1
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
2
|
Zhu X, Cai J, Wang Y, Liu X, Chen X, Wang H, Wu Z, Bao W, Fan H, Wu S. A High-Fat Diet Increases the Characteristics of Gut Microbial Composition and the Intestinal Damage Associated with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:16733. [PMID: 38069055 PMCID: PMC10706137 DOI: 10.3390/ijms242316733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing annually, and emerging evidence suggests that the gut microbiota plays a causative role in the development of NAFLD. However, the role of gut microbiota in the development of NAFLD remains unclear and warrants further investigation. Thus, C57BL/6J mice were fed a high-fat diet (HFD), and we found that the HFD significantly induced obesity and increased the accumulation of intrahepatic lipids, along with alterations in serum biochemical parameters. Moreover, it was observed that the HFD also impaired gut barrier integrity. It was revealed via 16S rRNA gene sequencing that the HFD increased gut microbial diversity, which enriched Colidextribacter, Lachnospiraceae-NK4A136-group, Acetatifactor, and Erysipelatoclostridium. Meanwhile, it reduced the abundance of Faecalibaculum, Muribaculaceae, and Coriobacteriaceae-UCG-002. The predicted metabolic pathways suggest that HFD enhances the chemotaxis and functional activity of gut microbiota pathways associated with flagellar assembly, while also increasing the risk of intestinal pathogen colonization and inflammation. And the phosphotransferase system, streptomycin biosynthesis, and starch/sucrose metabolism exhibited decreases. These findings reveal the composition and predictive functions of the intestinal microbiome in NAFLD, further corroborating the association between gut microbiota and NAFLD while providing novel insights into its potential application in gut microbiome research for NAFLD patients.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Jiajia Cai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Yifu Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Xinyu Liu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Xiaolei Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
3
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023; 15:2749. [PMID: 37375654 PMCID: PMC10302286 DOI: 10.3390/nu15122749] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe the effect of the Western pattern diet on the metabolism, inflammation, and antioxidant status; the impact on gut microbiota and mitochondrial fitness; the effect of on cardiovascular health, mental health, and cancer; and the sanitary cost of the Western diet. To achieve this goal, a consensus critical review was conducted using primary sources, such as scientific articles, and secondary sources, including bibliographic indexes, databases, and web pages. Scopus, Embase, Science Direct, Sports Discuss, ResearchGate, and the Web of Science were used to complete the assignment. MeSH-compliant keywords such "Western diet", "inflammation", "metabolic health", "metabolic fitness", "heart disease", "cancer", "oxidative stress", "mental health", and "metabolism" were used. The following exclusion criteria were applied: (i) studies with inappropriate or irrelevant topics, not germane to the review's primary focus; (ii) Ph.D. dissertations, proceedings of conferences, and unpublished studies. This information will allow for a better comprehension of this nutritional behavior and its effect on an individual's metabolism and health, as well as the impact on national sanitary systems. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
4
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
5
|
Zhang M, Zhu S, Li Q, Xue D, Jiang S, Han Y, Li C. Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods 2023; 12:foods12061249. [PMID: 36981174 PMCID: PMC10048447 DOI: 10.3390/foods12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heat treatment affects the structural properties of meat proteins, which in turn leads to changes in their sensitivity to digestive enzymes, further affecting the nutritional value of meat and meat products. The mechanism of changes in the structure and digestive properties of myosin under different heating conditions were studied. An increase in heating temperature led to the exposure of internal groups to a polar environment, but to a decrease in the sturdy α-helix structure of myosin (p < 0.05). The results of tryptophan fluorescence verified that the tertiary structure of the protein seemed to be unfolded at 70 °C. Higher protein denaturation after overheating, as proven by the sulfhydryl contents and turbidity, caused irregular aggregate generation. The excessive heating mode of treatment at 100 °C for 30 min caused myosin to exhibit a lower degree of pepsin digestion, which increased the Michaelis constant (Km value) of pepsin during the digestion, but induced the production of new peptides with longer peptide sequences. This study elucidates the effects of cooking temperature on the conformation of myosin and the change in digestibility of pepsin treatment during heating.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Ministry of Education, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuran Zhu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
6
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
7
|
