1
|
Liu XL, Xie J, Xie ZN, Zhong C, Liu H, Zhang SH, Jin J. Identification of squalene epoxidase in triterpenes biosynthesis in Poria cocos by molecular docking and CRISPR-Cas9 gene editing. Microb Cell Fact 2024; 23:34. [PMID: 38273342 PMCID: PMC10809676 DOI: 10.1186/s12934-024-02306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Squalene epoxidase is one of the rate-limiting enzymes in the biosynthetic pathway of membrane sterols and triterpenoids. The enzyme catalyzes the formation of oxidized squalene, which is a common precursor of sterols and triterpenoids. RESULT In this study, the squalene epoxidase gene (PcSE) was evaluated in Poria cocos. Molecular docking between PcSE and squalene was performed and the active amino acids were identified. The sgRNA were designed based on the active site residues. The effect on triterpene synthesis in P. cocos was consistent with the results from ultra-high-performance liquid chromatography-quadruplex time-of-flight-double mass spectrometry (UHPLC-QTOF-MS/MS) analysis. The results showed that deletion of PcSE inhibited triterpene synthesis. In vivo verification of PcSE function was performed using a PEG-mediated protoplast transformation approach. CONCLUSION The findings from this study provide a foundation for further studies on heterologous biosynthesis of P. cocos secondary metabolites.
Collapse
Affiliation(s)
- Xiao-Liu Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Zhen-Ni Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Hao Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, China.
| | - Shui-Han Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, China.
| |
Collapse
|
2
|
Shu ZH, Fan CL, Wei HY, Li ZT, Norimoto H, Tang XY, Yao ZH, Yao XS, Dai Y. An integrated strategy by absorbed component characterization, pharmacokinetics, and activity evaluation for identification of potential nephroprotective substances in Zhu-Ling decoction. J Sep Sci 2023; 46:e2300331. [PMID: 37438987 DOI: 10.1002/jssc.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
An efficient strategy for the identification of potential nephroprotective substances in Zhu-Ling decoction has been established with the integration of absorbed components characterization, pharmacokinetics, and activity evaluation. A qualitative method was developed to characterize the chemical constituents absorbed components in vivo of Zhu-Ling decoction by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. A quantitative method was established and validated for the simultaneous determination of eight compounds in rat plasma by using ultra-performance liquid chromatography-triple quadruple tandem mass spectrometry. Finally, the nephroprotective activities of absorbed components with high exposure were assessed by cell survival rate, superoxide dismutase, and malondialdehyde activities in hydrogen peroxide-induced Vero cells. As a result, 111 compounds in Zhu-Ling decoction and 36 absorbed components were identified in rat plasma and urine, and poricoic acid A, poricoic acid B, alisol A, 16-oxo-alisol A, and dehydro-tumulosic acid had high exposure levels in rat plasma. Finally, poricoic acid B, poricoic acid A, 16-oxo-alisol A, and dehydro-tumulosic acid showed remarkable nephroprotective activity against Vero cells damage induced by hydrogen peroxide. Besides, superoxide dismutase and malondialdehyde activities were obviously regulated in hydrogen peroxide-induced Vero cells by treatment with the four compounds mentioned above. Therefore, these four compounds were considered to be effective substances of Zhu-Ling decoction due to their relatively high exposure in vivo and biological activity. This study provided a chemical basis for the action mechanism of Zhu-Ling decoction in the treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Zhi-Heng Shu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Cai-Lian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan, P. R. China
| | - Hong-Yan Wei
- PuraPharm Research Institute of PuraPharm(Nanning) Pharmaceutical Co. Ltd., Nanning, P. R. China
| | - Zi-Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Hisayoshi Norimoto
- PuraPharm Research Institute of PuraPharm(Nanning) Pharmaceutical Co. Ltd., Nanning, P. R. China
- R&D Centre of PuraPharm Corporation Ltd., Hong Kong SAR, P. R. China
