1
|
Maj W, Pertile G, Różalska S, Skic K, Frąc M. The role of food preservatives in shaping metabolic profile and chemical sensitivity of fungi - an extensive study on crucial mycological food contaminants from the genus Neosartorya (Aspergillus spp.). Food Chem 2024; 453:139583. [PMID: 38772305 DOI: 10.1016/j.foodchem.2024.139583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Food preservatives are crucial in fruit production, but fungal resistance is a challenge. The main objective was to compare the sensitivity of Neosartorya spp. isolates to preservatives used in food security applications and to assess the role of metabolic properties in shaping Neosartorya spp. resistance. Sodium metabisulfite, potassium sorbate, sodium bisulfite and sorbic acid showed inhibitory effects, with sodium metabisulfite the most effective. Tested metabolic profiles included fungal growth intensity and utilization of amines and amides, amino acids, polymers, carbohydrates and carboxylic acids. Significant decreases in the utilization of all tested organic compound guilds were observed after fungal exposure to food preservatives compared to the control. Although the current investigation was limited in the number of predominately carbohydrate substrates and the breadth of metabolic responses, extensive sensitivity panels are logical step in establishing a course of action against spoilage agents in food production being important approach for innovative food chemistry.
Collapse
Affiliation(s)
- Wiktoria Maj
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Giorgia Pertile
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237 Łódź, Poland
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
2
|
Maj W, Pertile G, Różalska S, Skic K, Frąc M. Comprehensive antifungal investigation of natural plant extracts against Neosartorya spp. (Aspergillus spp.) of agriculturally significant microbiological contaminants and shaping their metabolic profile. Sci Rep 2024; 14:8399. [PMID: 38600229 PMCID: PMC11006677 DOI: 10.1038/s41598-024-58791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Fungi belonging to the genus Neosartorya (teleomorph of Aspergillus spp.) are of great concern in the production and storage of berries and fruit-based products, mainly due to the production of thermoresistant ascospores that cause food spoilage and possible secretion of mycotoxins. We initially tested the antifungal effect of six natural extracts against 20 isolates of Neosartorya spp. using a traditional inhibition test on Petri dishes. Tested isolates did not respond uniformly, creating 5 groups of descending sensitivity. Ten isolates best representing of the established sensitivity clusters were chosen for further investigation using a Biolog™ MT2 microplate assay with the same 6 natural extracts. Additionally, to test for metabolic profile changes, we used a Biolog™ FF microplate assay after pre-incubation with marigold extract. All natural extracts had an inhibitory effect on Neosartorya spp. growth and impacted its metabolism. Lavender and tea tree oil extracts at a concentration of 1000 µg mL-1 presented the strongest antifungal effect during the inhibition test, however all extracts exhibited inhibitory properties at even the lowest dose (5 µg mL-1). The fungal stress response in the presence of marigold extract was characterized by a decrease of amino acids and carbohydrates consumption and an uptake of carboxylic acids on the FF microplates, where the 10 studied isolates also presented differences in their innate resilience, creating 3 distinctive sensitivity groups of high, average and low sensitivity. The results confirm that natural plant extracts and essential oils inhibit and alter the growth and metabolism of Neosartorya spp. suggesting a possible future use in sustainable agriculture as an alternative to chemical fungicides used in traditional crop protection.