Xie Y, Cai L, Huang Z, Shan K, Xu X, Zhou G, Li C. Plant-Based Meat Analogues Weaken Gastrointestinal Digestive Function and Show Less Digestibility Than Real Meat in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12442-12455. [PMID: 36070521 DOI: 10.1021/acs.jafc.2c04246] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real meat and plant-based meat analogues have different in vitro protein digestibility properties. This study aims to further explore their in vivo digestion and absorption and their effects on the gastrointestinal digestive function of mice. Compared with the real pork and beef, plant-based meat analogues significantly reduced the number of gastric parietal cells, the levels of gastrin/CCKBR, acetylcholine/AchR, Ca2+, CAMK II, PKC, and PKA, the activity of H+, K+-ATPase, and pepsin, the duodenal villus height, and the ratio of villus height to crypt depth and downregulated the expression of most nitrogen nutrient sensors. Peptidomics revealed that plant-based meat analogues released fewer peptides during in vivo digestion and increased the host- and microbial-derived peptides. Moreover, the real beef showed better absorption properties. These results suggested that plant-based meat analogues weaken gastrointestinal digestive function of mice, and their digestion and absorption performance in vivo is not as good as the real meat.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Cai
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiji Huang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Shan
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Guo J, Xu F, Xie Y, Chen B, Wang Y, Nie W, Zhou K, Zhou H, Xu B. Effect of Xuanwei Ham Proteins with Different Ripening Periods on Lipid Metabolism, Oxidative Stress and Gut Microbiota in Mice. Mol Nutr Food Res 2022; 66:e2101020. [DOI: 10.1002/mnfr.202101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Guo
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Feiran Xu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
- Anhui Qingsong Food Co., Ltd. No.28 Ningxi Road Hefei 231299 China
| | - Yong Xie
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Bo Chen
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Ying Wang
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Wen Nie
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Kai Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Hui Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Baocai Xu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| |
Collapse
|
9
|
Xie Y, Ma Y, Cai L, Jiang S, Li C. Reconsidering Meat Intake and Human Health: A Review of Current Research. Mol Nutr Food Res 2022; 66:e2101066. [PMID: 35199948 DOI: 10.1002/mnfr.202101066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Meat consumption is gradually increasing and its impact on health has attracted widespread attention, resulting in epidemiological studies proposing a reduction in meat and processed meat intake. This review briefly summarizes recent advances in understanding the effects of meat or processed meat on human health, as well as the underlying mechanisms. Meat consumption varies widely among individuals, populations, and regions, with higher consumption in developed countries than in developing countries. However, increasing meat consumption may not be the main cause of increasing incidence of chronic disease, since the development of chronic disease is a complex physiological process that involves many factors, including excessive total energy intake and changes in food digestion processes, gut microbiota composition, and liver metabolism. In comparison, unhealthy dietary habits and a sedentary lifestyle with decreasing energy expenditure are factors more worthy of reflection. Meat and meat products provide high-value protein and many key essential micronutrients. In short, as long as excessive intake and overprocessing of meats are avoided, meat remains an indispensable source of nutrition for human health.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafang Ma
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linlin Cai
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Cheiran Pereira G, Piton E, Moreira Dos Santos B, Ramanzini LG, Muniz Camargo LF, Menezes da Silva R, Bochi GV. Microglia and HPA axis in depression: An overview of participation and relationship. World J Biol Psychiatry 2022; 23:165-182. [PMID: 34100334 DOI: 10.1080/15622975.2021.1939154] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives: This narrative review article provides an overview on the involvement of microglia and the hypothalamic-pituitary-adrenal (HPA) axis in the pathophysiology of depression, as well investigates the mutual relationship between these two entities: how microglial activation can contribute to the dysregulation of the HPA axis, and vice versa.Methods: Relevant studies and reviews already published in the Pubmed electronic database involving the themes microglia, HPA axis and depression were used to meet the objectives.Results: Exposition to stressful events is considered a common factor in the mechanisms proposed to explain the depressive disorder. Stress can activate microglial cells, important immune components of the central nervous system (CNS). Moreover, another system involved in the physiological response to stressors is the hypothalamic-pituitary-adrenal (HPA) axis, the main stress response system responsible for the production of the glucocorticoid hormone (GC). Also, mediators released after microglial activation can stimulate the HPA axis, inducing production of GC. Likewise, high levels of GCs are also capable of activating microglia, generating a vicious cycle.Conclusion: Immune and neuroendocrine systems seems to work in a coordinated manner and that their dysregulation may be involved in the pathophysiology of depression since neuroinflammation and hypercortisolism are often observed in this disorder.