| | - Xi-Yang Tang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Zhi-Hong Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Fan L, Peng Y, Sun C, Ma P, Peng C, Sun A, Li X. Deciphering anti-benign prostatic hyperplasia potential of liangwanoside II based on metabolite profile characterization combined with targeted network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023:116725. [PMID: 37271331 DOI: 10.1016/j.jep.2023.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metapanax delavayi (Franch.) J.Wen & Frodin (Araliaceae), known as "liang wang cha" in China, has been used to treat prostatitis as herbal tea in folk. Recent research suggested that aqueous extract of Metapanax delavayi leaf showed an advantage in anti-benign prostate hyperplasia (BPH) activity, and liangwanoside II was the main component of the active fraction. However, the anti-BPH effect of liangwanosdie II remains to be revealed. AIM OF THE STUDY This study aims to decipher anti-benign prostatic hyperplasia potential of liangwanoside II. MATERIALS AND METHODS The anti-BPH effect was evaluated by testosterone propionate-induced BPH rats after oral administration of liangwanoside II at the doses of 30, 60 and 120 mg/kg in vivo. Then, the metabolites of liangwanoside II in BPH rats in vivo were identified using ultra-performance liquid chromatography coupled with quadrupole tandem time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Finally, the targeted network pharmacology combined with experimental verification were explored for the mechanism elucidation. RESULTS Liangwanoside II exhibited an anti-BPH effect through reducing the weight of the prostate, prostate index and serum prostatic acid phosphatase level, and improving the prostate tissue morphology in BPH rats. Further, 16 metabolites of liangwanoside II in vivo were identified by UPLC-Q-TOF-MS analysis, in which the prototype compound and 4 metabolites, such as liangwanoside I and serratagenic acid could be absorbed in the plasma and then penetrate the blood-prostate barrier. Then, followed by the targeted network pharmacology and experimental verification, we found that liangwanoside II and its metabolites could jointly involve in the inhibition of the inflammation reaction and hormone imbalance, thus reducing oxidative stress damage, and restoring the balance between cell proliferation and apoptosis, which contributed to the anti-BPH effect of liangwanoside II. CONCLUSION The anti-BPH potential of liangwanoside II was revealed using metabolite profile characterization combined with targeted network pharmacology, providing new insight into the development and utilization of liangwanoside II.
Collapse
Affiliation(s)
- Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongzhi Sun
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - An Sun
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
4
|
Zhao Y, Chen Y, Li R, Zheng T, Huang M, Gao Y, Li Z, Wu H. An ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry method based on a four-step analysis strategy to investigate metabolites of Qi-Yu-San-Long decoction in rat plasma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9419. [PMID: 36260057 DOI: 10.1002/rcm.9419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Metabolism is undoubtedly significantly correlated with the efficacy and safety of traditional Chinese medicine. In clinic, Qi-Yu-San-Long decoction (QYSLD) has achieved good results in the treatment of non-small-cell lung cancer (NSCLC). Nevertheless, a detailed understanding of the compounds (prototypes and metabolites) of QYSLD and its dynamic metabolic profile in plasma has not been revealed. METHODS In this study, a rapid and sensitive method based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MSE ), combined with a four-step analysis strategy, was established to investigate QYSLD metabolic profile in rat plasma. RESULTS In all, 101 xenobiotics (41 prototypes and 60 QYSLD-related metabolites) were identified in rat plasma. The research uncovered metabolic profiles of alkaloids, saponins, flavonoids, iridoids, anthraquinones, and phenylpropanoids of QYSLD in rat plasma. The dynamic changes in these xenobiotics were also observed at different time intervals. At 0.5 h after oral administration, only 15 prototypes and 11 metabolites were detected. Within 24 h, 4 prototypes and 20 metabolites can still be detected. Four prototypes and 10 metabolites had the phenomenon of emergence-disappearance-reappearance in vivo. CONCLUSION In rat plasma, 101 xenobiotics of QYSLD were identified and their dynamic metabolic profiles were systematically delineated, which laid a material basis for further research of the pharmacodynamic substances of QYSLD inhibiting NSCLC.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Mengwen Huang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yating Gao
