natural products can participate in formation of muscle fibers. This study aimed to investigate the effect of lycopene on skeletal muscle-fiber type in vivo and in vitro. C2C12 myoblasts were used in vitro study, and the concentration of lycopene was 10 µM. In vivo, 8-week-old male C57/BL6 mice were used and divided into four groups (n=8): (1) ND: normal-fat diet; (2) ND+Lyc: normal-fat diet mixed with 0.33% w/w lycopene; (3) HFD: high-fat diet; and (4) HFD+Lyc: high-fat diet mixed with 0.33% w/w lycopene. The mice tissue samples were collected after 8 weeks feeding. We found that lycopene supplementation enhanced the protein expression of slow-twitch fiber, succinate dehydrogenase, and malic dehydrogenase enzyme activities, whereas lycopene reduced the protein expression of fast-twitch fibers, lactate dehydrogenase, pyruvate kinase enzyme activities. Moreover, lycopene can promote skeletal muscle triglyceride deposition, enhanced the mRNA expression of genes related to lipid synthesis, reduced the mRNA expression of genes related to lipolysis. And high-fat diet-induced dyslipidemia and oxidative stress were attenuated after lycopene supplementation. Additionally, lycopene supplementation reduced the glycolytic reserve but enhanced mitochondrial ATP production in C2C12 cells. These results demonstrated that lycopene affects the activities of metabolic enzymes in muscle fibers, promotes the expression of slow-twitch fibers, and enhanced mitochondrial respiratory capacity. We speculated that lycopene affects the muscle-fiber type through aerobic oxidation, suggesting that lycopene exerts potential beneficial effects on skeletal muscle metabolism.
Collapse
|
34
|
Qu M, Ni Y, Guo B, Feng X, Jiang Z. Lycopene antagonizes lead toxicity by reducing mitochondrial oxidative damage and mitochondria-mediated apoptosis in cultured hippocampal neurons. MedComm (Beijing) 2020; 1:228-239. [PMID: 34766121 PMCID: PMC8491193 DOI: 10.1002/mco2.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023] Open
Abstract
Lead (Pb) exhibits serious adverse effects on the central nervous system, and the major pathogenic mechanism of Pb toxicity is oxidative stress. As one of the carotenoid family members with potent antioxidant properties, lycopene has shown its protections by inhibiting oxidative stress damage in numerous models of neurotoxicity. The current study was designed to explore the possible protective property in primary cultured rat hippocampal neurons challenged with Pb. We observed that 5 μM lycopene pretreatment for 4 h efficiently ameliorated Pb‐caused damage in cell viability, accumulation of reactive oxygen species (ROS), and apoptosis in a dose‐dependent manner. Moreover, lycopene (5 μM) attenuated the 50 μM Pb‐induced mitochondrial ROS production, improved the activities of mitochondrial respiratory chain enzymes and ATP production, and ameliorated the 50 μM Pb‐induced depolarization of mitochondrial membrane potential as well as opening of mitochondrial permeability transition pores. In addition, 5 μM lycopene restored the imbalance of Bax/Bcl‐2, inhibited translocation of cytochrome c, and reduced caspase‐3 activation. Taken together, these findings indicate that lycopene antagonizes against Pb‐induced neurotoxicity and the underlying mechanism probably involves reduction of mitochondrial oxidative damage and mitochondria‐mediated apoptosis.