Collapse
Affiliation(s)
- Gabriele Cheiran Pereira
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Elisa Piton
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Brenda Moreira Dos Santos
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Guilherme Ramanzini
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Fernando Muniz Camargo
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Rossano Menezes da Silva
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
11
|
Xiang Q, Tang X, Cui S, Zhang Q, Liu X, Zhao J, Zhang H, Mao B, Chen W. Capsaicin, the Spicy Ingredient of Chili Peppers: Effects on Gastrointestinal Tract and Composition of Gut Microbiota at Various Dosages. Foods 2022; 11:foods11050686. [PMID: 35267319 PMCID: PMC8909049 DOI: 10.3390/foods11050686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Capsaicin (CAP) is an ingredient of peppers that has biological activities at low doses but causes gastrointestinal (GI) discomfort at high doses. However, the GI effects of high doses of CAP and the evaluation criteria to determine this remain unknown. To elucidate the dose-related effects of CAP on GI health, CAP was administered to mice at 40, 60, and 80 mg/kg doses. The results showed that 40 mg/kg CAP did not negatively affect GI tissues, while 60 and 80 mg/kg CAP damaged GI tissues and caused significant inflammation in the jejunum, ileum, and colon. The levels of serum substance P (SP) and calcitonin gene-related peptide (CGRP) were CAP-dose-dependent, and short-chain fatty acids (SCFAs) content significantly increased in the 80 mg/kg group. Correlation analysis revealed that the underlying mechanisms might be related to the regulation of gut microbiota, especially Bifidobacterium, Lactobacillus, Faecalibacterium, and Butyricimonas. These results suggest that oral administration of 60 and 80 mg/kg CAP in mice causes intestinal inflammation and high levels of serum neuropeptides and cecal SCFAs, which may be related to alterations in gut microbiota.
Collapse
Affiliation(s)
- Qunran Xiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.X.); (X.T.); (S.C.); (Q.Z.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Jiang S, Xue D, Zhang M, Li Q, Liu H, Zhao D, Zhou G, Li C. Myoglobin diet affected colonic mucus layer and barrier by increasing the abundance of several beneficial gut bacteria. Food Funct 2022; 13:9060-9077. [DOI: 10.1039/d2fo01799g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study aimed to explore the in vitro digestion of myoglobin diet and its relationship with the gut microbiota and intestinal barrier at two feeding time points. In vitro study...
Collapse
|
13
|
Guo W, Xiang Q, Mao B, Tang X, Cui S, Li X, Zhao J, Zhang H, Chen W. Protective Effects of Microbiome-Derived Inosine on Lipopolysaccharide-Induced Acute Liver Damage and Inflammation in Mice via Mediating the TLR4/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7619-7628. [PMID: 34156842 DOI: 10.1021/acs.jafc.1c01781] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This research assessed the anti-inflammatory and hepatoprotective properties of inosine and the associated mechanism. Inosine pretreatment significantly reduced the secretion of several inflammatory factors and serum alanine transaminase (ALT) and aspartate amino transferase (AST) levels in a dose-dependent manner compared with the lipopolysaccharide (LPS) group. In LPS-treated mice, inosine pretreatment significantly reduced the ALT and malondialdehyde (MDA) concentration and significantly elevated the antioxidant enzyme activity. Furthermore, inosine pretreatment significantly altered the relative abundance of the genera, Bifidobacterium, Lachnospiraceae UCG-006, and Muribaculum. Correlation analysis showed that Bifidobacterium and Lachnospiraceae UCG-006 were positively related to the cecal short-chain fatty acids but negatively related to the serum IL-6 and hepatic AST and ALT levels. Notably, inosine pretreatment significantly modulated the hepatic TLR4, MYD88, NF-κB, iNOS, COX2, AMPK, Nfr2, and IκB-α expression. These results suggested that inosine pretreatment alters the intestinal microbiota structure and improves LPS-induced acute liver damage and inflammation through modulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qunran Xiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Chicken-eaters and pork-eaters have different gut microbiota and tryptophan metabolites. Sci Rep 2021; 11:11934. [PMID: 34099832 PMCID: PMC8184825 DOI: 10.1038/s41598-021-91429-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
This study was aimed to evaluate the differences in the composition of gut microbiota, tryptophan metabolites and short-chain fatty acids in feces between volunteers who frequently ate chicken and who frequently ate pork. Twenty male chicken-eaters and 20 male pork-eaters of 18 and 30 years old were recruited to collect feces samples for analyses of gut microbiota composition, short-chain fatty acids and tryptophan metabolites. Chicken-eaters had more diverse gut microbiota and higher abundance of Prevotella 9, Dialister, Faecalibacterium, Megamonas, and Prevotella 2. However, pork-eaters had higher relative abundance of Bacteroides, Faecalibacterium, Roseburia, Dialister, and Ruminococcus 2. In addition, chicken-eaters had high contents of skatole and indole in feces than pork-eaters, as well as higher contents of total short chain fatty acids, in particular for acetic acid, propionic acid, and branched chain fatty acids. The Spearman’s correlation analysis revealed that the abundance of Prevotella 2 and Prevotella 9 was positively correlated with levels of fecal skatole, indole and short-chain fatty acids. Thus, intake of chicken diet may increase the risk of skatole- and indole-induced diseases by altering gut microbiota.