- Department of Education of Anhui Province, Key Laboratory of Traditional Chinese medicine for Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Department of Education of Anhui Province, Key Laboratory of Traditional Chinese medicine for Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
A Comparative Study of Serum Pharmacochemistry of Kai-Xin-San in Normal and AD Rats Using UPLC-LTQ-Orbitrap-MS. Pharmaceuticals (Basel) 2022; 16:ph16010030. [PMID: 36678527 PMCID: PMC9866203 DOI: 10.3390/ph16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Kai-Xin-San (KXS) is a classic formula for the treatment of Alzheimer's disease (AD). KXS has been widely used to treat emotional diseases; however, its active components remain unknown. There have been some reports about the efficacy and metabolic analysis of KXS, which are mainly based on studying normal animals. The current work first established an AD rat model by injecting D-galactose into the abdominal cavity and injecting Aβ25-35 into the hippocampus on both sides, followed by intragastric administration of KXS for a consecutive week; then, the analytical method for ethanol extraction from the serum of normal and model rats was developed using UPLC-LTQ-Orbitrap-MS; finally, the transitional components in the blood were systematically compared and analyzed by multivariate statistical analysis. A total of 36 components of KXS were identified in the rat serum of the normal group, including 24 prototype components (including ginsenosides, triterpenoid acids of Poria cocos, polygala saponins, polygala xanthones and polygala ester) and 13 metabolites (including desugar, hydration and oxidation products of ginsenosides, triterpenoid acid hydroxylation, deoxygenation, demethylation, desaturation, and glycine-conjugated products of Poria cocos). Twenty KXS-relevant components were detected in the rat serum of the model group, including 11 prototypes and 9 metabolites. The normal group and the model group shared 12 common components, including 9 prototypes and 3 metabolites. The intestinal microecological balance of the model rats probably was destroyed, affecting the absorption/metabolism of saponins by the body, which resulted in fewer transitional components in the model group. This study reflected the drug-body interaction from an objective and accurate perspective, offering references and insights for elucidating the basis of active components and mechanism of action of KXS for treating AD.
Collapse
|
6
|
Wang YX, Yang Z, Wang WX, Huang YX, Zhang Q, Li JJ, Tang YP, Yue SJ. Methodology of network pharmacology for research on Chinese herbal medicine against COVID-19: A review. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:477-487. [PMID: 36182651 PMCID: PMC9508683 DOI: 10.1016/j.joim.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/09/2022]
Abstract
Traditional Chinese medicine, as a complementary and alternative medicine, has been practiced for thousands of years in China and possesses remarkable clinical efficacy. Thus, systematic analysis and examination of the mechanistic links between Chinese herbal medicine (CHM) and the complex human body can benefit contemporary understandings by carrying out qualitative and quantitative analysis. With increasing attention, the approach of network pharmacology has begun to unveil the mystery of CHM by constructing the heterogeneous network relationship of "herb-compound-target-pathway," which corresponds to the holistic mechanisms of CHM. By integrating computational techniques into network pharmacology, the efficiency and accuracy of active compound screening and target fishing have been improved at an unprecedented pace. This review dissects the core innovations to the network pharmacology approach that were developed in the years since 2015 and highlights how this tool has been applied to understanding the coronavirus disease 2019 and refining the clinical use of CHM to combat it.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China; Department of Scientific Research, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Zhen Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Xi Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| |
Collapse
|
7
|