Collapse
Affiliation(s)
- Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center Beijing China
| | - Yanli Ni
- The PLA Rocket Force Characteristic Medical Center Beijing China
| | - Baoshi Guo
- The PLA Rocket Force Characteristic Medical Center Beijing China
| | - Xin Feng
- The PLA Rocket Force Characteristic Medical Center Beijing China
| | - Zheng Jiang
- The PLA Rocket Force Characteristic Medical Center Beijing China
| |
Collapse
|
35
|
Zhang H, Wei M, Sun Q, Yang T, Lu X, Feng X, Song M, Cui L, Fan H. Lycopene ameliorates chronic stress-induced hippocampal injury and subsequent learning and memory dysfunction through inhibiting ROS/JNK signaling pathway in rats. Food Chem Toxicol 2020; 145:111688. [PMID: 32810585 DOI: 10.1016/j.fct.2020.111688] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
The natural carotenoid lycopene (LYC) has strong antioxidant and neuroprotective capacities. This study investigated the effects and mechanisms of LYC on chronic stress-induced hippocampal lesions and learning and memory dysfunction. Rats were administered LYC and/or chronic restraint stress (CRS) for 21 days. Morris water maze results demonstrated that LYC prevented CRS-induced learning and memory dysfunction. Histopathological staining and transmission electron microscopy observation revealed that LYC ameliorated CRS-induced hippocampal microstructural and ultrastructural damage. Furthermore, LYC alleviated CRS-induced oxidative stress by reducing reactive oxygen species (ROS) production and enhancing antioxidant enzyme activities. LYC also improved CRS-induced hippocampal mitochondrial dysfunction by recovering mitochondrial membrane potential, and complex I (NADH dehydrogenase) and II (succinate dehydrogenase) activities. Moreover, LYC reduced CRS-induced apoptosis via the mitochondrial apoptotic pathway, and decreased the number of terminal deoxynucleotidyl transferase dUTP nick-end-labeled positive cells. Additionally, western blot analysis demonstrated that LYC inhibited CRS-induced activation of the c-Jun N-terminal kinase (JNK) signaling pathway. Correlation analysis indicated that ROS levels, JNK activation, and the mitochondrial apoptotic pathway were positively correlated. Further investigation of the underlying mechanisms revealed that the ROS scavenger N-acetyl-l-cysteine inhibited CRS-induced JNK activation. Furthermore, the JNK inhibitor SP600125 relieved CRS-induced hippocampal mitochondrial dysfunction, apoptosis via the mitochondrial apoptotic pathway, and learning and memory dysfunction. Together, these results suggest that LYC alleviates hippocampal oxidative stress, mitochondrial dysfunction, and apoptosis by inhibiting the ROS/JNK signaling pathway, thereby improving CRS-induced hippocampal injury and learning and memory dysfunction. This study provides a theoretical basis and new therapeutic strategies for the application of LYC to relieve chronic stress encephalopathy.
Collapse
Affiliation(s)
- Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mian Wei
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qinghong Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiangyu Lu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiujing Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Miao Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lin Cui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
36
|
Imran M, Ghorat F, Ul-Haq I, Ur-Rehman H, Aslam F, Heydari M, Shariati MA, Okuskhanova E, Yessimbekov Z, Thiruvengadam M, Hashempur MH, Rebezov M. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants (Basel) 2020; 9:antiox9080706. [PMID: 32759751 PMCID: PMC7464847 DOI: 10.3390/antiox9080706] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Lycopene, belonging to the carotenoids, is a tetraterpene compound abundantly found in tomato and tomato-based products. It is fundamentally recognized as a potent antioxidant and a non-pro-vitamin A carotenoid. Lycopene has been found to be efficient in ameliorating cancer insurgences, diabetes mellitus, cardiac complications, oxidative stress-mediated malfunctions, inflammatory events, skin and bone diseases, hepatic, neural and reproductive disorders. This review summarizes information regarding its sources and uses amongst different societies, its biochemistry aspects, and the potential utilization of lycopene and possible mechanisms involved in alleviating the abovementioned disorders. Furthermore, future directions with the possible use of this nutraceutical against lifestyle-related disorders are emphasized. Its protective effects against recommended doses of toxic agents and toxicity and safety are also discussed.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan;
| | - Fereshteh Ghorat
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar 9617913112, Iran;
| | - Iahtisham Ul-Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore 53720, Pakistan;
| | - Habib Ur-Rehman
- Department of Clinical Nutrition, NUR International University, Lahore 54000, Pakistan;
| | - Farhan Aslam
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan;
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia;
| | - Eleonora Okuskhanova
- Food Science and Technology Department, Shakarim State University of Semey, Semey 071412, Kazakhstan; (E.O.); (Z.Y.)
| | - Zhanibek Yessimbekov
- Food Science and Technology Department, Shakarim State University of Semey, Semey 071412, Kazakhstan; (E.O.); (Z.Y.)
