1
|
Muthusamy V, Govindhan T, Amirthalingam M, Pottanthara Ashokan A, Thangavel H, Palanisamy S, Paramasivam P. Chitosan nanoparticles encapsulated Piper betle essential oil alleviates Alzheimer's disease associated pathology in Caenorhabditis elegans. Int J Biol Macromol 2024; 279:135323. [PMID: 39241994 DOI: 10.1016/j.ijbiomac.2024.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
A multifaceted approach in treating Alzheimer's disease (AD), a neurodegenerative condition that poses health risks in the aging population is explored in this investigation via encapsulating Piper betle essential oil (PBEO) in chitosan nanoparticles (ChNPs) to improve solubility and efficacy of PBEO. PBEO-ChNPs mitigated AD-like features more effectively than free PBEO by delaying paralysis progression and reducing serotonin hypersensitivity, ROS levels, Aβ deposits, and neurotoxic Aβ-oligomers in the Caenorhabditis elegans AD model. PBEO-ChNPs significantly improved lifespan, neuronal health, healthspan, cognitive function, and reversed deficits in chemotaxis and reproduction. PBEO-ChNPs also induced stress response genes daf-16, sod-3, and hsp-16.2. The participation of the DAF-16 pathway in reducing Aβ-induced toxicity was confirmed by daf-16 RNAi treatment, and upregulation of autophagy genes leg-1, unc-51, and bec-1 was noted. This study is the first to demonstrate an alternative biopolymeric nanoformulation with natural PBEO and chitosan, in mitigating AD and its associated symptoms.
Collapse
Affiliation(s)
- Velumani Muthusamy
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Thiruppathi Govindhan
- Department of Zoology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Mohankumar Amirthalingam
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | | | - Hema Thangavel
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Sundararaj Palanisamy
- Department of Zoology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India.
| | - Premasudha Paramasivam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India.
| |
Collapse
|
2
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Peng Y, Qi Z, Xu Y, Yang X, Cui Y, Sun Q. AMPK and metabolic disorders: The opposite roles of dietary bioactive components and food contaminants. Food Chem 2024; 437:137784. [PMID: 37897819 DOI: 10.1016/j.foodchem.2023.137784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
AMPK is a key player in a variety of metabolic and physiological processes, which might be considered one of the most promising targets for both prevention and treatment of metabolic syndrome and its associated diseases. Many dietary components and contaminants have been recently demonstrated to prevent or promote the development these diseases via AMPK-mediated pathways. AMPK can be activated by diverse phytochemical substances such as EGCG, chicoric acid, tomatidine, and others, all of which have been found to contribute to preventing or ameliorating chronic disorders. On the other hand, recent studies have found that metabolic disruptions induced by pesticides such as 1,3-Dichloro-2-propanol, imidacloprid, permethrin, are attributed to the inactivation of AMPK. This review may contribute to the development of functional foods for treatment of metabolic syndrome and associated diseases through modulating AMPK pathway.
Collapse
Affiliation(s)
- Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zexiu Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xueyan Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
4
|
Kong H, Han JJ, Dmitrii G, Zhang XA. Phytochemicals against Osteoarthritis by Inhibiting Apoptosis. Molecules 2024; 29:1487. [PMID: 38611766 PMCID: PMC11013217 DOI: 10.3390/molecules29071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease that causes pathological changes in articular cartilage, synovial membrane, or subchondral bone. Conventional treatments for OA include surgical and non-surgical methods. Surgical treatment is suitable for patients in the terminal stage of OA. It is often the last choice because of the associated risks and high cost. Medication of OA mainly includes non-steroidal anti-inflammatory drugs, analgesics, hyaluronic acid, and cortico-steroid anti-inflammatory drugs. However, these drugs often have severe side effects and cannot meet the needs of patients. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Apoptosis is programmed cell death, which is a kind of physiologic cell suicide determined by heredity and conserved by evolution. Inhibition of apoptosis-related pathways has been found to prevent and treat a variety of diseases. Excessive apoptosis can destroy cartilage homeostasis and aggravate the pathological process of OA. Therefore, inhibition of apoptosis-related factors or signaling pathways has become an effective means to treat OA. Phytochemicals are active ingredients from plants, and it has been found that phytochemicals can play an important role in the prevention and treatment of OA by inhibiting apoptosis. We summarize preclinical and clinical studies of phytochemicals for the treatment of OA by inhibiting apoptosis. The results show that phytochemicals can treat OA by targeting apoptosis-related pathways. On the basis of improving some phytochemicals with low bioavailability, poor water solubility, and high toxicity by nanotechnology-based drug delivery systems, and at the same time undergoing strict clinical and pharmacological tests, phytochemicals can be used as a potential therapeutic drug for OA and may be applied in clinical settings.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| |
Collapse
|
5
|
Goyal A, Dubey N, Agrawal A, Sharma R, Verma A. An Insight into the Promising Therapeutic Potential of Chicoric Acid. Curr Pharm Biotechnol 2024; 25:1708-1718. [PMID: 38083896 DOI: 10.2174/0113892010280616231127075921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 09/04/2024]
Abstract