Collapse
|
15
|
Ngowi EE, Wang YZ, Khattak S, Khan NH, Mahmoud SSM, Helmy YASH, Jiang QY, Li T, Duan SF, Ji XY, Wu DD. Impact of the factors shaping gut microbiota on obesity. J Appl Microbiol 2021; 131:2131-2147. [PMID: 33570819 DOI: 10.1111/jam.15036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Obesity is considered as a risk factor for chronic health diseases such as heart diseases, cancer and diabetes 2. Reduced physical activities, lifestyle, poor nutritional diet and genetics are among the risk factors associated with the development of obesity. In recent years, several studies have explored the link between the gut microbiome and the progression of diseases including obesity, with the shift in microbiome abundance and composition being the main focus. The alteration of gut microbiome composition affects both nutrients metabolism and specific gene expressions, thereby disturbing body physiology. Specifically, the abundance of fibre-metabolizing microbes is associated with weight loss and that of protein and fat-metabolizing bacteria with weight gain. Various internal and external factors such as genetics, maternal obesity, mode of delivery, breastfeeding, nutrition, antibiotic use and the chemical compounds present in the environment are known to interfere with the richness of the gut microbiota (GM), thus influencing weight gain/loss and ultimately the development of obesity. However, the effectiveness of each factor in potentiating the shift in microbes' abundance to result in significant changes that can lead to obesity is not yet clear. In this review, we will highlight the factors involved in shaping GM, their influence on obesity and possible interventions. Understanding the influence of these factors on the diversity of the GM and how to improve their effectiveness on disease conditions could be keys in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China.,Department of Biological Sciences, Faculty of Science, Dares Salaam University College of Education, Dares Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Salma Sayed Mohamed Mahmoud
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,School of Stomatology, Henan University, Kaifeng, Henan, China
| |
Collapse
|
16
|
Zhang M, Zhao D, Zhou G, Li C. Dietary Pattern, Gut Microbiota, and Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12800-12809. [PMID: 32090565 DOI: 10.1021/acs.jafc.9b08309] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease is the most common neurodegenerative disease. Until now, there has been no specific medicine that can cure Alzheimer's disease or effectively reverse the disease process. A good dietary pattern is an efficient way to prevent or delay the progression of the disease. Evidence suggests that diet may affect β-amyloid production and tau processing or may regulate inflammation, metabolism, and oxidative stress associated with Alzheimer's disease, which can be exerted by gut microbiota. The gut microbiota is a complex microbial community that affects not only various digestive diseases but also neurodegenerative diseases. Studies have shown that gut microbial metabolites, such as pro-inflammatory factors, short-chain fatty acids, and neurotransmitters, can affect the pathogenesis of Alzheimer's disease. Clinical studies suggested that the gut microbial composition of patients with Alzheimer's disease is different, in particular to lower abundances of Eubacterium rectale and Bacteroides fragilis, which have an anti-inflammatory activity. The purpose of this review is to summarize the neuropathological pathogenesis of Alzheimer's disease, and the modulation of dietary patterns rather than single dietary components on Alzheimer's disease through the gut-brain axis was discussed.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
17
|
Zhang M, Zhao D, Zhu S, Nian Y, Xu X, Zhou G, Li C. Overheating induced structural changes of type I collagen and impaired the protein digestibility. Food Res Int 2020; 134:109225. [DOI: 10.1016/j.foodres.2020.109225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
|
18
|
Xie Y, Wang C, Zhao D, Zhou C, Li C. Long-Term Intake of Pork Meat Proteins Altered the Composition of Gut Microbiota and Host-Derived Proteins in the Gut Contents of Mice. Mol Nutr Food Res 2020; 64:e2000291. [PMID: 32730665 DOI: 10.1002/mnfr.202000291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/09/2020] [Indexed: 11/07/2022]
Abstract