Collapse
Affiliation(s)
- Wiktoria Maj
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Giorgia Pertile
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| |
Collapse
|
3
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
4
|
Hu D, Long X, Luobu T, Wang Q. Current status of research on endophytes of traditional Tibetan medicinal plant and their metabolites. 3 Biotech 2023; 13:338. [PMID: 37705864 PMCID: PMC10495306 DOI: 10.1007/s13205-023-03720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/29/2023] [Indexed: 09/15/2023] Open
Abstract
The Qinghai-Tibet Plateau, known as the "Third Pole of the World," has a rich variety of medicinal plants that play an important role in the field of medicine due to its unique geographical environment. However, due to the limited resources of Tibetan medicinal plants and the fragility of the ecological environment of the Qinghai-Tibet Plateau, more and more Tibetan medicinal plants are on the verge of extinction. As a reservoir of biologically active metabolites, endophytes of medicinal plants produce a large number of compounds with potential applications in modern medicine (including antibacterial, immunosuppressive, antiviral, and anticancer) and are expected to be substitutes for Tibetan medicinal plants. This paper reviews 12 Tibetan medicinal plants from the Qinghai-Tibet Plateau, highlighting the diversity of their endophytes, the diversity of their metabolites and their applications. The results show that the endophytes of Tibetan medicinal plants are remarkably diverse, and the efficacy of their metabolites involves various aspects, such as antioxidant, anti-disease and anti-parasitic. In addition, conservation measures for the resources of Tibetan medicinal plants are summarised to provide a reference for an in-depth understanding of the endophytes of Tibetan medicinal plants and to stimulate the scientific community to bioprospect for the endophytes of Tibetan medicinal plants, as well as to provide ideas for their rational exploitation.
Collapse
Affiliation(s)
- Danni Hu
- Wuhan University of Technology, Wuhan, China
| | | | - Tudan Luobu
- Pharmacy Department, Tibetan Hospital of Gongga County, Shannan, China
| | - Qi Wang
- Wuhan University of Technology, Wuhan, China
| |
Collapse
|
5
|
Pant A, Vasundhara M. Endophytic fungi: a potential source for drugs against central nervous system disorders. Braz J Microbiol 2023; 54:1479-1499. [PMID: 37165297 PMCID: PMC10485218 DOI: 10.1007/s42770-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Neuroprotection is one of the important protection methods against neuronal cells and tissue damage caused by neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. Various bioactive compounds produced by medicinal plants can potentially treat central nervous system (CNS) disorders. Apart from these resources, endophytes also produce diverse secondary metabolites capable of protecting the CNS. The bioactive compounds produced by endophytes play essential roles in enhancing the growth factors, antioxidant defence functions, diminishing neuroinflammatory, and apoptotic pathways. The efficacy of compounds produced by endophytic fungi was also evaluated by enzymes, cell lines, and in vivo models. Acetylcholine esterase (AChE) inhibition is frequently used to assess in vitro neuroprotective activity along with cytotoxicity-induced neuronal cell lines. Some of drugs, such as tacrine, donepezil, rivastigmine, galantamine, and other compounds, are generally used as reference standards. Furthermore, clinical trials are required to confirm the role of these natural compounds in neuroprotection efficacy and evaluate their safety profile. This review illustrates the production of various bioactive compounds produced by endophytic fungi and their role in preventing neurodegeneration.
Collapse
Affiliation(s)
- Anushree Pant
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
6
|
Feng L, Shang RR, Wang XJ, Li L, Li X, Gong YX, Shi LY, Wang JW, Qian ZY, Tan NH, Wang Z. The Natural Alkaloid (-)- N-Hydroxyapiosporamide Suppresses Colorectal Tumor Progression as an NF-κB Pathway Inhibitor by Targeting the TAK1-TRAF6 Complex. JOURNAL OF NATURAL PRODUCTS 2023; 86:1449-1462. [PMID: 37243616 DOI: 10.1021/acs.jnatprod.