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
- Correspondence: (M.T.); (M.H.H.); Tel.: +82-02450-0577 (M.T.); +98-71-53314076 (M.H.H.)
| | - Mohammad Hashem Hashempur
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
- Department of Persian Medicine, Fasa University of Medical Sciences, Fasa 7461686688, Iran
- Correspondence: (M.T.); (M.H.H.); Tel.: +82-02450-0577 (M.T.); +98-71-53314076 (M.H.H.)
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow 109029, Russia;
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow 109004, Russia
| |
Collapse
|
37
|
Zhang W, Hua H, Guo Y, Cheng Y, Pi F, Yao W, Xie Y, Qian H. Torularhodin from Sporidiobolus pararoseus Attenuates d-galactose/AlCl 3-Induced Cognitive Impairment, Oxidative Stress, and Neuroinflammation via the Nrf2/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6604-6614. [PMID: 32476418 DOI: 10.1021/acs.jafc.0c01892] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress and neuroinflammation are considered as crucial culprits in Alzheimer's disease (AD). Torularhodin, a carotenoid pigment, possesses powerful antioxidant activity. This study aimed to elucidate the protective effects of torularhodin in the AD-like mouse model and investigated the underlying mechanisms. Behavioral and histopathological results suggested that torularhodin relieved cognitive impairments, attenuated Aβ accumulation, and inhibited glial overactivation in d-gal/AlCl3-induced ICR mice. Simultaneously, torularhodin also markedly increased antioxidant enzyme capacities, lowered the contents of RAGE, and reduced levels of inflammatory cytokines. Western blot results showed that torularhodin ameliorated neuronal oxidative damage via activation of Nrf2 translocation, upregulation of HO-1, and inactivation of NF-κB in vivo and in vitro. Thus, torularhodin effectively ameliorated cognitive impairment, oxidative stress, and neuroinflammation, possibly through the Nrf2/NF-κB signaling pathways, suggesting torularhodin might offer a promising prevention strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Hanyi Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Fuwei Pi
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| |
Collapse
|
38
|
Ni Y, Zhuge F, Nagashimada M, Nagata N, Xu L, Yamamoto S, Fuke N, Ushida Y, Suganuma H, Kaneko S, Ota T. Lycopene prevents the progression of lipotoxicity-induced nonalcoholic steatohepatitis by decreasing oxidative stress in mice. Free Radic Biol Med 2020; 152:571-582. [PMID: 31790829 DOI: 10.1016/j.freeradbiomed.2019.11.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
Excessive fatty acid uptake-induced oxidative stress causes liver injury and the consecutive recruitment of inflammatory immune cells, thereby promoting the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Lycopene, the most effective singlet oxygen scavenger of the antioxidant carotenoids, has anti-inflammatory activity. Here, we investigated the preventive and therapeutic effects of lycopene in a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet. Lycopene alleviated excessive hepatic lipid accumulation and enhanced lipolysis, decreased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis, and subsequently reduced the recruitment of CD4+ and CD8+ T cells in the liver. Importantly, lycopene reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. In parallel, lycopene decreased LPS-/IFN-γ-/TNFα-induced M1 marker mRNA levels in peritoneal macrophages, as well as TGF-β1-induced expression of fibrogenic genes in a stellate cell line, in a dose-dependent manner. These results were associated with decreased oxidative stress in cells, which might be mediated by the expression of NADPH oxidase subunits. In summary, lycopene prevented and reversed lipotoxicity-induced inflammation and fibrosis in NASH mice by reducing oxidative stress. Therefore, it might be a novel and promising treatment for NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Mayumi Nagashimada
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Division of Health Science, Graduate of Medical Science, Kanazawa University, Kanazawa, 920-0942, Japan
| | - Naoto Nagata
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Liang Xu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sayo Yamamoto
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | - Nobuo Fuke
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | | | - Shuichi Kaneko
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tsuguhito Ota
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.
