1
|
Xu Y, Zhang N, Shi K, Zhang P, Xiong S, Xu G, Pan S. Comparative Evaluation of Micellization and Cellular Uptake of β-Carotene Affected by Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19353-19365. [PMID: 39174497 DOI: 10.1021/acs.jafc.4c03554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Based on in vitro digestion, micellar synthesis, and Caco-2 cell model, this study investigated the effects of typical flavonoids in citrus (naringenin, naringin, hesperetin, hesperidin, quercetin, and rutin) at different doses on the micellization and cellular uptake of β-carotene. In in vitro digestion, low-dose flavonoids enhanced β-carotene bioaccesssibility by regulating the stability and dispersibility of the intestinal medium, particularly quercetin, which significantly increased the bioaccessibility by 44.6% (p < 0.05). Furthermore, naringenin, hesperetin, hesperidin, and quercetin enhanced the micellar incorporation rate of β-carotene; however, naringin and rutin exhibited an opposite effect, particularly naringin, which significantly reduced it by 71.3% (p < 0.05). This phenomenon could be attributed to the high solubility of naringin and rutin in micelles, resulting in a competitive inhibitory effect on β-carotene. Besides, all treatments significantly enhanced β-carotene cellular uptake (p < 0.05) by promoting the expression of scavenger receptor class B type I and Niemann-Pick C1-Like 1.
Collapse
Affiliation(s)
- Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nawei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Kaixin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - PeiPei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sihui Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
2
|
Wu Z, Li H, Li S, Chen G, Tang X, Liu S, Wang Y. Molecular mechanism underlying coencapsulating chrysophanol and hesperidin in octenylsuccinated β-glucan aggregates for improving their corelease and bioaccessibility. Int J Biol Macromol 2024; 276:133902. [PMID: 39029835 DOI: 10.1016/j.ijbiomac.2024.133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Chrysophanol and hesperidin are natural nutraceuticals that exhibit synergistic bioactivities, but their hydrophobicity limits their applications, and it is unclear whether coencapsulation can improve their solubility and release behaviors. The objective of this work was to coencapsulate chrysophanol and hesperidin by octenylsuccinated β-glucan aggregates (OSβG-Agg) and to reveal how coencapsulation improves their release and bioaccessibility. Mechanisms underlying the hypothesis of beneficial effects in coloading, corelease and bioaccessibility were revealed. The solubilization of OSβG-Agg was due to hydrogen-bonding among β-glucan moieties of OSβG and hydroxyl groups of chrysophanol and hesperidin and hydrophobic interactions among octenyl chains of OSβG and hydrophobic moieties of chrysophanol and hesperidin. Structural analyses confirmed the hypothesis that chrysophanol molecules were nearly embedded deeper into the interior of hydrophobic domains, and most of hesperidin molecules were incorporated into the exterior of the hydrophobic domains of OSβG-Agg due to the strength of these interactions, but they interacted in OSβG-Agg with a dense and compact structure rather than existing in isolation. The combined effects delayed their release and enhanced their bioaccessibility because of dynamic equilibrium between the favorable interactions and unfavorable structural erosion and relaxation of OSβG-Agg. Overall, OSβG-Agg is effective at codelivering hydrophobic phenolics for functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China.
| | - Hong Li
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Gang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China.
| |
Collapse
|
3
|
Chen K, Li Y, Zhou C, Wang Y, Zalán Z, Cai T. Inhibitory effects of chlorophyll pigments on the bioaccessibility of β-carotene: Influence of chlorophyll structure and oil matrix. Food Chem 2024; 451:139457. [PMID: 38703726 DOI: 10.1016/j.foodchem.2024.139457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Chlorophylls and β-carotene are fat-soluble phytochemicals in daily diets, while their bioaccessibility interaction remains unknown. Eight dietary chlorophylls and their derivatives (chlorophyll a, chlorophyll b, pheophytin a, pheophytin b, chlorophyllide a, chlorophyllide b, pheophorbide a, pheophorbide b) were combined with β-carotene in six different oil matrices (corn oil, coconut oil, medium-chain triglycerides, peanut oil, olive oil and fish oil) and were subjected to in vitro digestion. Generally, chlorophylls significantly decreased β-carotene bioaccessibility by competitive incorporation into micelles. Dephytylated chlorophylls had a greater inhibitory effect on the micellarization and bioaccessibility of β-carotene compared to phytylated chlorophylls. In their co-digestion system, olive oil group exhibited the smallest particle size and biggest zeta potential in both digesta and micelles. For chlorophylls, the phytol group and their levels are key factors, which was also buttressed by the mice model where additional supplementation of pheophorbide a significantly hindered the accumulation of β-carotene and retinoids compounds.