The pharmacological treatments that are now recommended for the therapy of chronic illnesses are examined in a great number of studies to determine whether or not they are both safe and effective. Therefore, it is important to investigate various alternative therapeutic assistance, such as natural remedies derived from medicinal plants. In this context, chicoric acid, classified as a hydroxycinnamic acid, has been documented to exhibit a range of health advantages. These include antiviral, antioxidant, anti-inflammatory, obesity-preventing, and neuroprotective effects. Due to its considerable pharmacological properties, chicoric acid has found extensive applications in food, pharmaceuticals, animal husbandry, and various other commercial sectors. This article provides a comprehensive overview of in vitro and in vivo investigations on chicoric acid, highlighting its beneficial effects and therapeutic activity when used as a preventative and management aid for public health conditions, including diabetes, cardiovascular disease, and hepatic illnesses like non-alcoholic steatohepatitis. Moreover, further investigation of this compound can lead to its development as a potential phytopharmaceutical candidate.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rashmi Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Cho J, Park Y. Kahweol, a coffee diterpene, increases lifespan via insulin/insulin-like growth factor-1 and AMP-activated protein kinase signaling pathways in Caenorhabditiselegans. Curr Res Food Sci 2023; 7:100618. [PMID: 37886681 PMCID: PMC10598723 DOI: 10.1016/j.crfs.2023.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Coffee is one of the most widely consumed beverages and is known to have many health benefits. Our previous study reported that kahweol, a diterpene found in coffee, reduced fat accumulation by reducing food intake in Caenorhabditis elegans. Based on the widely known observation of caloric restriction and lifespan, we determined if kahweol extends lifespan in C. elegans. Kahweol significantly extended the lifespan of wild-type C. elegans. However, kahweol increased the lifespan of the eat-2 null mutant that has a reduced food intake phenotype, suggesting that kahweol extends lifespan independent of reduced food intake. Therefore, we further determine the target of kahweol on lifespan extension. Kahweol had no effects on the lifespan of both daf-2 (the homolog of insulin/insulin-like growth factor-1 receptor) and daf-16 (the homolog of Forkhead box O transcription factor and a major downstream target of daf-2) null mutants, suggesting kahweol extended lifespan via insulin/insulin-like growth factor-1 signaling pathway. In addition, kahweol failed to extend lifespan in tub-1 (the homolog of TUB bipartite transcription factor) and aak-2 (the homolog of AMP-activated protein kinase) null mutants, suggesting these roles on kahweol's effect on lifespan. However, the treatment of kahweol increased the lifespan in sir-2.1 (the homolog of NAD-dependent deacetylase sirtuin-1) and skn-1 (the homolog of nuclear factor erythroid 2-related factor 2) null mutants over the control, suggesting independent functions of these genes on kahweol's lifespan extension. These results indicate that the insulin/insulin-like growth factor-1 signaling and AMPK pathways may play critical roles in extending lifespan by kahweol in C. elegans.
Collapse
Affiliation(s)
- Junhyo Cho
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
7
|
Greco LA, Reay WR, Dayas CV, Cairns MJ. Exploring opportunities for drug repurposing and precision medicine in cannabis use disorder using genetics. Addict Biol 2023; 28:e13313. [PMID: 37500481 PMCID: PMC10909568 DOI: 10.1111/adb.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Cannabis use disorder (CUD) remains a significant public health issue globally, affecting up to one in five adults who use cannabis. Despite extensive research into the molecular underpinnings of the condition, there are no effective pharmacological treatment options available. Therefore, we sought to further explore genetic analyses to prioritise opportunities to repurpose existing drugs for CUD. Specifically, we aimed to identify druggable genes associated with the disorder, integrate transcriptomic/proteomic data and estimate genetic relationships with clinically actionable biochemical traits. Aggregating variants to genes based on genomic position, prioritised the phosphodiesterase gene PDE4B as an interesting target for drug repurposing in CUD. Credible causal PDE4B variants revealed by probabilistic finemapping in and around this locus demonstrated an association with inflammatory and other substance use phenotypes. Gene and protein expression data integrated with the GWAS data revealed a novel CUD associated gene, NPTX1, in whole blood and supported a role for hyaluronidase, a key enzyme in the extracellular matrix in the brain and other tissues. Finally, genetic correlation with biochemical traits revealed a genetic overlap between CUD and immune-related markers such as lymphocyte count, as well as serum triglycerides.
Collapse
Affiliation(s)
- Laura A. Greco
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| | - William R. Reay
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| | - Christopher V. Dayas
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Murray J. Cairns
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| |
Collapse
|
8
|
Yang W, Xia W, Zheng B, Li T, Liu RH. DAF-16 is involved in colonic metabolites of ferulic acid-promoted longevity and stress resistance of Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7017-7029. [PMID: 35689482 DOI: 10.1002/jsfa.12063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ferulic acid (FA) is a dietary polyphenol widely found in plant tissues. It has long been considered to have health-promoting qualities. However, the biological properties of dietary polyphenols depend largely on their absorption during digestion, and the effects of their intestinal metabolites on human health have attracted the interest of researchers. This study evaluated the effects of three main colonic metabolites of FA - 3-(3,4-dihydroxyphenyl)propionic acid (3,4diOHPPA), 3-(3-hydroxyphenyl)propionic acid (3OHPPA) and 3-phenylpropionic acid (3PPA) - on longevity and stress resistance in Caenorhabditis elegans. RESULTS Our results showed that 3,4diOHPPA, 3OHPPA and 3PPA extended the lifespan under normal conditions in C. elegans whereas FA did not. High doses of 3,4diOHPPA (0.5 mmol L-1 ), 3OHPPA (2.5 mmol L-1 ) and 3PPA (2.5 mmol L-1 ) prolonged the mean lifespan by 11.2%, 13.0% and 10.6%, respectively. Moreover, 3,4diOHPPA, 3OHPPA and 3PPA treatments promoted stress tolerance against heat, UV irradiation and paraquat. Furthermore, three metabolites ameliorated physical functions, including reactive oxygen species and malondialdehyde levels, motility and pharyngeal pumping rate. The anti-aging activities mediated by 3,4diOHPPA, 3OHPPA and 3PPA depend on the HSF-1 and JNK-1 linked insulin/IGF-1 signaling pathway, which converge onto DAF-16. CONCLUSION The current findings suggest that colonic metabolites of FA have the potential for use as anti-aging bioactivate compounds. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhan Yang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wen Xia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong ERA Food and Life Health Research Institute, Guangzhou, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Abdalla MA, Famuyide I, Wooding M, McGaw LJ, Mühling KH. Secondary Metabolite Profile and Pharmacological Opportunities of Lettuce Plants following Selenium and Sulfur Enhancement. Pharmaceutics 2022; 14:pharmaceutics14112267. [PMID: 36365086 PMCID: PMC9695180 DOI: 10.3390/pharmaceutics14112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Selenium (Se) is an essential trace nutrient for humans and animals owing to its role in redox regulation, thyroid hormone control factors, immunity, inflammatory reactions, brain activities, and carbohydrate regulation. It is also important to support muscle development, as well as for reproductive and cardiovascular well-being. Furthermore, sulfur is known to be a healing element, due to the remarkable function of specialized and secondary S-containing compounds. The scope of the current study was to determine the impact of Se and S enrichment on the secondary metabolite accumulation and antibacterial and NO inhibition activities in green and red leaf lettuce (V1 and V2, respectively). The plants were grown in a hydroponic system supplied with different S concentrations (S0: 0, S1: 1 mM and S2: 1.5 mM K2SO4) via the nutrient solution and foliar-applied varying levels of Se (0, 0.2 and 2.6 µM). Electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QTOF/MS) combined with ultra-performance liquid chromatography (UPLC) was used to identify the secondary metabolites in green and red lettuce. The results indicated that extracts of the biofortified lettuce were not cytotoxic to Vero kidney cells at the highest concentration tested of 1 mg/mL. The ESI/MS of the tentatively identified metabolites showed that the response values of 5-O-caffeoylquinic acid, cyanidin 3-O-galactoside, quercetin 3-O-(6''-acetyl-glucoside) and quercetin 3-O-malonylglucoside were induced synergistically under higher Se and S levels in red lettuce plants. The acetone extract of red lettuce had antibacterial activity against Pseudomonas aeruginosa, with a minimum inhibitory concentration (MIC) of 0.156 and 0.625 μg/mL under S2/Se1 and S2/Se2 treatments, respectively. As with antibacterial activity, the acetone extract of green (V1) lettuce treated with adequate (S1) and higher S (S2) under Se-limiting conditions showed the ability to inhibit nitric oxide (NO) release from macrophages. NO production by macrophages was inhibited by 50% at respective concentrations of 106.1 ± 2.4 and 101.0 ± 0.6 μg/mL with no toxic effect on the cells, in response to S1 and S2, respectively, under Se-deficient conditions (Se0). Furthermore, the red cultivar (V2) exhibited the same effect as the green cultivar (V1) regarding NO inhibition, with IC50 = 113.0 ± 4.2 μg/mL, in response to S1/Se2 treatments. Collectively, the promising NO inhibitory effect and antibacterial activity of red lettuce under the above-mentioned conditions might be attributed to the production of flavonoid glycosides and phenylpropanoic acid esters under the same condition. To the best of our knowledge, this is the first report to show the novel approach of the NO inhibitory effect of Se and S enrichment in food crops, as an indicator for the potential of Se and S as natural anti-inflammatory agents.
Collapse
Affiliation(s)
- Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
- Correspondence: (M.A.A.); (K.H.M.); Tel.: +49-431-880-6471 (M.A.A.); +49-0431-880-3189 (K.H.M.)
| | - Ibukun Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Madelien Wooding
- Department of Chemistry, Natural Sciences 1 Building, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
- Correspondence: (M.A.A.); (K.H.M.); Tel.: +49-431-880-6471 (M.A.A.); +49-0431-880-3189 (K.H.M.)
| |
Collapse
|
10
|
Supplementation with Queen Bee Larva Powder Extended the Longevity of Caenorhabditis elegans. Nutrients 2022; 14:nu14193976. [PMID: 36235629 PMCID: PMC9573043 DOI: 10.3390/nu14193976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Queen bee larva (QBL) is one kind of important edible insect that is harvested during royal jelly production process. QBL has many physiological functions; however, limited information is available regarding its antiaging effects. In this study, the antiaging function of freeze-dried QBL powder (QBLP) was investigated by combining the Caenorhabditis elegans (C. elegans) model and transcriptomics. The administration of QBLP to C. elegans was shown to improve lifespan parameters. Additionally, QBLP improved the mobility of nematodes. Transcriptome analysis showed the differentially expressed genes (DEGs) were significantly enriched in Gene Ontology (GO) terms that were almost all related to the biological functions of cell metabolism and stress, which are associated with lifespan. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the lifespan of C. elegans was related to the longevity regulating pathway-worm. The expression levels of the key genes sod-3, gst-6, hsp-12.6, lips-7, ins-8, and lips-17 were upregulated. sod-3, hsp-12.6, lips-7, and lips-17 are downstream targets of DAF-16, which is an important transcription factor related to lifespan extension. CF1038 (daf-16(mu86)) supplemented with QBLP did not show a life-prolonging. This indicates that the antiaging function of QBLP is closely related to daf-16. Thus, QBLP is a component that could potentially be used as a functional material to ameliorate aging and aging-related symptoms.
Collapse
|
11
|
Chen X, Shen M, Yang J, Yu Q, Chen Y, Wang X, Lu H, Tao X, Li H, Xie J. RNA-seq based elucidation of mechanism underlying Mesona chinensis Benth polysaccharide protected H2O2-induced oxidative damage in L02 cells. Food Res Int 2022; 157:111383. [DOI: 10.1016/j.foodres.2022.111383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 02/08/2023]
|
12
|
Yang M, Wu C, Zhang T, Shi L, Li J, Liang H, Lv X, Jing F, Qin L, Zhao T, Wang C, Liu G, Feng S, Li F. Chicoric Acid: Natural Occurrence, Chemical Synthesis, Biosynthesis, and Their Bioactive Effects. Front Chem 2022; 10:888673. [PMID: 35815211 PMCID: PMC9262330 DOI: 10.3389/fchem.2022.888673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Chicoric acid has been widely used in food, medicine, animal husbandry, and other commercial products because of its significant pharmacological activities. However, the shortage of chicoric acid limits its further development and utilization. Currently, Echinacea purpurea (L.) Moench serves as the primary natural resource of chicoric acid, while other sources of it are poorly known. Extracting chicoric acid from plants is the most common approach. Meanwhile, chicoric acid levels vary in different plants as well as in the same plant from different areas and different medicinal parts, and different extraction methods. We comprehensively reviewed the information regarding the sources of chicoric acid from plant extracts, its chemical synthesis, biosynthesis, and bioactive effects.