| |
Collapse
|
39
|
Li H, Chen A, Zhao L, Bhagavathula AS, Amirthalingam P, Rahmani J, Salehisahlabadi A, Abdulazeem HM, Adebayo O, Yin X. Effect of tomato consumption on fasting blood glucose and lipid profiles: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2020; 34:1956-1965. [PMID: 32243013 DOI: 10.1002/ptr.6660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
Tomato (Solanum lycopersicum) phytochemicals, which include phytoene, phytofluene, beta-carotene, flavonoids, lycopene, and polyphenols, have been shown to improve the effects of fasting on plasma triglyceride (TG), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol (TC), and fasting blood sugar (FBS). The aim of this study was to systematically evaluate the effects of Tomato TC, TG, HDL, LDL, and FBS in humans. A systematic literature search was conducted in PubMed/MEDLINE, Web of sciences, and SCOPUS databases by two researchers for studies published until August of 2019 without language and time limitations. Results were combined with random effect models. Six studies were included in this meta-analysis. Combined results reveal a significant reduction in cholesterol (weighted mean difference [WMD]: -4.39 mg/dl, 95% CI: -7.09, -1.68, I2 = % 48, p heterogeneity: .05), TG (WMD: -3.94 mg/dl, 95% CI: -7.67, -0.21, I2 = % 90, p heterogeneity: .001), LDL levels (WMD: -2.09 mg/dl, 95% CI: -3.73, -0.81, I2 = % 78, p heterogeneity: .001), and increasing in HDL levels (WMD: 2.25 mg/dl, 95% CI: 0.41, 4.10, I2 = % 97, p heterogeneity: .001). Tomato was found to have a higher reduction effect on TG and LDL in younger participants. While pooled results indicate no significant effect on FBS levels (WMD: 0.59 mg/dl, 95% CI: -0.28, 1.46, I2 = % 95, p heterogeneity: .001). In conclusion, the results indicate a significant reduction in total cholesterol, TG, and LDL and increase in HDL levels that is caused by tomato consumption.
Collapse
Affiliation(s)
- Hao Li
- Department of Endocrinology, Shandong Provincial Third Hospital, Shandong University, Jinan City, Shandong Province, China
| | - Airong Chen
- Health Management Center, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Li Zhao
- Department of Pediatrics, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Akshaya S Bhagavathula
- Department of Internal Medicine, College of Medicine and Health Sciences, UAE University, Al Ain, UAE
| | | | - Jamal Rahmani
- Department of Community Nutrition, Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ammar Salehisahlabadi
- Department of Community Nutrition, Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Oladimeji Adebayo
- Department of Medicine, University College Hospital, Ibadan, Nigeria
| | - Xiao Yin
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
40
|
Zhao B, Wu J, Li J, Bai Y, Luo Y, Ji B, Xia B, Liu Z, Tan X, Lv J, Liu X. Lycopene Alleviates DSS-Induced Colitis and Behavioral Disorders via Mediating Microbes-Gut-Brain Axis Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3963-3975. [PMID: 32162923 DOI: 10.1021/acs.jafc.0c00196] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gut microbes play significant roles in colitis development. The current study was aimed to uncover the preventive effects of lycopene (LYC), a functional carotenoid component, on colitis and the accompanied behavior disorders. The current study demonstrated that LYC treatment (50 mg/kg body weight/day) for 40 days prevented the dextran sulfate sodium (DSS)-induced gut barrier damages and inflammatory responses in male mice. LYC improved DSS-induced depression and anxiety-like behavioral disorders by suppressing neuroinflammation and prevented synaptic ultrastructure damages by upregulating the expressions of neurotrophic factor and postsynaptic-density protein. Moreover, LYC reshaped the gut microbiome in colitis mice by decreasing the relative abundance of proteobacteria and increasing the relative abundance of Bifidobacterium and Lactobacillus. LYC also elevated the generation of short-chain fatty acids and inhibited the permeability of lipopolysaccharide in colitis mice. In conclusion, LYC ameliorate DSS-induced colitis and behavioral disorders via mediating microbes-gut-brain axis balance.