Hao DC, Wang F, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based anti-COVID-19 Drug Research. Curr Drug Metab 2022; 23:374-393. [PMID: 35440304 DOI: 10.2174/1389200223666220418110133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The representative anti-COVID-19 herbs, i.e. Poria cocos, Pogostemon, Prunus, and Glycyrrhiza plants, are commonly used in the prevention and treatment of COVID-19, a pandemic caused by SARS-CoV-2. Diverse medicinal compounds with favorable anti-COVID-19 activities are abundant in these plants, and their unique pharmacological/pharmacokinetic properties are being revealed. However, the current trends of drug metabolism/pharmacokinetic (DMPK) investigations of anti-COVID-19 herbs have not been systematically summarized. METHODS Here, the latest awareness, as well as the perception gaps of DMPK attributes, in the anti-COVID-19 drug development and clinical usage was elaborated and critically commented. RESULTS The extracts and compounds of P. cocos, Pogostemon, Prunus, and Glycyrrhiza plants show distinct and diverse absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. The complicated herb-herb interactions (HHIs) and herb-drug interactions (HDIs) of anti-COVID-19 Traditional Chinese Medicine (TCM) herb pair/formula dramatically influence the PK/pharmacodynamic (PD) performance of compounds thereof, which may inspire researchers to design innovative herbal/compound formulas for optimizing the therapeutic outcome of COVID-19 and related epidemic diseases. The ADME/T of some abundant compounds in anti-COVID-19 plants have been elucidated, but DMPK studies should be extended to more compounds of different medicinal parts, species and formulations, and would be facilitated by various omics platforms and computational analyses. CONCLUSION In the framework of systems pharmacology and pharmacophylogeny, the DMPK knowledge base would promote the translation of bench findings into the clinical practice of anti-COVID-19, and speed up the anti-COVID-19 drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.,Institute of Molecular Plant Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Fan Wang
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Fu J, Wu H, Wu H, Deng R, Sun M. Deciphering the metabolic profile and pharmacological mechanisms of Achyranthes bidentata blume saponins using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with network pharmacology-based investigation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114067. [PMID: 33771642 DOI: 10.1016/j.jep.2021.114067] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achyranthes bidentata Blume (AB) is a traditional Chinese medicine (TCM) widely used as a dietary supplement and anti-arthritis drug. Pharmacological studies have shown that Achyranthes bidentata Blume saponins (ABS) are the main bioactive ingredient. However, the metabolic profile and mechanisms of action of ABS against rheumatic arthritis (RA) remain to be established. AIM OF THE STUDY Our main objective was to investigate the metabolic profile and pharmacological activities of ABS against RA. MATERIALS AND METHODS In this study, an analytical method based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) coupled with a metabolism platform was developed for metabolic profiling of ABS in rat liver microsomes and plasma. Then, the in vivo metabolites of ABS and their targets associated with RA were used to construct the network pharmacological analysis. Gene ontology (GO) enrichment, KEGG signaling pathway analyses and pathway network analyses were performed. The therapeutic effect of ABS on RA was further evaluated using an adjuvant arthritis (AA) model and network pharmacology results validated via Western blot. RESULTS Overall, 26 and 21 metabolites of ABS were tentatively characterized in rat liver microsomes and plasma, respectively. The metabolic pathways of ABS mainly included M+O, M+O-H2, M+O2, and M+O2-H2. Data form network pharmacology analysis suggested that MAPK, apoptosis, PI3K-AKT and p53 signaling pathways contribute significantly to the therapeutic effects of ABS on RA. In pharmacodynamics experiments, ABS ameliorated the symptoms in AA rats in a dose-dependent manner and restored the homeostasis of pro/anti-inflammatory factors. Western blot results further demonstrated a significant ABS-induced decrease in phosphorylation of ERK in the MAPK pathway (P < 0.01). CONCLUSION Application of an analytical method based on UPLC-QTOF/MS, network pharmacology and validation experiments offers novel insights into the components and mechanisms of ABS that contribute to its therapeutic effects against RA, providing useful directions for further research.