Collapse
Affiliation(s)
- Min Yang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Wu
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Preparation Technology, Department of Pharmaceutical Engineering, Shandong Drug and Food Vocational College, Weihai, China
| | - Tianxi Zhang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian Li
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation, Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongbao Liang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Xuzhen Lv
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengtang Jing
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Qin
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianlun Zhao
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenxi Wang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangxu Liu
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Feng
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Li
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Zhang J, Wang P, Tan C, Zhao Y, Zhu Y, Bai J, Xiao X. Integrated transcriptomics and metabolomics unravel the metabolic pathway variations for barley β-glucan before and after fermentation with L. plantarum DY-1. Food Funct 2022; 13:4302-4314. [PMID: 35302565 DOI: 10.1039/d1fo02450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results of our previous study showed that the structure and function of β-glucan in barley were changed after fermentation by L. plantarum DY-1. In this study, the antioxidant activities of RBG (regular barley β-glucan, unfermented) and FBG (barley β-glucan, fermented with L. plantarum DY-1) were evaluated by adopting an in vivo animal model, Caenorhabditis elegans (C. elegans). We also carried out an integrated transcriptomic and metabolomic profiling for RBG and FBG to delineate their signature pathways. RBG treatment has better effects on SOD enzyme activity and ROS levels than FBG, while FBG treatment has better effects on the CAT enzyme activity and MDA content than RBG in C. elegans. Transcription group analysis showed that FBG mainly decreases the expression of the Cyp-D gene to inhibit the calcium signaling pathway, promotes the Wnt signaling pathway by up-regulating the GSK-3β gene and improving the oxidative damage of C. elegans; RBG mainly inhibits calcium signal pathways by reducing the expression of ANT-solute carrier family 25 genes, promoting life adjustment pathways by reducing the expression of the HSP-12.6 gene to improve the oxidative stress of C. elegans. Joint analysis showed that the difference between FBG and RBG in the regulation of oxidative stress is mainly reflected in the metabolism pathway of arachidonic acid. Under the regulation of FBG, the expression of the C03H5.4 gene was decreased, the expression of leukotriene A4, prostaglandin G2, arachidonic acid and phosphatidylcholine was decreased, and the expression of 14,15-DiHETrE was increased. Under the regulation of RBG, the expression of gene C03H5.4 was up-regulated, the expression of metabolites such as leukotriene B4 was up-regulated, and the expression of arachidonic acid and phosphatidylcholine was down-regulated.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ping Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
14
|
Deng Y, Liu H, Huang Q, Tu L, Hu L, Zheng B, Sun H, Lu D, Guo C, Zhou L. Mechanism of Longevity Extension of Caenorhabditis elegans Induced by Schizophyllum commune Fermented Supernatant With Added Radix Puerariae. Front Nutr 2022; 9:847064. [PMID: 35360681 PMCID: PMC8963188 DOI: 10.3389/fnut.2022.847064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophyllum commune (S. commune) fermented supernatant with added Radix Puerariae (SC-RP) showed significant antioxidant activity in our previous work. However, the possible lifespan and healthspan extending the capacity of Caenorhabditis elegans (C. elegans) and the underlying mechanism were not illuminated. In this study, the effect of SC-RP on extending the lifespan and improving stress resistance of C. elegans were examined. Additionally, the underlying lifespan extending molecular mechanisms of SC-RP were explored. Treated with SC-RP at 10 μg/mL, the lifespan of C. elegans increased by 24.89% (P < 0.01). Also, SC-RP prolonged the healthspan of the nematode, including reducing lipofuscin levels, improving mobility and enhancing resistance to oxidative stress and heat shock. Moreover, superoxide dismutase and catalase activities were increased for SC-RP treated C. elegans. Meantime the intracellular levels of thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) were attenuated. Express levels of eight genes including daf-2, daf-16, sod-3, skn-1, gst-4, clk-1, age-1 and mev-1 were analyzed by RT-PCR method for possible C. elegan anti-aging mechanisms of SC-RP. Expression levels of key genes daf-2, gst-4 and sod-3 were up-regulated, while that of daf-16, skn-1, and clk-1 were down-regulated. The results suggest that SC-RP could extend the lifespan and healthspan of C. elegans significantly, and the IIS pathway, SKN-1/Nrf2 pathway and mitochondrial metabolism pathway were primarily considered associated. Thus, SC-RP is a potential component to improve aging and aging-related symptoms as new functional materials.
Collapse
Affiliation(s)
- Yongfei Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Han Liu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
| | - Qian Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingyun Tu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lu Hu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Huaiqing Sun
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
| | - Lin Zhou
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Ma X, Li J, Zhang Y, Hacariz O, Xia J, Simpson BK, Wang Z. Oxidative stress suppression in C. elegans by peptides from dogfish skin via regulation of transcription factors DAF-16 and HSF-1. Food Funct 2021; 13:716-724. [PMID: 34935822 DOI: 10.1039/d1fo02271g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional peptides were obtained via enzymatic hydrolysis of smooth dogfish (Mustelus canis) skin. The enzyme-assisted process was optimized to achieve high yield of smooth dogfish skin peptides (SDSP). Fractions of SDSP (MW < 2 kDa, 2-5 kDa, 5-10 kDa and >10 kDa) showed in vitro antioxidant activities. The peptides <2 kDa (SDSP<2 kDa) significantly improved motility, reduced ROS and H2O2 levels of Caenorhabditis elegans, and increased its resistance to oxidative stress compared to the other peptide fractions. In vivo function of SDSP<2 kDa could be explained by their capacity to increase the expression of stress-response genes. The enhanced resistance to oxidative stress mediated by SDSP<2 kDa was dependent on DAF-16 and HSF-1. The amino acid residues and sequences of SDSP<2 kDa were characterized and revealed a higher content of hydrophobic versus polar amino acid contents. This study (especially the in vivo investigation) explored new potent antioxidant peptides derived from dogfish skin.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science, Shanxi University, Taiyuan 030006, PR China. .,Department of Food Science and Agricultural Chemistry, McGill University, Québec, H9X 3V9, Canada.
| | - Jiao Li
- College of Life Science, Shanxi University, Taiyuan 030006, PR China.