Collapse
Affiliation(s)
- Beita Zhao
- College of Life Sciences, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| | - Jianbin Wu
- College of Food Science and Engineering, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| | - Jinghao Li
- College of Food Science and Engineering, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| | - Yue Bai
- College of Food Science and Engineering, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| | - Yong Luo
- College of Food Science and Engineering, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| | - Bing Ji
- College of Food Science and Engineering, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
- Department of Food Science, Cornell University, Ithaca, 14850 New York, United States
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xinong Rd 22, Yangling 712100, China
| |
Collapse
|
41
|
Lycopene prevents lipid accumulation in hepatocytes by stimulating PPARα and improving mitochondrial function. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Ren B, Yuan T, Zhang X, Wang L, Pan J, Liu Y, Zhao B, Zhao W, Liu Z, Liu X. Protective Effects of Sesamol on Systemic Inflammation and Cognitive Impairment in Aging Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3099-3111. [PMID: 32067456 DOI: 10.1021/acs.jafc.9b07598] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sesamol, a lignan in sesame, possesses several bioactivities, such as antioxidation, anti-inflammation, and neuroprotective capability. In this study, the effects of sesamol on aging-caused cognitive defects are investigated. Twelve-month-old mice were treated with sesamol (0.1%, w/w) as dietary supplementation for 12 weeks. Behavioral tests revealed that sesamol improved aging-associated cognitive impairments. Sesamol decreased aging-induced oxidative stress via suppression of malondialdehyde production and increased antioxidant enzymes. Histological staining showed that sesamol treatment improved aging-induced neuronal damage and synaptic dysfunction in the hippocampus. Furthermore, sesamol significantly reduced aging-induced neuroinflammation by inhibiting the microglial overactivation and inflammatory cytokine expressions. Meanwhile, the accumulation of Aβ1-42 was reduced by sesamol treatment. Moreover, sesamol protected the gut barrier integrity and reduced LPS release, which was highly associated with its beneficial effects on behavioral and inflammatory changes. In conclusion, our findings indicated that the use of sesamol is feasible in the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tian Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xinglin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Junru Pan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Weiyang Zhao
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
43
|
Lu Y, Zhou L, He S, Ren HL, Zhou N, Hu ZM. Lycopene alleviates disc degeneration under oxidative stress through the Nrf2 signaling pathway. Mol Cell Probes 2020; 51:101559. [PMID: 32151764 DOI: 10.1016/j.mcp.2020.101559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is a main cause of diseases such as discogenic low back pain, cervical and lumbar disc herniation, degenerative spinal stenosis, and lumbar spondylolisthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important transcription factor, regulates antioxidant genes and induces cellular defense mechanisms against oxidative stress. In this study, the protective effect of plant antioxidant lycopene on nucleus pulposus cells (NPCs) under oxidative stress was investigated. The results indicated that Nrf2 expression decreased in degenerated NPCs. We further found that lycopene was protective in NP tissue under oxidative stress and alleviated oxidative stress-induced apoptosis of degenerative human NPCs via Nrf2. The results also showed that lycopene reduced H2O2-induced decomposition of cartilage extracellular matrix in NPCs. In conclusion, our findings suggested that lycopene may alleviate disc degeneration under oxidative stress through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Li Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Shan He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Hong-Lei Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Nian Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| | - Zhen-Ming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
44
|
Zhang Q, Tan W, Yang L, Lu M, Dong S, Liu X, Duan X. Multi-Omics Analysis of the Effects of Egg Ovotransferrin on the Gut Environment in Mice: Mucosal Gene Expression, Microbiota Composition, and Intestinal Structural Homeostasis. Mol Nutr Food Res 2020; 64:e1901024. [PMID: 31991508 DOI: 10.1002/mnfr.201901024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/05/2020] [Indexed: 01/29/2023]
Abstract
SCOPE Egg ovotransferrin (OVT) is considered a functional food ingredient for its various bioactivities. The objective of this work is to explore the potential biological activity of OVT on the gut health. METHODS AND RESULTS Both young (3 week old) and adult (8 week old) mouse models are utilized in this research. Each group receives a standard diet containing either OVT (experimental group) or distilled water (control group) for a 14 day period. Transcriptome and 16S rDNA sequencing analyses are applied to characterize the gene expression in colonic epithelial cells and gut microbiota composition. In the young groups, OVT suppresses the genes correlated with lipid metabolism and signal transduction. The regulated genes in the adult groups encompass various biological processes, including lipid metabolism, signal transduction, endocrine system, and others. OVT increases the proportion of some beneficial bacteria significantly, especially Akkermansia, and inhibits some harmful bacteria. Furthermore, OVT affects mucosal morphology positively via increasing the crypt depth. OVT also increases the expression of tight junction protein occludin by 3.0- and 5.2-folds in young and adult groups, respectively. CONCLUSION OVT exhibits some beneficial effects on the gut environment. These positive findings provide new insight into the understanding of OVT as an excellent functional ingredient.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China