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Colorectal cancer (CRC) is an exceptionally deadly disease, whereas effective therapeutic drugs for CRC have declined over the past few decades. Natural products have become a reliable source of anticancer drugs. Previously we isolated an alkaloid named (-)-N-hydroxyapiosporamide (NHAP), which exerts potent antitumor effects, but its effect and mechanism in CRC remain unclear. This study aimed to reveal the antitumor target of NHAP and identify NHAP as a promising lead compound for CRC. Various biochemical methods and animal models were used to investigate the antitumor effect and molecular mechanism for NHAP. These results showed that NHAP exhibited potent cytotoxicity, induced both apoptosis and autophagic cell death of CRC cells, and inhibited the NF-κB signaling pathway by blocking the interaction of the TAK1-TRAF6 complex. NHAP also markedly inhibited CRC tumor growth in vivo without obvious toxicities and possessed good pharmacokinetic characteristics. These findings identify, for the first time, that NHAP is an NF-κB inhibitor with potent antitumor activity in vitro and in vivo. This study clarifies the antitumor target of NHAP against CRC, which will contribute to the future development of NHAP as a novel therapeutic lead compound for CRC.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ran-Ran Shang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin-Jia Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ling Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuan-Xiang Gong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Li-Yuan Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jing-Wen Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhi-Yu Qian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
7
|
Hashem AH, Attia MS, Kandil EK, Fawzi MM, Abdelrahman AS, Khader MS, Khodaira MA, Emam AE, Goma MA, Abdelaziz AM. Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microb Cell Fact 2023; 22:107. [PMID: 37280587 DOI: 10.1186/s12934-023-02118-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Human life has been significantly impacted by the creation and spread of novel species of antibiotic-resistant bacteria and virus strains that are difficult to manage. Scientists and researchers have recently been motivated to seek out alternatives and other sources of safe and ecologically friendly active chemicals that have a powerful and effective effect against a wide variety of pathogenic bacteria as a result of all these hazards and problems. In this review, endophytic fungi and their bioactive compounds and biomedical applications were discussed. Endophytes, a new category of microbial source that can produce a variety of biological components, have major values for study and broad prospects for development. Recently, endophytic fungi have received much attention as a source for new bioactive compounds. In addition, the variety of natural active compounds generated by endophytes is due to the close biological relationship between endophytes and their host plants. The bioactive compounds separated from endophytes are usually classified as steroids, xanthones, terpenoids, isocoumarins, phenols, tetralones, benzopyranones and enniatines. Moreover, this review discusses enhancement methods of secondary metabolites production by fungal endophytes which include optimization methods, co-culture method, chemical epigenetic modification and molecular-based approaches. Furthermore, this review deals with different medical applications of bioactive compounds such as antimicrobial, antiviral, antioxidant and anticancer activities in the last 3 years.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Esalm K Kandil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud M Fawzi
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed S Abdelrahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed S Khader
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Khodaira
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Abdallah E Emam
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Goma
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
8
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
9
|
Anti-Alzheimer's Natural Products Derived from Plant Endophytic Fungi. Molecules 2023; 28:molecules28052259. [PMID: 36903506 PMCID: PMC10005758 DOI: 10.3390/molecules28052259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's is the most common cause of dementia worldwide and seriously affects patients' daily tasks. Plant endophytic fungi are known for providing novel and unique secondary metabolites with diverse activities. This review focuses primarily on the published research regarding anti-Alzheimer's natural products derived from endophytic fungi between 2002 and 2022. Following a thorough review of the literature, 468 compounds with anti-Alzheimer's-related activities are reviewed and classified based on their structural skeletons, primarily including alkaloids, peptides, polyketides, terpenoids, and sterides. The classification, occurrences, and bioactivities of these natural products from endophytic fungi are summarized in detail. Our results provide a reference on endophytic fungi natural products that may assist in the development of new anti-Alzheimer's compounds.