Collapse
MESH Headings
- Achyranthes
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Experimental/blood
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Chromatography, High Pressure Liquid
- Cytokines/blood
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Foot Joints/drug effects
- Foot Joints/pathology
- Male
- Mass Spectrometry
- Metabolome/drug effects
- Microsomes, Liver/metabolism
- Pharmacology/methods
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Saponins/pharmacology
- Saponins/therapeutic use
- Tumor Suppressor Protein p53/metabolism
- Rats
Collapse
Affiliation(s)
- Jun Fu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Huan Wu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Hong Wu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Ran Deng
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Minghui Sun
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| |
Collapse
|
9
|
Sun Y, He Y, Liu S, Gao H, Pi Z, Song F, Liu Z, Liu S. Comparative pharmacokinetics of Ding-Zhi-Xiao-Wan preparation and its single herbs in rats by using a putative multiple-reaction monitoring UPLC-MS/MS method. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:362-374. [PMID: 32896044 DOI: 10.1002/pca.2982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The formula of Chinese medicine, Ding-Zhi-Xiao-Wan (DZXW), has the distinct feature of compatibility therapy, which is attributed to the interactions of multi-herbs. However, the quantification problem caused by the absence of pure reference standards is a bottleneck to clarify the compatibility advantages from the perspective of pharmacokinetics (PKs). OBJECTIVE This study aimed to develop a putative multiple-reaction monitor (PMRM) strategy for exploring the comparative PKs of DZXW and its single herbs. METHODS First, precursor ion and tandem mass spectrometry (MS/MS) chromatograms were obtained via ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight MS (UHPLC-Q-TOF-MS) under different collision energy (CE) values. Then, the two most abundance ions in the MS/MS chromatograms were chosen as product ions, and CE values were selected according to the abundance of the product ion peaks. Next, a PMRM strategy consisting of optimal MRM parameters was constructed. Finally, the established PMRM parameters were imported to UHPLC coupled with triple quadrupole MS (UHPLC-TQ-MS) for quantification. RESULTS The strategy was exemplified by the comparative PK study of DZXW and its single herbs. This strategy could extend the PK scopes of multi-components. The quantitative results displayed substantial variations in PK parameters between DZXW and its single herbs. CONCLUSION The PK parameters indicated that the DZXW formula could increase the exposure levels of most ingredients and reduce the maximum concentration (Cmax ) of Radix Polygala, indicating that herb compatibility could produce synergistic effects and diminish possible toxic effects. This study provides a viable orientation for the compatibility investigation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yufei Sun
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang He
- School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Shuxin Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongxue Gao
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
10
|
Xu L, Tang X, Hao F, Gao Y. Hepatotoxicity and nephrotoxicity assessment on ethanol extract of Fructus Psoraleae in Sprague Dawley rats using a UPLC-Q-TOF-MS analysis of serum metabolomics. Biomed Chromatogr 2021; 35:e5064. [PMID: 33450093 DOI: 10.1002/bmc.5064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022]
Abstract
Fructus Psoraleae (FP) is commonly used in the treatment of vitiligo, osteoporosis, and other diseases in clinic. As a result, the toxicity caused by FP is frequently encountered in clinical practice; however, the underlying toxicity mechanism remains unclear. The purpose of this study was to investigate the toxic effect of the ethanol extract of FP (EEFP) in rats and to explore the underlying toxic mechanisms using a metabolomics approach. The toxicity was evaluated by hematological indicators, biochemical indicators, and histological changes. In addition, a serum metabolomic method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS (UPLC-Q-TOF-MS) had been established to investigate the hepatorenal toxicity of FP. Multivariate statistical approaches, such as partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis, were built to evaluate the toxic effects of FP and find potential biomarkers and metabolic pathways. Ten endogenous metabolites had been identified and the related metabolic pathways were involved in phospholipid metabolism, amino acid metabolism, purine metabolism, and antioxidant system activities. The results showed that long-term exposure to high-dose EEFP may cause hepatorenal toxicity in rats. Therefore, serum metabolomics can improve the diagnostic efficiency of FP toxicity and make it more accurate and comprehensive.
Collapse
Affiliation(s)
- Longlong Xu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xianglin Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Feiran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
11
|
Wang L, Yang C, Song F, Liu Z, Liu S. Therapeutic Effectiveness of Gardenia jasminoides on Type 2 Diabetic Rats: Mass Spectrometry-Based Metabolomics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9673-9682. [PMID: 32790297 DOI: 10.1021/acs.jafc.0c02873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gardenia jasminoides fruits, a kind of traditional Chinese medicine (TCM), have shown prospects in the prevention of diabetes and its complications. However, due to their chemical diversity and multiple biological targets, the effective mechanism remains largely unknown. In this study, mass spectrometry-based metabolomics was applied to uncover the underlying therapeutic mechanism of G. jasminoides on type 2 diabetes (T2D) and its clinical complications. We established a T2D rat model using high-fat diet and identified 45 urinary endogenous metabolites as potential diagnostic biomarkers for T2D rats. After treatment with G. jasminoides, pathologic symptoms of T2D rats were significantly improved and some of the diagnostic biomarkers were significantly regulated. Bioinformatics analysis demonstrated that these therapeutic biomarkers were involved in bile acid biosynthesis, amino acid metabolism, vitamin B metabolism, taurine metabolism, etc., which indicated potential therapeutic mechanisms of G. jasminoides on T2D and its complications.