Collapse
Affiliation(s)
- Kewei Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Yunchang Li
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Chunjie Zhou
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, No. 1, Chunlan 2nd Road, Yubei District, Chongqing 401121, PR China
| | - Yuankai Wang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zsolt Zalán
- China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi str. 29-43, Budapest H-1118, Hungary
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Shi E, Wang X, Jing H, Xu Y, Feng L, He F, Li D, Dai Z. Synergistic effect of chitosan and β-carotene in inhibiting MNU-induced retinitis pigmentosa. Int J Biol Macromol 2024; 268:131671. [PMID: 38641272 DOI: 10.1016/j.ijbiomac.2024.131671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In this study, N-Methyl-N-nitrosourea (MNU) was intraperitoneally injected to construct a mouse retinitis pigmentosa (RP) model to evaluate the protective effect of chitosan and β-carotene on RP. The results demonstrated that chitosan synergized with β-carotene significantly reduced retinal histopathological structural damage in RP mice. The co-treatment group of β-carotene and chitosan restored the retinal thickness and outer nuclear layer thickness better than the group treated with the two alone, and the thickness reached the normal level. The content of β-carotene and retinoids in the liver of chitosan and β-carotene co-treated group increased by 46.75 % and 20.69 %, respectively, compared to the β-carotene group. Chitosan and β-carotene supplement suppressed the expressions of Bax, Calpain2, Caspase3, NF-κB, TNF-α, IL-6, and IL-1β, and promoted the up-regulation of Bcl2. Chitosan and β-carotene interventions remarkably contributed to the content of SCFAs and enhanced the abundance of Ruminococcaceae, Rikenellaceae, Odoribacteraceae and Helicobacteraceae. Correlation analysis demonstrated a strong association between gut microbiota and improvement in retinitis pigmentosa. This study will provide a reference for the study of the gut-eye axis.
Collapse
Affiliation(s)
- Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-operative, Jinan 250014, China
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fatao He
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-operative, Jinan 250014, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
5
|
Miao Q, Si X, Zhao Q, Zhang H, Qin Y, Tang C, Zhang J. Deposition and enrichment of carotenoids in livestock products: An overview. Food Chem X 2024; 21:101245. [PMID: 38426078 PMCID: PMC10901861 DOI: 10.1016/j.fochx.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
A wide range of research has illustrated that carotenoids play a key role in human health through their versatile beneficial biological functions. Traditionally, the majority dietary sources of carotenoids for humans are obtained from vegetables and fruits, however, the contribution of animal-derived foods has attracted more interest in recent years. Livestock products such as eggs, meat, and milk have been considered as the appropriate and unique carriers for the deposition of carotenoids. In addition, with the enrichment of carotenoids, the nutritional quality of these animal-origin foods would be improved as well as the economic value. Here, we offer an overview covering aspects including the physicochemical properties of carotenoids, the situation of carotenoids fortified in livestock products, and the pathways that lead to the deposition of carotenoids in livestock products. The summary of these important nutrients in livestock products will provide references for animal husbandry and human health.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xueyang Si
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Shi E, Nie M, Wang X, Jing H, Feng L, Xu Y, Zhang Z, Zhang G, Li D, Dai Z. Polysaccharides affect the utilization of β-carotene through gut microbiota investigated by in vitro and in vivo experiments. Food Res Int 2023; 174:113592. [PMID: 37986456 DOI: 10.1016/j.foodres.2023.113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to evaluate the effects of six polysaccharides on the utilization of β-carotene from the perspective of gut microbiota using both in vitro simulated anaerobic fermentation systems and in vivo animal experiments. In the in vitro experiments, the addition of arabinoxylan, arabinogalactan, mannan, inulin, chitosan, and glucan led to a 31.07-79.12% decrease in β-carotene retention and a significant increase in retinol content (0.21-0.99-fold) compared to β-carotene alone. Among them, the addition of chitosan produced the highest level of retinol. In the in vivo experiments, mice treated with the six polysaccharides exhibited a significant increase (2.51-5.78-fold) in serum β-carotene content compared to the group treated with β-carotene alone. The accumulation of retinoids in the serum, liver, and small intestine increased by 13.56-21.61%, 12.64-56.27%, and 7.9%-71.69%, respectively. The expression of β-carotene cleavage enzymes was increased in the liver. Genetic analysis of small intestinal tissue revealed no significant enhancement in the expression of genes related to β-carotene metabolism. In the gut microbiota environment, the addition of polysaccharides generated more SCFAs and altered the structure and composition of the gut microbiota. The correlation analysis revealed a strong association between gut microbes (Ruminococcaceae and Odoribacteraceae) and β-carotene metabolism and absorption. Collectively, our findings suggest that the addition of polysaccharides may improve β-carotene utilization by modulating the gut microbiota.