Collapse
|
10
|
Cardona HRA, Froes TQ, Souza BCD, Leite FHA, Brandão HN, Buaruang J, Kijjoa A, Alves CQ. Thermal shift assays of marine-derived fungal metabolites from Aspergillus fischeri MMERU 23 against Leishmania major pteridine reductase 1 and molecular dynamics studies. J Biomol Struct Dyn 2022; 40:11968-11976. [PMID: 34415221 DOI: 10.1080/07391102.2021.1966510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Marine-derived fungi are a promising source of bioactive molecules, especially species from extreme habitats. Although several secondary metabolites such as meroterpenoids and alkaloids have been isolated from cultures of Aspergillus fischeri, obtained from terrestrial habitats, there is no report on compounds isolated from marine-derived strains. Many metabolites isolated from marine-derived fungi exhibited a myriad of biological activities. Marine natural products have shown to be an important source of bioactive compounds and can assist in the discovery of molecules with affinity against validated targets from exclusive strains of parasites of medical importance such as pteridine reductase 1 (PTR1), from Leishmania major, which is essential for cell growth. Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which make the development of new drugs urgent. The previously described aszonalenin (ASL), aszonapyrone A (ASP), acetylaszonalenin (ACZ), and helvolic acid (HAC) were isolated from the ethyl acetate extract of the culture of a marine sponge-associated A. fischeri MMERU 23 and their affinities against PTR1 were determined by ThermoFluor®. Among the tested compounds, only ACZ showed dose-dependent affinity against PTR1. Moreover, complementary molecular dynamics studies (t = 100 000 ps) have showed that this molecule performs hydrogen bonds with key residues at the active site for more than 60% of the productive trajectory time. The results indicate that ACZ could be a promising PTR1 inhibitor and a potential candidate for development of antileishmanial drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Thamires Q Froes
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - Bruno C De Souza
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Franco H A Leite
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Hugo Neves Brandão
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Jamrearn Buaruang
- Marine Microbe Environment Research Unit, Division of Environmental Science, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Porto, Portugal
| | - Clayton Q Alves
- Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, Bahia, Brazil
| |
Collapse
|
11
|
The Neuroprotective Potential of Endophytic Fungi and Proposed Molecular Mechanism: A Current Update. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6214264. [PMID: 36217430 PMCID: PMC9547681 DOI: 10.1155/2022/6214264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Millions of people are affected by neuronal disorders that are emerging as a principal cause of death after cancer. Alzheimer's disease, ataxia, Parkinson's disease, multiple system atrophy, and autism comprise the most common ones, being accompanied by loss of cognitive power, impaired balance, and movement. In past decades, natural polyphenols obtained from different sources including bacteria, fungi, and plants have been utilized in the traditional system of medicine for the treatment of several ailments. Endophytes are one such natural producer of secondary metabolites, namely, polyphenols, which exhibit strong abilities to assist in the management of such affections, through modifying multiple therapeutic targets and weaken their complex physiology. Limited research has been conducted in detail on bioactive compounds present in the endophytic fungi and their neuroprotective effects. Therefore, this review aims to provide an update on scientific evidences related to the pharmacological and clinical potential along with proposed molecular mechanism of action of endophytes for neuronal protection.
Collapse
|
12
|
de Sá JDM, Kumla D, Dethoup T, Kijjoa A. Bioactive Compounds from Terrestrial and Marine-Derived Fungi of the Genus Neosartorya †. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072351. [PMID: 35408769 PMCID: PMC9000665 DOI: 10.3390/molecules27072351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022]
Abstract
Fungi comprise the second most species-rich organism group after that of insects. Recent estimates hypothesized that the currently reported fungal species range from 3.5 to 5.1 million types worldwide. Fungi can grow in a wide range of habitats, from the desert to the depths of the sea. Most develop in terrestrial environments, but several species live only in aquatic habitats, and some live in symbiotic relationships with plants, animals, or other fungi. Fungi have been proved to be a rich source of biologically active natural products, some of which are clinically important drugs such as the β-lactam antibiotics, penicillin and cephalosporin, the immunosuppressant, cyclosporine, and the cholesterol-lowering drugs, compactin and lovastatin. Given the estimates of fungal biodiversity, it is easy to perceive that only a small fraction of fungi worldwide have ever been investigated regarding the production of biologically valuable compounds. Traditionally, fungi are classified primarily based on the structures associated with sexual reproduction. Thus, the genus Neosartorya (Family Trichocomaceae) is the telemorphic (sexual state) of the Aspergillus section known as Fumigati, which produces both a sexual state with ascospores and an asexual state with conidiospores, while the Aspergillus species produces only conidiospores. However, according to the Melbourne Code of nomenclature, only the genus name Aspergillus is to be used for both sexual and asexual states. Consequently, the genus name Neosartorya was no longer to be used after 1 January 2013. Nevertheless, the genus name Neosartorya is still used for the fungi that had already been taxonomically classified before the new rule was in force. Another aspect is that despite the small number of species (23 species) in the genus Neosartorya, and although less than half of them have been investigated chemically, the chemical diversity of this genus is impressive. Many chemical classes of compounds, some of which have unique scaffolds, such as indole alkaloids, peptides, meroterpenes, and polyketides, have been reported from its terrestrial, marine-derived, and endophytic species. Though the biological and pharmacological activities of a small fraction of the isolated metabolites have been investigated due to the available assay systems, they exhibited relevant biological and pharmacological activities, such as anticancer, antibacterial, antiplasmodial, lipid-lowering, and enzyme-inhibitory activities.