Collapse
Affiliation(s)
- Lu Wang
- State Key laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & National Center of Mass Spectrometry in Changchun, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chen Yang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Fengrui Song
- State Key laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & National Center of Mass Spectrometry in Changchun, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- State Key laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & National Center of Mass Spectrometry in Changchun, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shu Liu
- State Key laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & National Center of Mass Spectrometry in Changchun, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
12
|
Poria Cocos Ameliorates Bone Loss in Ovariectomized Mice and Inhibits Osteoclastogenesis In Vitro. Nutrients 2020; 12:nu12051383. [PMID: 32408635 PMCID: PMC7284350 DOI: 10.3390/nu12051383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022] Open
Abstract
Estrogen deprivation in postmenopausal women causes disruption of bone homeostasis, resulting in bone loss and osteoporosis. Conventional therapies can exert adverse effects. The sclerotum of Poria cocos has been used in traditional medicine and as a nutritional supplement and to treat various diseases. However, the effects of P. cocos on the bone remain largely undetermined. In this study, we examined the effects of P. cocos hydroethanolic extract (PC) on osteoclast differentiation and estrogen-deprivation-induced bone loss in an ovariectomized mouse model of postmenopausal osteoporosis. PC-mediated inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and resorption activity suppressed RANKL-induced expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which is a crucial transcription factor for osteoclast differentiation. In ovariectomized mice, PC markedly alleviated trabecular bone loss and reduced the accumulation of lipid droplets in the bone marrow. We additionally identified ten triterpenoid constituents of PC using UPLC-MS/MS analysis. Our results indicate that PC negatively regulated osteoclast differentiation and function, and can potentially be used to manage postmenopausal osteoporosis.
Collapse
|
13
|
Wang X, Yu N, Peng H, Hu Z, Sun Y, Zhu X, Jiang L, Xiong H. The profiling of bioactives in Akebia trifoliata pericarp and metabolites, bioavailability and in vivo anti-inflammatory activities in DSS-induced colitis mice. Food Funct 2020; 10:3977-3991. [PMID: 31204754 DOI: 10.1039/c9fo00393b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fruit of Akebia trifoliata is popular in Asia, but researches concerning the phytochemicals of A. trifoliate pericarp extract (APE) and their metabolites, bioavailability, metabolism and anti-inflammatory activity in vivo are less known. In the present study, the chemical constituents of APE and their metabolites of rats after oral administration were identified using UPLC-LTQ-Orbitrap-MS/MS. A total of 18 compounds were tentatively characterized in APE, while 8 original compounds and 8 metabolites were observed in plasma, and 10 original compounds and 39 metabolites were detected in urine. Deglycosylation, glucuronidation, methylation and sulfation were the reactions that mainly occurred in the metabolism in vivo. Meanwhile, APE supplementation decreased dextran sulphate sodium (DSS)-induced colitis in mice, ameliorating epithelial barrier disruption, suppressing the proliferation and infiltration of immune cells, modulating the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2), decreasing the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as regulating oxidative stress in vivo. The results suggested that APE triterpenoids and their metabolites as major contributors to anti-inflammatory activities, providing a scientific basis for the use of APE as a functional food to ameliorate colon health in humans.