| | - Wen Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China
| | - Lu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China
| | - Mei Lu
- Department of Food Science and Technology, 249 Food Innovation Center, Lincoln, NE, 68588, USA
| | - Shijian Dong
- Rongda Poultry Farming Co., ltd., Guangde, 242200, Anhui Province, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China
| |
Collapse
|
45
|
Zhao Q, Yang F, Meng L, Chen D, Wang M, Lu X, Chen D, Jiang Y, Xing N. Lycopene attenuates chronic prostatitis/chronic pelvic pain syndrome by inhibiting oxidative stress and inflammation via the interaction of NF-κB, MAPKs, and Nrf2 signaling pathways in rats. Andrology 2020; 8:747-755. [PMID: 31880092 PMCID: PMC7317562 DOI: 10.1111/andr.12747] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Background Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is identified as a urinary andrological diseases that afflict men due to various discomforts. It is urgent and meaningful to develop the novel and effective treatments as a result of the unclear etiology and dismal therapeutic effect of CP/CPPS. Lycopene exerts a crucial role in numerous chronic inflammatory diseases owing to its potent antioxidant capacity. Objective This study aimed to observe the effect of lycopene on CP/CPPS and to explore the underlying mechanisms. Materials and Methods A CP/CPPS model with complete Freund's adjuvant was established in this study. Afterward, intragastric lycopene or corn oil was administered daily for 4 consecutive weeks. Finally, the cardiac blood and prostate tissue samples were collected from rats to carry out related evaluation and testing. Results It was found in this study that lycopene alleviated changes in prostate histopathology compared with those in the complete Freund's adjuvant‐induced CP/CPPS model rats without lycopene treatment. Furthermore, lycopene was suggested to reduce the levels of chemokines MCP1 and MIP‐1α, down‐regulate the expression levels of cytokines (such as TNFα, IL‐1β, IL‐2, and IL‐6), and up‐regulate those of CAT, GSH‐PX, and T‐SOD, decrease that of malondialdehyde. Moreover, it also inhibited the phosphorylation of MAPKs, NF‐κB, and enhanced phosphorylation of the Nrf2 in the CP/CPPS rat model. Discussion and Conclusions The findings in this study suggest that lycopene exerts potent anti‐ CP/CPPS Seffects through alleviating inflammatory response and oxidative stress, which is probably attributed to the interaction of NF‐κB, MAPKs, and Nrf2 signaling pathways in rats. As a natural antioxidant, lycopene may serve as a promising pharmaceutical preparation for treating CP/CPPS.
Collapse
Affiliation(s)
- Qinxin Zhao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingquan Meng
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.,Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingshuai Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Xinxing Lu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Zhu NW, Yin XL, Lin R, Fan XL, Chen SJ, Zhu YM, Zhao XZ. Possible mechanisms of lycopene amelioration of learning and memory impairment in rats with vascular dementia. Neural Regen Res 2020; 15:332-341. [PMID: 31552907 PMCID: PMC6905346 DOI: 10.4103/1673-5374.265565] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is involved in the pathogenesis of vascular dementia. Studies have shown that lycopene can significantly inhibit oxidative stress; therefore, we hypothesized that lycopene can reduce the level of oxidative stress in vascular dementia. A vascular dementia model was established by permanent bilateral ligation of common carotid arteries. The dosage groups were treated with lycopene (50, 100 and 200 mg/kg) every other day for 2 months. Rats without bilateral carotid artery ligation were prepared as a sham group. To test the ability of learning and memory, the Morris water maze was used to detect the average escape latency and the change of search strategy. Hematoxylin-eosin staining was used to observe changes of hippocampal neurons. The levels of oxidative stress factors, superoxide dismutase and malondialdehyde, were measured in the hippocampus by biochemical detection. The levels of reactive oxygen species in the hippocampus were observed by dihydroethidium staining. The distribution and expression of oxidative stress related protein, neuron-restrictive silencer factor, in hippocampal neurons were detected by immunofluorescence histochemistry and western blot assays. After 2 months of drug administration, (1) in the model group, the average escape latency was longer than that of the sham group, and the proportion of straight and tend tactics was lower than that of the sham group, and the hippocampal neurons were irregularly arranged and the cytoplasm was hyperchromatic. (2) The levels of reactive oxygen species and malondialdehyde in the hippocampus of the model group rats were increased, and the activity of superoxide dismutase was decreased. (3) Lycopene (50, 100 and 200 mg/kg) intervention improved the above changes, and the lycopene 100 mg/kg group showed the most significant improvement effect. (4) Neuron-restrictive silencer factor expression in the hippocampus was lower in the sham group and the lycopene 100 mg/kg group than in the model group. (5) The above data indicate that lycopene 100 mg/kg could protect against the learning-memory ability impairment of vascular dementia rats. The protective mechanism was achieved by inhibiting oxidative stress in the hippocampus. The experiment was approved by the Animal Ethics Committee of Fujian Medical University, China (approval No. 2014-025) in June 2014.