Collapse
Affiliation(s)
- Joana D. M. de Sá
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Decha Kumla
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Tida Dethoup
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10240, Thailand;
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: ; Tel.: +351-22-042-8331; Fax: +351-22-206-2232
| |
Collapse
|
13
|
Sangwan S, Yadav N, Kumar R, Chauhan S, Dhanda V, Walia P, Duhan A. A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur J Med Chem 2022; 232:114199. [DOI: 10.1016/j.ejmech.2022.114199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
|
14
|
Yue Y, Chen C, Zhong K, Wu Y, Gao H. Purification, Fermentation Optimization, and Antibacterial Activity of Pyrrole-2-carboxylic Acid Produced by an Endophytic Bacterium, Bacillus cereus ZBE, Isolated from Zanthoxylum bungeanum. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuxi Yue
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Chong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, P. R. China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
15
|
Bang S, Baek JY, Kim GJ, Kim J, Kim S, Deyrup ST, Choi H, Kang KS, Shim SH. Azaphilones from an Endophytic Penicillium sp. Prevent Neuronal Cell Death via Inhibition of MAPKs and Reduction of Bax/Bcl-2 Ratio. JOURNAL OF NATURAL PRODUCTS 2021; 84:2226-2237. [PMID: 34378933 DOI: 10.1021/acs.jnatprod.1c00298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fourteen azaphilone-type polyketides (1-14), including nine new ones (1-6 and 8-10), were isolated from cultures of Vitex rotundifolia-associated Penicillium sp. JVF17, and their structures were determined by spectroscopic analysis together with computational methods and chemical reactions. Neuroprotective effects of the isolated compounds were evaluated against glutamate-induced neurotoxicity. Treatment with compounds 3, 6, 7, and 11-14 increased cell viabilities of hippocampal neuronal cells damaged by glutamate, with compound 12 being the most potent. Compound 12 markedly decreased intracellular Ca2+ and nuclear condensation levels. Mechanistically, molecular markers of apoptosis induced by treatment with glutamate, i.e., phosphorylation of MAPKs and elevated Bax/Bcl-2 expression ratio, were significantly lowered by compound 12. The azaphilones with an isoquinoline core structure were more active than those with pyranoquinones, but N-substitution decreased the activity. This study, including the structure-activity relationship, indicates that the azaphilone scaffold is a promising lead toward the development of novel neuroprotective agents.
Collapse
Affiliation(s)
- Sunghee Bang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Geum Jin Kim
- College of Pharmacy and Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - SungJin Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Hyukjae Choi
- College of Pharmacy and Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
17
|
Liang Z, Currais A, Soriano-Castell D, Schubert D, Maher P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol Ther 2021; 221:107749. [PMID: 33227325 PMCID: PMC8084865 DOI: 10.1016/j.pharmthera.2020.107749] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are the primary source of energy production in the brain thereby supporting most of its activity. However, mitochondria become inefficient and dysfunctional with age and to a greater extent in neurological disorders. Thus, mitochondria represent an emerging drug target for many age-associated neurological disorders. This review summarizes recent advances (covering from 2010 to May 2020) in the use of natural products from plant, animal, and microbial sources as potential neuroprotective agents to restore mitochondrial function. Natural products from diverse classes of chemical structures are discussed and organized according to their mechanism of action on mitochondria in terms of modulation of biogenesis, dynamics, bioenergetics, calcium homeostasis, and membrane potential, as well as inhibition of the oxytosis/ferroptosis pathway. This analysis emphasizes the significant value of natural products for mitochondrial pharmacology as well as the opportunities and challenges for the discovery and development of future neurotherapeutics.