Collapse
Affiliation(s)
- Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guodong Zhang
- Jiangsu Aland Nutrition Co., Ltd., Taizhou 214500, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Miao Q, Tang C, Yang Y, Zhao Q, Li F, Qin Y, Zhang J. Deposition and bioconversion law of β-carotene in laying hens after long-term supplementation under adequate vitamin A status in the diet. Poult Sci 2023; 102:103046. [PMID: 37708765 PMCID: PMC10502406 DOI: 10.1016/j.psj.2023.103046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
β-Carotene, because it is the precursor of vitamin A and has versatile biological roles, has been applied as a feed additive in the poultry industry for a long time. In this study, we investigated the deposition and bioconversion of β-carotene in laying hens. A total of 600 Hy-line brown laying hens at 40 wk of age were randomly divided into 5 dietary treatments, each group's dietary supplemental levels of β-carotene were 0, 15, 30, 60, 120 mg/kg feed, and the vitamin A levels were all 8,000 IU/kg. After 14-wk trial, samples were collected, then carotenoids and different forms of vitamin A were detected using the novel method developed by our laboratory. We found that dietary β-carotene treatment had no significant effects on laying hens' production performance and egg quality (P > 0.05), except the yolk color. The deposition of β-carotene in the body gradually increased (P < 0.01) with the supplemental dose, whereas the contents of lutein and zeaxanthin decreased (P < 0.05). When the β-carotene supplemental level was above 30 mg/kg in the diet, the different forms of vitamin A in in serum, liver, ovary, and yolks were increased compared to the control group (P < 0.05). However, these indicators decreased when the additional dose was 120 mg/kg. Moreover, the mRNA levels of the genes involved in β-carotene absorption, bioconversion, and negative feedback regulation in duodenal mucosa and liver were upregulated after long-term feeding (P < 0.05). Histological staining of the ovaries indicated that the deposition of β-carotene led to a lower rate of follicle atresia (P < 0.05), and this positive effects may be related to the antioxidant function of β-carotene, which caused a reduction of oxidation products in the ovary (P < 0.05). Altogether, β-carotene could accumulate in laying hens intactly and exert its biological functions in tissue. Meanwhile, a part of β-carotene could also be converted into vitamin A but this bioconversion has an upper limit and negative feedback regulation.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Jing H, Nie M, Wang X, Zhang Z, Xu Y, Zhang G, Li D, Dai Z. Lutein combined with EGCG improved retinitis pigmentosa against N-methyl- N nitrosourea-induced. Food Funct 2023; 14:9554-9566. [PMID: 37822286 DOI: 10.1039/d3fo02716c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In order to investigate the synergistic improving effect of lutein (LUT) and epigallocatechin-3-gallate (EGCG) treatment on retinitis pigmentosa (RP), an N-methyl-N-nitrosourea (MNU)-induced mouse model was conducted in the present study. Compared to the LUT alone treatment group, in the LUT combined with EGCG (LUT-EGCG) treatment group, the accumulation content of LUT was significantly increased by 50.24% in the liver. The morphological results indicated that LUT-EGCG treatment significantly improved the retina structure with the thickness of the outer nuclear layer restored to 185.28 ± 0.29 μm, showing no significant difference compared to the control group. The LUT-EGCG treatment also increased the production of short-chain fatty acids, such as acetic and propionic acids. Compared with the LUT alone treatment, the LUT-EGCG treatment significantly increased the relative abundance of Lachnospiraceae and Helicobacteraceae. RT-qPCR results indicated that LUT-EGCG treatment significantly increased the antiapoptotic gene Bcl-2 expression. In addition, the expression of IL-6 was significantly down-regulated in the LUT-EGCG group, while there was no significance in NF-κβ, TNF-α, IL-1β, and IL-18 compared with the LUT group. Correlation analysis supported the conclusion that LUT combined with EGCG may improve RP by modulating antiapoptotic gene expression and regulating the abundance of gut microbiota. However, the underlying mechanism still needs further research.