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, H9X 3V9, Canada. .,IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Orcun Hacariz
- Institute of Parasitology, McGill University, Québec, H9X 3V9, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Québec, H9X 3V9, Canada
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, H9X 3V9, Canada.
| | - Zhuanhua Wang
- College of Life Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
16
|
Xiao X, Zhou Y, Tan C, Bai J, Zhu Y, Zhang J, Zhou X, Zhao Y. Barley β-glucan resist oxidative stress of Caenorhabditis elegans via daf-2/daf-16 pathway. Int J Biol Macromol 2021; 193:1021-1031. [PMID: 34798183 DOI: 10.1016/j.ijbiomac.2021.11.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022]
Abstract
β-glucan is an important functional active component with relatively high content in barley. It is reported to possess various biological activities, including anti-oxidative stress, but its mechanism of action remains obscure. In the current study, C. elegans was used as an in vivo animal model to explore its anti-oxidative stress mechanism. We found that both RBG (raw barley β-glucan) and FBG (fermented barley β-glucan) could significantly reduce the ROS level in C. elegans under oxidative emergency conditions. In addition, both FBG and RBG had positive effects on SOD and CAT enzyme activity, and FBG treatment obviously reduced the MDA content in nematodes under oxidative stress. Moreover, FBG and RBG pretreatment could extend the median lifespan of C. elegans under oxidative stress. The CB1370 and CF1038 mutants further confirmed that daf-2 and daf-16 were necessary for FBG or RBG to participate in anti-oxidative stress, and the RT-PCR results also evidenced that β-glucans resist oxidative stress in C. elegans partially through the daf-2/daf-16 pathway. In summary, barley β-glucan has high potential to defense oxidative stress as a natural polysaccharide.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Bai J, Li J, Pan R, Zhu Y, Xiao X, Li Y, Li C. Polysaccharides from Volvariella volvacea inhibit fat accumulation in C. elegans dependent on the aak-2/nhr-49-mediated pathway. J Food Biochem 2021; 45:e13912. [PMID: 34561881 DOI: 10.1111/jfbc.13912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
Volvariella volvacea has bioactivities in improving immunity, anti-oxidation, and alleviating obesity, which is an excellent functional food. Polysaccharide from Volvariella volvacea (VPS), one of the main bioactive components, exerts a potential fat-lowering effect, but its exact mechanism remains unclear. In this study, the effects and molecular pathways of VPS regulate the fat deposition of Caenorhabditis elegans. Results showed that VPS at low (250 μg/ml), medium (500 μg/ml) and high (750 μg/ml) concentrations all reduced the overall fat, without inhibitory effects on the growth and movement abilities of nematode. VPS at 500 μg/ml could dramatically decrease the triglyceride (TG) level of wild-type nematode, while no significant changes in TG content were observed in mutants deficient in aak-2 (energy receptor), nhr-49 (nuclear transcription factor), fat-5, and fat-7 genes. VPS declines fat storage of C. elegans, largely through the aak-2/nhr-49-mediated fatty acid synthesis pathway, and partially the acs-2-mediated fatty acid oxidation pathway. PRACTICAL APPLICATIONS: A model illustrates the mechanism of polysaccharide from Volvariella volvacea (VPS) inhibiting fat accumulation in Caenorhabditis elegans. VPS may directly or indirectly activate the energy sensor aak-2, which governs lipid metabolism. Results demonstrate that VPS regulates fat metabolism including fatty acid oxidation (FAO) and fatty acid synthesis (FAS), rather than lipolysis. In the FAO, VPS promotes FAO by up-regulating the mRNA and protein levels of acs-2. In FAS, VPS significantly down-regulated the transcriptional regulator nhr-49 and the downstream targets fat-5, fat-6, and fat-7, thereby declining the overall fat deposition. In conclusion, VPS inhibits the fat accumulation of C. elegans largely dependent on an aak-2/nhr-49-mediated FAS pathway.
Collapse
Affiliation(s)
- Juan Bai
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Jiangnan Biotechnology Co., Ltd., Zhenjiang, China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruirong Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Changtian Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Li R, Tao M, Wu T, Zhuo Z, Xu T, Pan S, Xu X. A promising strategy for investigating the anti-aging effect of natural compounds: a case study of caffeoylquinic acids. Food Funct 2021; 12:8583-8593. [PMID: 34338272 DOI: 10.1039/d1fo01383a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Caffeoylquinic acids, as plant-derived polyphenols, exhibit multiple biological activities such as antioxidant, anti-inflammatory, and neuroprotective activities. However, only limited information about their effect on longevity is available. In the current study, molecular docking was employed to explore the interactions between six representative caffeoylquinic acids and the insulin-like growth factor-1 receptor (IGFR), which is an important target protein for longevity. The results indicated that all six compounds were embedded well in the active pocket of IGFR, and that 3,5-diCQA exhibited the strongest affinity to IGFR. Moreover, ASP1153, GLU1080, ASP1086, and ARG1003 were the key amino acid residues during the interaction of these 6 compounds with IGFR. Furthermore, the lifespan extension effect of caffeoylquinic acids was evaluated in a Caenorhabditis elegans (C. elegans) model. The results revealed that all the caffeoylquinic acids significantly extended the lifespan of wild-type worms, of which 3,5-diCQA was the most potent compound. Meanwhile, 3,5-diCQA enhanced the healthspan by increasing the body bending and pharyngeal pumping rates and reducing the intestinal lipofuscin level. Further studies demonstrated that 3,5-diCQA induced longevity effects by downregulating the insulin/insulin-like growth factor signaling (IIS) pathway. This study suggested that the combination of molecular docking and genetic analysis of specific worm mutants could be a promising strategy to reveal the anti-aging mechanisms of small molecule natural compounds.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Zhang Zhuo
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
19
|