Collapse
Affiliation(s)
- Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| |
Collapse
|
18
|
Raimi A, Adeleke R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol 2021; 203:1917-1942. [PMID: 33677637 DOI: 10.1007/s00203-021-02256-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Presently, several drug discovery investigations on therapeutic management of human health are aimed at bioprospecting for microorganisms, especially endophytic microbes of biotechnological importance. This review investigates the benefits of endophytes, especially in producing bioactive compounds useful in modern medicine by systematically reviewing published data from 12 databases. Only experimental studies investigating either or both bacterial and fungal endophytes and within the scope of this review were selected. The published data from the last 2 decades (2000-2019) revealed diverse endophytes associated with different plants produce a broad spectrum of bioactive compounds with therapeutic benefits. Notably, antibacterial, followed by anticancer and antifungal activities, were mostly reported. Only three studies investigated the anti-plasmodial activity. The variation observed in the synthesis of bioactive compounds amongst endophytes varied with host type, endophyte species, and cultivation medium. Fungal endophytes were more investigated than bacterial endophytes, with both endophytes having species diversity amongst literature. The endophytes were predominantly from medicinal plants and belonged to either Ascomycota (fungi) or Proteobacteria and Firmicutes (bacteria). This review presents excellent prospects of harnessing endophytes and their unique bioactive compounds in developing novel and effective compounds of medicinal importance.
Collapse
Affiliation(s)
- Adekunle Raimi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
19
|
Zheng R, Li S, Zhang X, Zhao C. Biological Activities of Some New Secondary Metabolites Isolated from Endophytic Fungi: A Review Study. Int J Mol Sci 2021; 22:959. [PMID: 33478038 PMCID: PMC7835970 DOI: 10.3390/ijms22020959] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
Secondary metabolites isolated from plant endophytic fungi have been getting more and more attention. Some secondary metabolites exhibit high biological activities, hence, they have potential to be used for promising lead compounds in drug discovery. In this review, a total of 134 journal articles (from 2017 to 2019) were reviewed and the chemical structures of 449 new metabolites, including polyketides, terpenoids, steroids and so on, were summarized. Besides, various biological activities and structure-activity relationship of some compounds were aslo described.
Collapse
Affiliation(s)
| | | | | | - Changqi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, 19 XinjiekouWai Avenue, Beijing 100875, China; (R.Z.); (S.L.); (X.Z.)
| |
Collapse
|
20
|
Abdel-Azeem MA, El-Maradny YA, Othman AM, Abdel-Azeem AM. Endophytic Fungi as a Source of New Pharmaceutical Biomolecules. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Yeh MH, Wu HC, Lin NW, Hsieh JJ, Yeh JW, Chiu HP, Wu MC, Tsai TY, Yeh CC, Li TM. Long-term use of combined conventional medicine and Chinese herbal medicine decreases the mortality risk of patients with lung cancer. Complement Ther Med 2020; 52:102427. [PMID: 32951705 DOI: 10.1016/j.ctim.2020.102427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We explored the effect of Chinese herbal medicine (CHM) on the long-term survival of lung cancer patients and hazard ratio (HR) and to analyse CHM herbs and formulas for lung cancer treatment. METHODS We conducted a retrospective cohort study on diagnosed lung cancer patients in 2003-2016 from Taipei and Dalin Tzu Chi General Hospital Cancer Registry Database and from outpatient database from Chinese Medicine and Conventional Medicine Department. We categorised the patients into CHM user and CHM nonuser groups according to the CHM consumption time. After passing the proportional hazard assumption, we used the Cox PH model to calculate the groups' survival hazard ratio (HR) and examine the statistical difference and effect of CHM on lung cancer survival. RESULTS We classified 2557 lung cancer patients into 1643 CHM nonusers and 228 CHM users. The CHM users had lower mortality than the CHM nonusers. With the multivariable Cox model, we observed that the CHM use was associated with 35% lower risk of mortality (adjusted HR: 0.65; 95% confidence interval: 0.51-0.76). Continuous CHM use of >180 days may further lessen the mortality risk by 64%. Finally, eight herbs and two formulas could significantly lower the mortality. After pairing the eight herbs for analysis, seven combinations could reduce the mortality better than only using one herb. CONCLUSION CHM users had significantly lower mortality than CHM nonusers. The longer the CHM use, the more the mortality HR declined. Glehnia littoralisF. Schmidt ex Miq., Polyporus umbellatus(Pers.) Fries and Trichosanthes kirilowii Maxim. possess a highly substantial anticancer activity compared with other herbs.