Collapse
Affiliation(s)
- Ning-Wei Zhu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province; Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang Province, China
| | - Xiao-Lan Yin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Lan Fan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shi-Jie Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuan-Ming Zhu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Zhen Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
47
|
Liu W, Huang S, Li Y, Zheng X, Zhang K. Synergistic effect of tolfenamic acid and glycyrrhizic acid on TPA-induced skin inflammation in mice. MEDCHEMCOMM 2019; 10:1819-1827. [PMID: 31814955 PMCID: PMC6839815 DOI: 10.1039/c9md00345b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023]
Abstract
Tolfenamic acid (TA) and glycyrrhizic acid (GA) are well-known components with anti-inflammatory properties. However, their combined effects on inflammation have not been well studied. The present study aimed to investigate the in vivo anti-inflammatory effects of TA combined with GA using a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema model, as well as the underlying mechanisms thereof. The results indicated that TA combined with GA led to a stronger inhibition on TPA-induced mouse ear edema compared to the singular treatments. In addition, the combined treatment significantly alleviated subcutaneous tissue inflammation caused by TPA. Further mechanistic investigations demonstrated that TA combined with GA decreased the levels of TPA-induced interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, the combined treatment effectively inhibited nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), phosphor-ERK1/2 and phosphor-JNK, which was accompanied by blocking of the activation and the phosphorylation in mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. Collectively, our findings revealed that different anti-inflammatory components used in combination lead to enhanced inhibitory effects against inflammation.
Collapse
Affiliation(s)
- Wenfeng Liu
- School of Biotechnology and Health Sciences , Wuyi University , Jiangmen 529020 , China
- International Healthcare Innovation Institute (Jiangmen) , China
| | - Shun Huang
- Nanfang PET Center , Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515 , China .
| | - Yonglian Li
- Guangdong Industry Polytechnic , Guangzhou , 510300 , China
| | - Xi Zheng
- School of Biotechnology and Health Sciences , Wuyi University , Jiangmen 529020 , China
- Susan Lehman Cullman Laboratory for Cancer Research , Department of Chemical Biology , Ernest Mario School of Pharmacy, Rutgers , The State University of New Jersey , Piscataway , NJ 08854 , USA
| | - Kun Zhang
- School of Biotechnology and Health Sciences , Wuyi University , Jiangmen 529020 , China
| |
Collapse
|
48
|
Liu C, Cui Y, Pi F, Guo Y, Cheng Y, Qian H. Torularhodin Ameliorates Oxidative Activity in Vitro and d-Galactose-Induced Liver Injury via the Nrf2/HO-1 Signaling Pathway in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10059-10068. [PMID: 31431007 DOI: 10.1021/acs.jafc.9b03847] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Torularhodin is a natural product extracted from Sporidiobolus pararoseus and has a similar chemical structure to β-carotene. The antioxidative effects of torularhodin were investigated using DPPH, ABTS, a cell oxidative damage model in vitro, and a d-galactose-induced liver-injured mouse model in vivo. Cell experiments demonstrated that torularhodin had a powerful effect on oxidative damage caused by H2O2 to AML12 cells. Torularhodin significantly reduced inflammatory cytokines and increased the activity of antioxidant enzymes both in mouse serum and the liver. The inhibition of d-galactose-induced oxidative damage in the liver was correlated with the torularhodin-mediated effects on improving the activity of Nrf2/HO-1, reducing the expression of Bax and NF-κB p65 by western blot analysis. RT-PCR results demonstrated torularhodin upregulated the antioxidative mRNA expression of Nrf2, NQO1, and HO-1 in the liver. In summary, torularhodin significantly scavenged free radicals and prevented oxidative damage in vitro and reduced d-galactose-induced liver oxidation via promotion of the Nrf2/HO-1 pathways in vivo.