SCOPE This study is to investigate the effects of long-term intake of pork protein on the composition of gut microbiota and proteins in mice. METHODS AND RESULTS C57BL/6J mice are fed pork meat protein diets for 240 days, and the composition of gut microbiota and proteins in luminal contents from the duodenum to the colon are analyzed by 16S rRNA gene sequencing and LC-MS/MS. The stewed pork protein diet group has a highly similar microbiota composition to that of the cooked pork protein diet group, but different from the pork emulsion sausage or dry-cured pork protein diet groups. Lachnospiraceae NK4A136, Odoribacter, Defluviitaleaceae UCG-011, Ruminiclostridium 9, Blautia, Lachnoclostridium, and Ruminococcaceae UCG-010 play an important role in response to changes in gut luminal proteins. Specific microbes are significantly correlated with the Cela3b and Cpa1 that are derived from the host and involve protein digestion and absorption. CONCLUSIONS Pork meat protein diets alter the gut microbiota composition and specific gut microbes may have a great impact on protein digestion and absorption by regulating the secretion of digestive proteins from the host. These findings provide a new insight into the associations of long-term intake of meat protein diet with gut microbiota and host.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chao Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Changyu Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
19
|
Shi J, Zhao D, Song S, Zhang M, Zamaratskaia G, Xu X, Zhou G, Li C. High-Meat-Protein High-Fat Diet Induced Dysbiosis of Gut Microbiota and Tryptophan Metabolism in Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6333-6346. [PMID: 32432868 DOI: 10.1021/acs.jafc.0c00245] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Meat-diet-induced changes in gut microbiota are often accompanied with the development of various metabolic and inflammatory disorders. The exact biochemical mechanism underlying these effects is not well elucidated. This study aims to evaluate how meat proteins in high-fat diets affect tryptophan metabolism in rats. The high-chicken-protein (HFHCH) or high-pork-protein (HFHP) diets increased levels of skatole and indole in cecal and colonic contents, feces, and subcutaneous adipose tissue. The HFHCH and HFHP diets also increased the abundance of Lactobacillus, the Family XIII AD3011 group, and Desulfovibrio in the cecum and colon, which may be involved in the production of skatole and indole. Additionally, high-meat-protein diets induced lower activity of skatole- and indole-metabolizing enzyme CYP2E1 in liver compared with low-meat-protein diets. This work highlights the negative impact of high meat proteins on physiological responses by inducing dysbiosis of gut microbiota and tryptophan metabolism.
Collapse
Affiliation(s)
- Jie Shi
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, 211171 Nanjing, P. R. China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| |
Collapse
|
20
|
Xie Y, Wang C, Zhao D, Wang C, Li C. Dietary Proteins Regulate Serotonin Biosynthesis and Catabolism by Specific Gut Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5880-5890. [PMID: 32363863 DOI: 10.1021/acs.jafc.0c00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
More than 90% of serotonin is produced in the intestine. Previous studies have shown that different protein diets significantly affect serum serotonin levels. Here, the colonic microbiota and intestinal serotonin were measured to elaborate how protein diets affect serotonin production in a mouse model. The emulsion-type sausage protein and cooked pork protein diets increased the mRNA levels of tryptophan hydroxylase 1 (Tph1) and monoamine oxidase A (Maoa) and serotonin level as well but reduced the number of enterochromaffin cells. However, the soy protein diet increased the number of enterochromaffin cells and Tph1 mRNA level but decreased the Maoa mRNA level and the serotonin content. Specific gut microbes that responded to dietary changes and affected the content of short-chain fatty acids were significantly related to serotonin-associated biomarkers. These results suggest that dietary proteins may regulate serotonin biosynthesis and catabolism by altering specific gut microbes.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chong Wang
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chao Wang
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Joint International Research Laboratory of Animal Health and Food Safety, MOE, Nanjing Agricultural University, Nanjing 210095, P. R. China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
21
|
Zhang M, Zou X, Zhao D, Zhao F, Li C. Pork Meat Proteins Alter Gut Microbiota and Lipid Metabolism Genes in the Colon of Adaptive Immune-Deficient Mice. Mol Nutr Food Res 2020; 64:e1901105. [PMID: 32249499 DOI: 10.1002/mnfr.201901105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/11/2020] [Indexed: 12/19/2022]
Abstract