Collapse
Affiliation(s)
- Ming-Hsien Yeh
- Graduate Institute of Chinese Medicine, China Medical University, Taichung City, 40402, Taiwan; Department of Chinese Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi, 62247, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City, Hualien, 97004, Taiwan
| | - Hsien-Chang Wu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City, 23142, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City, Hualien, 97004, Taiwan
| | - Nai-Wei Lin
- Department of Computer Science and Information Engineering, National Chung Cheng University, Minxiong, Chiayi, 621, Taiwan
| | - Jin-Jian Hsieh
- Department of Mathematics, National Chung Cheng University, Minxiong, Chiayi, 621, Taiwan
| | - Jin-Wen Yeh
- Department of Computer Science and Information Engineering, National Chung Cheng University, Minxiong, Chiayi, 621, Taiwan
| | - Hung-Pin Chiu
- Department of Information Management, Nanhua University, Dalin, Chiayi, 62249, Taiwan
| | - Mei-Chun Wu
- Department of Information Management, Nanhua University, Dalin, Chiayi, 62249, Taiwan
| | - Tzung-Yi Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan; Department of Medical Research, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, 2 Minsheng Road, Dalin Township, Chiayi, 62247, Taiwan; Department of Nursing, Tzu Chi University of Science and Technology, 880 Chien-Kuo Road Section 2, Hualien, 62247, Taiwan.
| | - Chia-Chou Yeh
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi, 62247, Taiwan; Department of Medical Research, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, 2 Minsheng Road, Dalin Township, Chiayi, 62247, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City, Hualien, 97004, Taiwan.
| | - Te-Mao Li
- Graduate Institute of Chinese Medicine, China Medical University, Taichung City, 40402, Taiwan.
| |
Collapse
|
22
|
Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 2020; 39:107462. [DOI: 10.1016/j.biotechadv.2019.107462] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
|
23
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
24
|
Knowles SL, Vu N, Todd DA, Raja HA, Rokas A, Zhang Q, Oberlies NH. Orthogonal Method for Double-Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS). JOURNAL OF NATURAL PRODUCTS 2019; 82:3421-3431. [PMID: 31823607 PMCID: PMC7004233 DOI: 10.1021/acs.jnatprod.9b00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most often, the structures of secondary metabolites are solved using a suite of NMR techniques. However, there are times when it can be challenging to position double bonds, particularly those that are fully substituted or when there are multiple double bonds in similar chemical environments. Ozone-induced dissociation mass spectrometry (OzID-MS) serves as an orthogonal structure elucidation tool, using predictable fragmentation patterns that are generated after ozonolysis across a carbon-carbon double bond. This technique is finding growing use in the lipidomics community, suggestive of its potential value for secondary metabolites. This methodology was evaluated by confirming the double-bond positions in five fungal secondary metabolites, specifically, ent-sartorypyrone E (1), sartorypyrone A (2), sorbicillin (3), trichodermic acid A (4), and AA03390 (5). This demonstrated its potential with a variety of chemotypes, ranging from polyketides to terpenoids and including those in both conjugated and nonconjugated polyenes. In addition, the potential of using this methodology in the context of a mixture was piloted by studying Aspergillus fischeri, first examining a traditional extract and then sampling a live fungal culture in situ. While the intensity of signals varied from pure compound to extract to in situ, the utility of the technique was preserved.
Collapse
Affiliation(s)
- Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Ngoc Vu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| |
Collapse
|