Liu X, Liu H, Chen Z, Xiao J, Cao Y. DAF-16 acts as the "hub" of astaxanthin's anti-aging mechanism to improve aging-related physiological functions in Caenorhabditis elegans. Food Funct 2021; 12:9098-9110. [PMID: 34397058 DOI: 10.1039/d1fo01069g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Astaxanthin (AX) is a xanthophyll carotenoid that can effectively inhibit the production of peroxides and thereby protect the body from oxidative damage. In recent years, AX had been shown to have anti-aging properties, both in vivo and in vitro. However, the underlying mechanisms by which AX regulates senescence related proteins and signaling pathways remain unclear. Therefore, we used Caenorhabditis elegans (C. elegans) model binding proteomics to reveal AX anti-aging activity and its molecular mechanism. Our results suggest that AX promotes the health and lifespan of C. elegans by improving mobility, reducing the accumulation of age pigments, and increasing resistance to heat stress. In terms of the underlying mechanism, AX helps prolong the life of worms by regulating AGE-1 in the insulin signaling pathway, promoting the transport of DAF-16 into the nucleus and then up-regulating the expression level of DAF-16's downstream proteins (such as superoxide dismutase [Mn] 2 (SOD-3), heat shock proteins (HSPs), glutathione s-transferase (GST-4), etc.). Furthermore, AX may be a relevant response target for activation of dietary restriction pathways in vivo as a dietary restriction mimic. Meanwhile, proteomics data confirmed that there were 15 proteins enriched in the longevity regulation pathway. AX mainly regulates oxidative stress and the aging process by modulating the insulin signaling pathway around DAF-16 as the "hub". In addition to the insulin signaling pathway, other pathways including dietary restriction, AMP-activated protein kinase (AMPK), and mammal target of rapamycin (mTOR) are also dependent on DAF-16. These findings expand and deepen our knowledge of the underlying mechanism by which AX extends the lifespan of C. elegans.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Han Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
20
|
Zhang T, Xie L, Liu R, Chang M, Jin Q, Wang X. Differentiated 4,4-dimethylsterols from vegetable oils reduce fat deposition depending on the NHR-49/SCD pathway in Caenorhabditis elegans. Food Funct 2021; 12:6841-6850. [PMID: 34124721 DOI: 10.1039/d1fo00669j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Consumption of 4-desmethylsterols has been claimed to have many beneficial effects, but the benefits of 4,4-dimethylsterols are less appreciated. We utilized a nematode model, Caenorhabditis elegans (C. elegans), to explore the anti-obesity effects of different classes of 4,4-dimethylsterols purified from rice bran oil (RST) and shea nut butter (SST). Both SST and RST significantly reduced fat deposition in C. elegans with smaller sizes and numbers of lipid droplets. But the food intake was not significantly affected. Metabolomics analysis indicated a significantly altered pathway after treatment with 4,4-dimethylsterols. Finally, it was found that 4,4-dimethylsterols targeted stearoyl-CoA desaturases (SCD) and nuclear hormone receptor-49 (NHR-49), resulting in a reduced desaturation index as proved by a lower ratio of oleic acid (C18:1n-9) to stearic acid (C18:0). Overall, 4,4-dimethylsterols can inhibit fat deposition via regulating the NHR-49/SCD pathway in C. elegans.
Collapse
Affiliation(s)
- Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | |
Collapse
|
21
|
Xiong L, Deng N, Zheng B, Li T, Liu RH. HSF-1 and SIR-2.1 linked insulin-like signaling is involved in goji berry (Lycium spp.) extracts promoting lifespan extension of Caenorhabditis elegans. Food Funct 2021; 12:7851-7866. [PMID: 34240728 DOI: 10.1039/d0fo03300f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anti-cancer, vision-improving, and reproduction-enhancing effects of goji berry have been generally recognized, but its role in anti-aging is rarely studied in depth. Therefore, two widely-circulated goji berries, Lycium ruthenicum Murr. (LRM) and Lycium Barbarum. L (LB), were selected to explore their effects on extending lifespan and enhancing defense against extrinsic stress and to uncover the mechanism of action through genetic study. The results showed that supplementation with high-dose LRM (10 mg mL-1) and LB (100 mg mL-1) extracts significantly extended the lifespan of Caenorhabditis elegans (C. elegans) by 25.19% and 51.38%, respectively, accompanied by the improved stress tolerance of C. elegans to paraquat-induced oxidation, UV-B irradiation and heat shock. Furthermore, LRM and LB extracts remarkably enhanced the activities of antioxidant enzymes including SOD and CAT in C. elegans, while notably decreased the lipofuscin level. Further genetic research demonstrated that the expression levels of key genes daf-16, sod-2, sod-3, sir-2.1 and hsp-16.2 in C. elegans were up-regulated by the intervention with LRM and LB, while that of the age-1 level was down-regulated. Moreover, the daf-16 (mu86) I, sir-2.1 (ok434) IV and hsf-1 (sy441) I mutants reversed the longevity effect brought about by LRM or LB, which confirmed that these genes were required in goji berry-mediated lifespan extension. Therefore, we conclude that HSF-1 and SIR-2.1 act collaboratively with the insulin/IGF signaling pathway (IIS) in a daf-16-independent mode. The present study indicated goji berry as a potential functional food to alleviate the symptoms of aging.
Collapse
Affiliation(s)
- Lei Xiong
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | | | |
Collapse
|
22
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
23
|
Song B, Zheng B, Li T, Liu RH. SKN-1 is involved in combination of apple peels and blueberry extracts synergistically protecting against oxidative stress in Caenorhabditis elegans. Food Funct 2021; 11:5409-5419. [PMID: 32469357 DOI: 10.1039/d0fo00891e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased consumption of fruits and vegetables is associated with reduced risk of age-related functional declines and chronic diseases, primarily attributed to their bioactive phytochemicals. Apples and blueberries are rich in phytochemicals with a wide range of biological activities and health benefits. Our previous research has shown the combination of apple peel extracts (APE) and blueberry extracts (BE) can synergistically promote the lifespan of Caenorhabditis elegans (C. elegans). The objectives of this study were to determine whether the extension of lifespan was involved in regulation of oxidative stress, and to explore the underlying mechanisms of action. The results showed that the combination of APE and BE could synergistically ameliorate oxidative stress by improving antioxidant enzyme activities and enhancing resistance to paraquat. Meanwhile, treatment with APE plus BE could down-regulate the overexpression of reactive oxygen species (ROS) and affect the expression of antioxidant related genes, including sod-3, cat-1, ctl-1, skn-1, mev-1 and isp-1. However, administration with APE plus BE abolished the extension of the lifespan of skn-1(zu135) mutants, and inhibited the expression of skn-1 downstream genes, including gcs-1, gst-4 and gst-7. In addition, supplementation with APE plus BE could promote the migration of SKN-1 into the nucleus, which eliminated improvement to ROS and paraquat. In conclusion, the combination of APE and BE could synergistically protect against oxidative stress in C. elegans via the SKN-1/Nrf2 pathway. This study provided the theoretical basis to explore the combination of phytochemicals in the prevention of aging regulated by oxidative stress.