Collapse
Affiliation(s)
- Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Guodong Zhang
- Jiangsu Aland Nutrition Co., Ltd, Taizhou 214500, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
9
|
Miao Q, Yang Y, Du L, Tang C, Zhao Q, Li F, Yao X, Meng Y, Qin Y, Zhang J. Development and application of a SFC-DAD-MS/MS method to determine carotenoids and vitamin A in egg yolks from laying hens supplemented with β-carotene. Food Chem 2023; 414:135376. [PMID: 36827774 DOI: 10.1016/j.foodchem.2022.135376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
β-Carotene, a provitamin A carotenoid, can be converted into vitamin A in animals' bodies, and can also be accumulated intactly in many animal products. In this study, supercritical fluid chromatography-tandem mass spectrometry was utilized to determine β-carotene and different forms of vitamin A in eggs simultaneously. According to the results, β-carotene contained in yolk reached a plateau after about 2 weeks of supplementation. With an increase in dietary supplement level, the amount of β-carotene gradually increased, as well as slightly changing the yolk color. Moreover, the contents of retinoids including retinol, retinyl propionate, retinyl palmitate and retinyl stearate were also elevated in yolks with the β-carotene additive levels; meanwhile, the lutein and zeaxanthin decreased. On the whole, β-carotene in the diet of laying hens could be partially deposited in egg yolk, and the contents of vitamin A in yolk could be increased due to β-carotene bioconversion.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihong Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiao Yao
- Agilent Technologies(China) Co.,Ltd, No.3 Wang Jing Bei Road, Chao Yang District, Bei Jing 100102, China
| | - Ying Meng
- Agilent Technologies(China) Co.,Ltd, No.3 Wang Jing Bei Road, Chao Yang District, Bei Jing 100102, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Phucharoenrak P, Muangnoi C, Trachootham D. Metabolomic Analysis of Phytochemical Compounds from Ethanolic Extract of Lime (Citrus aurantifolia) Peel and Its Anti-Cancer Effects against Human Hepatocellular Carcinoma Cells. Molecules 2023; 28:molecules28072965. [PMID: 37049726 PMCID: PMC10095956 DOI: 10.3390/molecules28072965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Lime peels are food waste from lime product manufacturing. We previously developed and optimized a green extraction method for hesperidin-limonin-rich lime peel extract. This study aimed to identify the metabolomics profile of phytochemicals and the anti-cancer effects of ethanolic extract of lime (Citrus aurantifolia) peel against liver cancer cells PLC/PRF/5. The extract’s metabolomics profile was analyzed by using LC-qTOF/MS and GC-HRMS. The anti-cancer effects were studied by using MTT assay, Annexin-PI assay, and Transwell-invasion assay. Results show that the average IC50(s) of hesperidin, limonin, and the extract on cancer cells’ viability were 165.615, 188.073, and 503.004 µg/mL, respectively. At the IC50 levels, the extract induced more apoptosis than those of pure compounds when incubating for 24 and 48 h (p < 0.0001). A combination of limonin and hesperidin showed a synergistic effect on apoptosis induction (p < 0.001), but the effect of the combination was still less than that of the extract at 48 h. Furthermore, the extract significantly inhibited cancer cell invasion better than limonin but equal to hesperidin. At the IC50 level, the extract contains many folds lower amounts of hesperidin and limonin than the IC50 doses of the pure compounds. Besides limonin and hesperidin, there were another 60 and 22 compounds detected from the LCMS and GCMS analyses, respectively. Taken altogether, the superior effect of the ethanolic extract against liver cancer cells compared to pure compound likely results from the combinatorial effects of limonin, hesperidin, and other phytochemical components in the extract.