Collapse
Affiliation(s)
- Xiaoya Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Ningxiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hailong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zhenying Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Xuemei Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
14
|
A target integration strategy for analyzing multidimensional chemical and metabolic substance groups of Ding-Zhi-Xiao-Wan prescription by using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1608:460412. [DOI: 10.1016/j.chroma.2019.460412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 02/03/2023]
|
15
|
Xu H, Wang Y, Jurutka PW, Wu S, Chen Y, Cao C, Chen G, Tian B, Wang S, Cheng S. 16α-Hydroxytrametenolic Acid from Poria cocos Improves Intestinal Barrier Function Through the Glucocorticoid Receptor-Mediated PI3K/Akt/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10871-10879. [PMID: 31517482 DOI: 10.1021/acs.jafc.9b04613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study evaluated the effect of triterpenoids from edible mushroom Poria cocos on intestinal epithelium integrity and revealed the transcriptional regulatory pathways that underpin restorative mechanisms in the gut. Based on computational docking studies, transcriptional activation experiments and glucocorticoid receptor (GR) protein immunofluorescence localization assays in cultured cells, 16α-hydroxytrametenolic acid (HTA) was discovered as a novel GR agonist in this study. HTA ameliorates TNF-α-induced Caco-2 monolayer intestinal epithelial barrier damage and suppressed activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt), which attenuated downstream IκB and nuclear factor kappa-B (NF-κB) phosphorylation through GR activation. Moreover, HTA prevented NF-κB translocation into the nucleus and binding to its cis-element and suppressed lipopolysaccharide-induced downstream NO production and pro-inflammatory cytokines at both protein and mRNA expression levels. In conclusion, HTA from P. cocos improves intestinal barrier function through a GR-mediated PI3K/Akt/NF-κB signaling pathway and may be potentially exploited as a supportive dietary therapeutic strategy for restoring gut health.
Collapse
Affiliation(s)
- Hui Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing , Nanjing University of Finance and Economics , Nanjing 210023 , China
| | | | - Peter W Jurutka
- School of Mathematical and Natural Sciences , Arizona State University , Tempe , Arizona 85306 , United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Qi X, Wang X, Cheng T, Wu Q, Mi N, Mu X, Guo X, Zhao G, Huang Z, Ye J, Zhang W. Comprehensive characterization of multiple components and metabolites of Xiaojin Capsule based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2019; 42:2748-2761. [PMID: 31207087 DOI: 10.1002/jssc.201900229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Xiaojin Capsule, a classic traditional Chinese medicine formula, has been used to treat mammary cancer, thyroid nodules, and hyperplasia of the mammary glands. However, its systematic chemical information remained unclear, which hindered the interpretation of the pharmacology and the mechanism of action of this drug. In this research, an ultra high performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry method was developed to identify the complicated components and metabolites of Xiaojin Capsule. Two acquisition modes, including the MSEnergy mode and fast data directed acquisition mode, were utilized for chemical profiling. As a result, 156 compounds were unambiguously or tentatively identified by comparing their retention times and mass spectrometry data with those of reference standards or literature. After the oral administration of Xiaojin Capsule, 53 constituents, including 24 prototype compounds and 29 metabolites, were detected in rat plasma. The obtained results were beneficial for a better understanding of the therapeutic basis of Xiaojin Capsule. A high-resolution and efficient separation method was firstly established for systematically characterizing the compounds of Xiaojin Capsule and the associated metabolites in vivo, which could be helpful for quality control and pharmacokinetic studies of this medicine.
Collapse
Affiliation(s)
- Xiaopo Qi
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Xinyu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Taofang Cheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qiuling Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Nan Mi
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Xuemei Mu
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Xin Guo
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Gang Zhao
- R&D Center, Jianmin Pharmaceutical Group, Wuhan, P. R. China
| | - Zhijun Huang
- R&D Center, Jianmin Pharmaceutical Group, Wuhan, P. R. China
| | - Ji Ye
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Weidong Zhang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
17
|
Zheng Y, Liu S, Xing J, Zheng Z, Pi Z, Song F, Liu Z. Equivalently Quantitative Ion Strategy with Quaternary Ammonium Cation Derivatization for Highly Sensitive Quantification of Lanostane-Type Triterpene Acids without Standards by Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC–MS/MS). Anal Chem 2018; 90:13946-13952. [DOI: 10.1021/acs.analchem.8b03367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- State Key Laboratory of Electroanalytiacl Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|