SCOPE Excessive consumption of processed meat has been linked to an increasing risk of gut diseases. It is investigated how pork meat proteins affect colon homeostasis between normal and immune-compromised mice. METHODS AND RESULTS Immune-deficient mice (Rag1-/- ) and wild-type mice are fed a diet that contains 20% casein or protein isolated from cooked pork or dry-cured pork for 3 months. Rag1-/- mice show greater variations in transcriptome responses and higher microbial diversity than wild-type mice after consumption of the pork meat protein diets. Intake of pork meat protein diets also increases body weight and induces colonic oxidative stress, low-grade inflammation, and gene expression involved in immune function, cell cycle, and migration. Key genes like Hmox1, Ppara, and Pparg are highly upregulated by pork meat protein. These changes are associated with decreased abundances of Blautia, Bifidobacterium, and Alistipes and increased abundances of Akkermansia muciniphila and Ruminococcaceae. CONCLUSION Pork meat proteins affect colon health in both wild-type and Rag1-/- mice by altering the microbiome profile under the complex interaction with adaptive immunity. The findings herein give a new insight into the understanding of meat intake, immunity, and gut health.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiaoyu Zou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fan Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
22
|
Xie Y, Wang C, Zhao D, Zhou G, Li C. Processing Method Altered Mouse Intestinal Morphology and Microbial Composition by Affecting Digestion of Meat Proteins. Front Microbiol 2020; 11:511. [PMID: 32322243 PMCID: PMC7156556 DOI: 10.3389/fmicb.2020.00511] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Our previous study showed that the intake of meat proteins dynamically affected fecal microbial composition. However, the digestion of processed meat proteins in vivo and its relationship with gut microbiota and host remain unclear. In this study, we collected cecal contents and intestinal tissue from the mice fed with casein, soybean protein (SP), and four processed pork proteins for 8 months, and analyzed the amino acid (AA) files, cecum microbial composition and metabolites, and intestinal morphology. Dry-cured pork protein and stewed pork protein (SPP) groups had significantly higher total AA content in gut content than the other groups, but the content of the SPP group was relatively lower in the serum. The microbial composition of the processed meat protein groups differed from the casein or SP group, which is consistent with changes in AA composition. Emulsion sausage protein and SP diets upregulated the microbial AA metabolism, energy metabolism, signaling molecules and interaction, translation, and digestive system function but downregulated the microbial membrane transport, signal transduction and cell motility function compared to the casein diet. The SPP diets increased concentrations of acetate, propionate, butyrate, and isovalerate by specific gut microbes, but it decreased the relative abundance of Akkermansia. Moreover, the mice fed SP diet had relatively lower crypt depth, higher villus height and V/C ratio in duodenum, with the longer small intestines and the heavier cecum than other diets. These results suggested that processing methods altered bioavailability of meat proteins, which affected the intestinal morphology and the cecum microbial composition and function.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chong Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- International Joint Laboratory of Animal Health and Food Safety, MOE, Nanjing Agricultural University, Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- International Joint Laboratory of Animal Health and Food Safety, MOE, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Lappan R, Classon C, Kumar S, Singh OP, de Almeida RV, Chakravarty J, Kumari P, Kansal S, Sundar S, Blackwell JM. Meta-taxonomic analysis of prokaryotic and eukaryotic gut flora in stool samples from visceral leishmaniasis cases and endemic controls in Bihar State India. PLoS Negl Trop Dis 2019; 13:e0007444. [PMID: 31490933 PMCID: PMC6750594 DOI: 10.1371/journal.pntd.0007444] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani remains of public health concern in rural India. Those at risk of VL are also at risk of other neglected tropical diseases (NTDs) including soil transmitted helminths. Intestinal helminths are potent regulators of host immune responses sometimes mediated through cross-talk with gut microbiota. We evaluate a meta-taxonomic approach to determine the composition of prokaryotic and eukaryotic gut microflora using amplicon-based sequencing of 16S ribosomal RNA (16S rRNA) and 18S rRNA gene regions. The most abundant bacterial taxa identified in faecal samples from Bihar