Collapse
Affiliation(s)
- Bingbing Song
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Bisheng Zheng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China. and Guangdong ERA Food & Life Health Research Institute, Guangzhou, 510530, China and Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Tong Li
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Jiang S, Deng N, Zheng B, Li T, Liu RH. Rhodiola extract promotes longevity and stress resistance of Caenorhabditis elegans via DAF-16 and SKN-1. Food Funct 2021; 12:4471-4483. [PMID: 33881421 DOI: 10.1039/d0fo02974b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of Rhodiola extract (RE) on longevity and stress resistance in Caenorhabditis elegans (C. elegans), and the underlying molecular mechanisms were explored in the present study. Results showed that the lifespan of C. elegans was remarkably prolonged by 37.1% after treated with high-dose RE (480 μg mL-1). Intervention with RE alleviated aging-related declines in the C. elegans model, and enhanced the stress resistance against heat shock, ultraviolet radiation and paraquat. Moreover, RE reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the activities of superoxide dismutase (SOD) and catalase (CAT). RE also upregulated the gene expression of sod-3, gst-4, daf-16, skn-1 in C. elegans, downregulated the gene expression of daf-2 and age-1, and accelerated the translocation of DAF-16 and SKN-1 into the nucleus. Furthermore, the daf-16(mu86) and skn-1(zu169) mutants reversed the extension of lifespan triggered by RE, indicating that these genes were involved in RE-regulated longevity. These results demonstrated that RE could enhance lifespan extension, healthspan and stress resistance of C. elegans via insulin/IGF signaling and SKN-1 pathways. Therefore, the present findings suggested Rhodiola as a potential candidate to ameliorate the symptoms of aging.
Collapse
Affiliation(s)
- Siqi Jiang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | | | |
Collapse
|
25
|
Ye Y, Gu Q, Sun X. Potential of Caenorhabditis elegans as an antiaging evaluation model for dietary phytochemicals: A review. Compr Rev Food Sci Food Saf 2020; 19:3084-3105. [PMID: 33337057 DOI: 10.1111/1541-4337.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/02/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Aging is an inevitable process characterized by the accumulation of degenerative damage, leading to serious diseases that affect human health. Studies on aging aim to develop pre-protection or therapies to delay aging and age-related diseases. A preventive approach is preferable to clinical treatment not only to reduce investment but also to alleviate pain in patients. Adjusting daily diet habits to improve the aging condition is a potentially attractive strategy. Fruits and vegetables containing active compounds that can effectively delay the aging process and reduce or inhibit age-related degenerative diseases have been identified. The signaling pathways related to aging in Caenorhabditis elegans are evolutionarily conserved; thus, studying antiaging components by intervening senescence process may contribute to the prevention and treatment of age-related diseases in humans. This review focuses on the effects of food-derived extracts or purified substance on antiaging in nematodes, as well as the underlying mechanisms, on the basis of several major signaling pathways and key regulatory factors in aging. The aim is to provide references for a healthy diet guidance and the development of antiaging nutritional supplements. Finally, challenges in the use of C. elegans as the antiaging evaluation model are discussed, together with the development that potentially inspire novel strategies and research tools.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qingyin Gu
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
26
|
Bai J, Farias-Pereira R, Zhang Y, Jang M, Park Y, Kim KH. C. elegans ACAT regulates lipolysis and its related lifespan in fasting through modulation of the genes in lipolysis and insulin/IGF-1 signaling. Biofactors 2020; 46:754-765. [PMID: 32639091 DOI: 10.1002/biof.1666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Overly active acyl-coenzyme A: cholesterol acyltransferases (ACATs) are known to contribute to the development of atherosclerosis, cancer cell proliferation and de novo lipogenesis. However, the role of ACAT in systemic lipid metabolism and its consequence of aging is unknown. Using avasimibe, a clinically proven ACAT inhibitor, and mboa-1 mutant strain, a homologous to mammalian ACAT, herein, we found that Ava treatment and mboa-1 mutant exhibited a decreased fat accumulation during feeding and increased lipolysis with extended lifespan of C. elegans during fasting. Our study highlights the essential role of ACAT inhibitor and mboa-1 in fat mobilization and the survival of C. elegans in fasting through the modulation of the genes involved in lipolysis and insulin/IGF-1 signaling.
Collapse
Affiliation(s)
- Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | | | - Yuan Zhang
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
- College of Food Science, Southwest University, Chongqing, China
| | - Miran Jang
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
27
|
Farias-Pereira R, Zhang Z, Park CS, Kim D, Kim KH, Park Y. Butein inhibits lipogenesis in Caenorhabditis elegans. Biofactors 2020; 46:777-787. [PMID: 32663368 DOI: 10.1002/biof.1667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Butein, a flavonoid found in annatto seeds and lacquer trees, may be used for many health benefits, including the prevention of obesity. However, its anti-obesity effects are not completely understood; in particular, the effects of butein on the regulation of lipid metabolism have not been explained. Thus, the goal of the current study was to determine the effects of butein on lipid metabolism in Caenorhabditis elegans, which is a multi-organ nematode used as an animal model in obesity research. Butein at 70 μM reduced triglyceride content by 27% compared to the control without altering food intake and energy expenditure. The reduced triglyceride content by butein was associated with the downregulation of sbp-1, fasn-1, and fat-7, the lipogenesis-related homologs of sterol regulatory element-binding proteins, fatty acid synthase and stearoyl-CoA desaturase, respectively. Furthermore, fat-7 and skn-1, a homolog of nuclear respiratory factors, were identified as genetic requirements for butein's effects on triglyceride content in C. elegans. The effects of butein on sbp-1 and fasn-1 were dependent on skn-1, but the downregulation of fat-7 was independent of skn-1. These results suggest that the inhibitory effects of butein on lipogenesis are via SKN-1- and FAT-7-dependent pathways in C. elegans.