Collapse
Affiliation(s)
| | - Yan Cui
- Institute of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products , Ningbo Academy of Agricultural Sciences , Ningbo 315040 , China
| | | | | | | | | |
Collapse
|
49
|
Wang J, Zou Q, Suo Y, Tan X, Yuan T, Liu Z, Liu X. Lycopene ameliorates systemic inflammation-induced synaptic dysfunction via improving insulin resistance and mitochondrial dysfunction in the liver-brain axis. Food Funct 2019; 10:2125-2137. [PMID: 30924473 DOI: 10.1039/c8fo02460j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic inflammation is an important determinant of synaptic dysfunction, but the underlying molecular mechanisms remain elusive. Lycopene (LYC), a major carotenoid present in tomato, is regarded as a nutraceutical that has significant antioxidant and anti-obesity bioactivities. In the current study, we randomly divided 3-month-old C57BL/6J mice into 3 groups: the control, LPS and LPS + LYC groups (LYC, 0.03% w/w, mixed with normal chow) for 5 weeks, and then mice were intraperitoneally injected with LPS (0.25 mg kg-1) for 9 days. Our results demonstrated that LYC supplementation effectively attenuated LPS-elicited neuronal damage and synaptic dysfunction through increasing the expressions of neurotrophic factors and the synaptic proteins SNAP-25 and PSD-95. LYC ameliorated LPS-induced insulin resistance and mitochondrial dysfunction in the mouse brain and liver. LYC alleviated the neuroinflammation and hepatic inflammation. Furthermore, LYC decreased the circulating levels of insulin and proinflammatory mediators LPS, TNF-α, IL-1β and IL-6. In conclusion, these results indicated that the supplementation of LYC might be a nutritional preventive strategy in systemic inflammation-induced synaptic dysfunction.
Collapse
Affiliation(s)
- Jia Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Tan X, Li L, Wang J, Zhao B, Pan J, Wang L, Liu X, Liu X, Liu Z. Resveratrol Prevents Acrylamide-Induced Mitochondrial Dysfunction and Inflammatory Responses via Targeting Circadian Regulator Bmal1 and Cry1 in Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8510-8519. [PMID: 31294559 DOI: 10.1021/acs.jafc.9b03368] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acrylamide, mainly formed in Maillard browning reaction during food processing, causes defects in liver circadian clock and mitochondrial function by inducing oxidative stress. Resveratrol is a polyphenol that has powerful antioxidant and anti-inflammatory activity. However, the preventive effects of resveratrol on acrylamide-triggered oxidative damage and circadian rhythm disorders are unclear at the current stage. The present research revealed that resveratrol pretreatment prevented acrylamide-induced cell death, mitochondrial dysfunction, and inflammatory responses in HepG2 liver cells. Acrylamide significantly triggered disorders of circadian genes transcription and protein expressions including Bmal1 and Cry 1 in primary hepatocytes, which were prevented by resveratrol pretreatment. Moreover, we found that the beneficial effects of resveratrol on stimulating Nrf2/NQO-1 pathway and mitochondrial respiration complex expressions in acrylamide-treated cells were Bmal1-dependent. Similarly, the inhibitory effects of resveratrol on inflammation signaling NF-κB were Cry1-dependent. In conclusion, these results demonstrated resveratrol could be a promising compound in suppressing acrylamide-induced hepatotoxicity and balancing the circadian clock.
Collapse
Affiliation(s)
- Xintong Tan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jia Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Junru Pan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Leran Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Xiao Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| |
Collapse
|