Collapse
|
11
|
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr 2023; 14:238-255. [PMID: 36775788 DOI: 10.1016/j.advnut.2022.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, USA.
| | - Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, rue 1 A-B, Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
12
|
Dai Z, Li Z, Shi E, Nie M, Feng L, Chen G, Gao R, Zeng X, Li D. Study on the Interaction between Four Typical Carotenoids and Human Gut Microflora Using an in Vitro Fermentation Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13592-13601. [PMID: 36214842 DOI: 10.1021/acs.jafc.2c03464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent studies indicated a strong relationship between carotenoids and gut microflora. However, their structure-activity relationship remains unclear. This study evaluated the interaction between four typical carotenoids (β-carotene, lutein, lycopene, and astaxanthin) and gut microflora using an in vitro fermentation model. After 24 h of fermentation, the retention rates of the four carotenoids were 1.40, 1.38, 1.46, and 5.63 times lower than those of their without gut microflora control groups, respectively. All four carotenoid treated groups significantly increased total short-chain fatty acids (SCFAs) production. All carotenoid supplements significantly promoted the abundance of Roseburia and Parasutterella and inhibited the abundance of Collinsella, while β-carotene, lutein, lycopene, and astaxanthin significantly promoted the abundance of Ruminococcus, Sutterella, Subdoligranulum, and Megamonas, respectively. Furthermore, xanthophylls have a more significant impact on gut microflora than carotenes. This study provides a new way to understand how carotenoids work in the human body with the existing gut microflora.
Collapse
Affiliation(s)
- Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, China
| | - Zhixian Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, China
| | - Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, China
| | - Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, China
| |
Collapse
|
13
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
14
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 2022; 383:132531. [PMID: 35413752 DOI: 10.1016/j.foodchem.2022.132531] [Citation(s) in RCA: 514] [Impact Index Per Article: 257.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Flavonoids are a group of natural polyphenol substances abundant in vegetables, fruits, grains, and tea. As plant secondary metabolites, flavonoids play essential roles in many biological processes and responses to environmental factors in plants. Flavonoids are common in human diets and have antioxidant effects as well as other bioactivities (e.g., antimicrobial and anti-inflammatory properties), which reduce the risk of disease. Flavonoid bioactivity depends on structural substitution patterns in their C6-C3-C6 rings. However, reviews of plant flavonoid distribution and biosynthesis, as well as the health benefits of its bioactivity, remain scarce. Therefore, in the present review, we systematically summarize recent progress in the research of plant flavonoids, focusing on their biosynthesis (pathway and transcription factors) and bioactive mechanisms based on epidemic evidence, in vitro and in vivo research, and bioavailability in the human body. We also discuss future opportunities in flavonoid research, including biotechnology, therapeutic phytoproducts, and dietary flavonoids.