State India were Prevotella (37.1%), Faecalibacterium (11.3%), Escherichia-Shigella (9.1%), Alloprevotella (4.5%), Bacteroides (4.1%), Ruminococcaceae UCG-002 (1.6%), and Bifidobacterium (1.5%). Eukaryotic taxa identified (excluding plant genera) included Blastocystis (57.9%; Order: Stramenopiles), Dientamoeba (12.1%; Family: Tritrichomonadea), Pentatrichomonas (10.1%; Family: Trichomonodea), Entamoeba (3.5%; Family: Entamoebida), Ascaridida (0.8%; Family: Chromodorea; concordant with Ascaris by microscopy), Rhabditida (0.8%; Family: Chromodorea; concordant with Strongyloides), and Cyclophyllidea (0.2%; Order: Eucestoda; concordant with Hymenolepis). Overall alpha (Shannon's, Faith's and Pielou's indices) and beta (Bray-Curtis dissimilarity statistic; weighted UniFrac distances) diversity of taxa did not differ significantly by age, sex, geographic subdistrict, or VL case (N = 23) versus endemic control (EC; N = 23) status. However, taxon-specific associations occurred: (i) Ruminococcaceae UCG- 014 and Gastranaerophilales_uncultured bacterium were enriched in EC compared to VL cases; (ii) Pentatrichomonas was more abundant in VL cases than in EC, whereas the reverse occurred for Entamoeba. Across the cohort, high Escherichia-Shigella was associated with reduced bacterial diversity, while high Blastocystis was associated with high bacterial diversity and low Escherichia-Shigella. Individuals with high Blastocystis had low Bacteroidaceae and high Clostridiales vadin BB60 whereas the reverse held true for low Blastocystis. This scoping study provides useful baseline data upon which to develop a broader analysis of pathogenic enteric microflora and their influence on gut microbial health and NTDs generally.
Collapse
Affiliation(s)
- Rachael Lappan
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Cajsa Classon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Om Prakash Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ricardo V. de Almeida
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Jaya Chakravarty
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Poonam Kumari
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sangeeta Kansal
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jenefer M. Blackwell
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Ahmad MI, Zou X, Ijaz MU, Hussain M, Liu C, Xu X, Zhou G, Li C. Processed Meat Protein Promoted Inflammation and Hepatic Lipogenesis by Upregulating Nrf2/Keap1 Signaling Pathway in Glrx-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8794-8809. [PMID: 31345023 DOI: 10.1021/acs.jafc.9b03136] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress may play a critical role in the progression of liver disorders. Increasing interest has been given to the associations among diet, oxidative stress, gut-liver axis, and nonalcoholic fatty liver disease. Here, we investigated the effects of processed meat proteins on biomarkers of lipid homeostasis, hepatic metabolism, antioxidant functions, and gut microbiota composition in glutaredoxin1 deficient (Glrx1-/-) mice. The wild-type (WT) and Glrx1-/- mice were fed a soy protein diet (SPD), a dry-cured pork protein diet (DPD), a braised pork protein diet (BPD), and a cooked pork protein diet (CPD) at a dose of 20% of protein for 3 months. Serum and hepatic total cholesterol, serum endotoxin, hepatic liver droplet %, and antioxidant capacity were significantly increased in the CPD fed WT mice. In addition, CPD fed Glrx1-/- mice significantly increased total cholesterol, triacylglycerol, and pro-inflammatory cytokines which are accompanied by higher steatosis scores, intrahepatic lipid accumulation, and altered gene expression associated with lipid metabolism. Furthermore, hepatic gene expression of Nrf2/keap1 signaling pathway and its downstream signaling targets were determined using RT-qPCR. Glrx1 deficiency increased Nrf2 activity and expression of its target genes (GPx, catalase, SOD1, G6pd, and Bbc3), which was exacerbated by intake of CPD. Metagenomic analyses revealed that Glrx1-/- mice fed meat protein diets had higher abundances of Mucispirillum, Oscillibacter, and Mollicutes but lower abundances of Bacteroidales S24-7 group_norank, Blautia, and Anaerotruncus than their wild-type counterparts. In summary, Glrx1 deficiency induced an increase in serum biomarkers for lipid homeostasis, gut microbiota imbalance, and upregulation of Nrf2/Keap1 and antioxidant defense genes, which was aggravated by cooked meat protein diet.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Xiaoyou Zou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Muzahir Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Congcong Liu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| |
Collapse
|