Collapse
Affiliation(s)
| | - Zhenyu Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
28
|
Secoisolariciresinol Diglucoside Delays the Progression of Aging-Related Diseases and Extends the Lifespan of Caenorhabditis elegans via DAF-16 and HSF-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1293935. [PMID: 32733632 PMCID: PMC7378611 DOI: 10.1155/2020/1293935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Secoisolariciresinol diglucoside (SDG) is a phytoestrogen and rich in food flaxseed, sunflower seeds, and sesame seeds. Among the beneficial pharmacological activities of SDG on health, many are age related, such as anticancer, antidiabetes, antioxidant, and neuroprotective effects. Thus, we investigated if SDG had an effect on antiaging in Caenorhabditis elegans (C. elegans). Our results showed that SDG could extend the lifespan of C. elegans by up to 22.0%, delay age-related decline of body movement, reduce the lethality of heat and oxidative stress, alleviate dopamine neurodegeneration induced by 6-hydroxydopamine (6-OHDA), and decrease the toxicity of Aβ protein in C. elegans. SDG could increase the expression of the downstream genes of DAF-16, DAF-12, NHR-80, and HSF-1 at mRNA level. SDG could not extend the lifespan of mutants from genes daf-16, hsf-1, nhr-80, daf-12, glp-1, eat-2, and aak-2. The above results suggested that SDG might enhance the stress resistance, delay the progression of aging-related diseases, and extend the lifespan of C. elegans via DAF-16 and HSF-1.
Collapse
|
29
|
Song B, Zheng B, Li T, Liu RH. Raspberry extract ameliorates oxidative stress in Caenorhabditis elegans via the SKN-1/Nrf2 pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
30
|
Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical. Crit Rev Food Sci Nutr 2020; 61:1049-1064. [PMID: 32292045 DOI: 10.1080/10408398.2020.1753165] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
vitexin, an apigenin-8-C-glucoside, is widely present in numerous edible and medicinal plants. vitexin possesses a variety of bioactive properties, including antioxidation, anti-inflammation, anti-cancer, neuron-protection, and cardio-protection. Other beneficial health effects, such as fat reduction, glucose metabolism, and hepatoprotection, have also been reported in recent studies. This review briefly discusses the absorption and metabolism of vitexin, as well as its influence on gut microbiota. Recent advances in understanding the pharmacological and biological effects of vitexin are then reviewed. Improved knowledge of the absorption, metabolism, bioactivity, and molecular targets of vitexin is crucial for the better utilization of this emerging nutraceutical as a chemopreventive and chemotherapeutic agent.
Collapse
|
31
|
Yuan L, Lin J, Xu Y, Peng Y, Clark JM, Gao R, Park Y, Sun Q. Deltamethrin promotes adipogenesis via AMPKα and ER stress-mediated pathway in 3T3- L1 adipocytes and Caenorhabditis elegans. Food Chem Toxicol 2019; 134:110791. [PMID: 31476344 DOI: 10.1016/j.fct.2019.110791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022]
Abstract
Previous research has shown that deltamethrin, a Type-II pyrethroid, increases fat accumulation in adipocytes and Caenorhabditis elegans. The underlying mechanisms on how deltamethrin promotes fat accumulation, however, are unknown. The aim of the current study was therefore to determine the possible mechanisms through which deltamethrin increases fat accumulation in mouse 3T3-L1 adipocytes and C. elegans. Deltamethrin (10 μM) significantly increased fat accumulation, and the expression of adipogenic regulators, such as CCAAT/enhancer-binding protein (C/EBPα) and fatty acid synthase (FAS). Deltamethrin significantly decreased the phosphorylation of AMP-activated kinase α (AMPKα), while it increased protein expression of endoplasmic reticulum (ER) stress markers in 3T3-L1 adipocytes and C. elegans. The activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the inhibition of ER stress with 4-phenylbutyrate (4-PBA) abolished the effects of deltamethrin on adipogenesis. Further study reveals that 4-PBA recovered the decreased AMPK phosphorylation induced by deltamethrin. These results suggest that deltamethrin promotes adipogenesis through an ER stress-AMPKα mediated pathway.
Collapse
Affiliation(s)
- Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jie Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yuejia Xu
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Ye Peng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China; Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
32
|
Tomas-Barberán F, Osorio C. Advances in Health-Promoting Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9121-9123. [PMID: 31339705 DOI: 10.1021/acs.jafc.9b04279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As part of the 256th American Chemical Society National Meeting that was held in Boston, MA, U.S.A., in August 2018, the symposium on "Health-Promoting Food Ingredients" was organized in collaboration with Dr. Agnes Rimando (rest in peace). This symposium aimed to present the latest advances related to food ingredients (e.g., pure compounds, extracts, or additives) that potentially confer health benefits and reduce the development of lifestyle-related metabolic disorders (e.g., hypertension, obesity, cardiovascular diseases, and diabetes, among others). The studies presented included the evaluation of functional properties of bioactive compounds commonly found in foods, with an emphasis in (poly)phenols (anthocyanins, flavonols, and proanthocyanidins), and dietary fiber and their interaction with gut microbiota. Many studies were focused on whole extracts of foods and the bioactivity measured in vivo at the cellular level. The role of (poly)phenols in the prevention of cardiovascular diseases and type 2 diabetes was highlighted.
Collapse
Affiliation(s)
- Francisco Tomas-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Center for Applied Soil Science and Biology of the Segura (CEBAS) , Spanish National Research Council (CSIC) , Post Office Box 164, Campus de Espinardo, 30100 Murcia , Spain
| | - Coralia Osorio
- Departamento de Química , Universidad Nacional de Colombia , AA 14490 Bogotá , Colombia
| |
Collapse
|