Collapse
Affiliation(s)
- Nan Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tongfei Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
16
|
Chen X, Deng Z, Zheng L, Zhang B, Luo T, Li H. Interaction between Flavonoids and Carotenoids on Ameliorating Oxidative Stress and Cellular Uptake in Different Cells. Foods 2021; 10:foods10123096. [PMID: 34945647 PMCID: PMC8701200 DOI: 10.3390/foods10123096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids (quercetin, luteolin) and carotenoids (lycopene, lutein) were combined at different molecular ratios in a total concentration of 8 μM to investigate their antioxidant interactions. Cellular uptake of carotenoids, the expression of carotenoid transporters, the ROS scavenging ability, and antioxidant enzymes activities were compared in HUVEC, Caco-2, and L-02 cells. Combinations with flavonoids in the majority showed stronger antioxidant activity. Lycopene combined with quercetin at ratio 1:5 showed stronger ROS scavenging activities, increased 18, 12, and 12 Cellular antioxidant activity (CAA) units in HUVEC, Caco-2, and L-02 cells, respectively, and promoted SOD and CAT activities than individual component. The cell uptake of carotenoids was enhanced by flavonoids in antioxidant synergistic groups, while dampened by flavonoids in antagonistic groups in HUVEC cells. The synergistic group (lycopene:quercetin = 1:5) increased lycopene uptake by 271%, while antagonistic group (lutein:quercetin = 5:1) decreased lutein uptake by 17%. Flavonoids modulated the effects of carotenoids on the expression of active transporters scavenger receptor class B type I (SR-BI) or Niemann-Pick C1-like 1 (NPC1L1). The synergistic group (lycopene:quercetin = 1:5) increased the expression of SR-BI compared to individual lycopene treatment in HUVEC and Caco-2 cells. Thus, a diet rich in both flavonoids and lycopene possesses a great antioxidant activity, especially if a higher amount of flavonoids is included.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
- Correspondence: ; Tel.: +86-791-88314447-8226; Fax: +86-791-88304402
| |
Collapse
|
17
|
Citrus flavanones enhance the bioaccessibility of β-carotene by improving lipid lipolysis and incorporation into mixed micelles. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Positive effects of ultrasound pretreatment on the bioaccessibility and cellular uptake of bioactive compounds from broccoli: Effect on cell wall, cellular matrix and digesta. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Marques MC, Hacke A, Neto CAC, Mariutti LRB. Impact of phenolic compounds in the digestion and absorption of carotenoids. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M, Büsselberg D, Giordano FA, Golubnitschaja O, Kubatka P. Carotenoids in Cancer Apoptosis-The Road from Bench to Bedside and Back. Cancers (Basel) 2020; 12:E2425. [PMID: 32859058 PMCID: PMC7563597 DOI: 10.3390/cancers12092425] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51368 Tabriz, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, 67146 Kermanshah, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
21
|
Kruger J, Stuetz W, Frank J. Iron, Catechin, and Ferulic Acid Inhibit Cellular Uptake of β-Carotene by Reducing Micellization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5792-5800. [PMID: 31056903 DOI: 10.1021/acs.jafc.9b01417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Green leafy vegetables have low β-carotene bioavailability, which we hypothesized to be, at least in part, due to high contents of fiber, minerals, and phenolics. We investigated the effects of pectin (40-120 μg/mL), iron (50-150 μg/mL), ferulic acid (30-90 μg/mL), and catechin (50-150 μg/mL), in a model system, on β-carotene micellization (in vitro digestion) and intestinal absorption (Caco-2 cell model). Iron, pectin, ferulic acid, and catechin on average reduced ( p < 0.05) β-carotene micellization (1.49 ± 0.05 μmol/L) by 66.9, 59.3, 43.2, and 51.7%, respectively. Iron reduced micellization by precipitating bile salts from solution and ferulic acid and catechin by inhibition of pancreatic lipase. β-Carotene uptake by Caco-2 cells (2.63 ± 0.22%) was reduced ( p < 0.05) by 37.4, 70.1, 77.0, and 75.1%, respectively, when it was digested with pectin, iron, ferulic acid, or catechin. However, when individual test compounds were added to already micellized β-carotene, they did not inhibit β-carotene uptake. The large reductions in β-carotene micellization observed in vitro warrant further investigation in humans using model green leafy vegetable systems to elucidate their relevance under real-life conditions.
Collapse
Affiliation(s)
- Johanita Kruger
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
- Department of Food Science and Institute for Food, Nutrition and Well-being , University of Pretoria , Private Bag X20 , Hatfield 0028 , South Africa
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
| | - Jan Frank
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
| |
Collapse
|