1
|
Wiraswati HL, Ma'ruf IF, Sharifi-Rad J, Calina D. Piperine: an emerging biofactor with anticancer efficacy and therapeutic potential. Biofactors 2024. [PMID: 39467259 DOI: 10.1002/biof.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Anticancer drug discovery needs serious attention to overcome the high mortality rate caused by cancer. There are still many obstacles to treating this disease, such as the high cost of chemotherapeutic drugs, the resulting side effects from the drug, and the occurrence of multidrug resistance. Herbaceous plants are a reservoir of natural compounds that can be anticancer drugs with novel mechanisms of action. Piperine, a bioactive compound derived from Piper species, is gaining attention due to its unique dual role in directly inhibiting tumor growth and enhancing the bioavailability of chemotherapeutic drugs. Unlike conventional treatments, Piperine exhibits a novel mechanism of action by modulating multiple signaling pathways, including apoptosis and autophagy, with low toxicity. Additionally, Piperine acts as a bioenhancer by improving the absorption and effectiveness of other anticancer agents, reducing the required dosage, and minimizing side effects. Therefore, this review aims to visualize a summary of Piperine sources, phytochemistry, chemical structure-anticancer activity relationship, anticancer activities of semi-synthetic derivatives, pharmacokinetic and bioavailability, in vitro and in vivo preclinical studies, mechanism of antitumor action, human clinical trials, toxicity, side effects, and safety of Piperine. References were collected from the Pubmed/MedLine database (https://pubmed.ncbi.nlm.nih.gov/) with the following keywords: "Piperine anticancer," "Piperine derivatives," "Piperine antitumor mechanism" and "Piperine pharmacokinetic and bioavailability," after filter process by inclusion and exclusion criteria, 101 were selected from 444 articles. From 2013 to 2023, there were numerous studies regarding preclinical studies of Piperine of various cell lines, including breast cancer, prostate cancer, lung cancer, melanoma, cervical cancer, gastric cancer, osteosarcoma, colon cancer, hepatocellular carcinoma, ovarian cancer, leukemia, colorectal cancer, and hypopharyngeal carcinoma. In vivo, the anticancer study has also been conducted on some animal models, such as Ehrlich carcinoma-bearing mice, Ehrlich ascites carcinoma cells-bearing Balbc mice, hepatocellular carcinoma-bearing Wistar rat, A375SM cells-bearing mice, A375P cells-bearing mice, SNU-16 cells-bearing BalbC mice, and HGC-27-bearing baby mice. Treatment with this compound leads to cell proliferation inhibition and induction of apoptosis. Piperine has been used for clinical trials of diseases, but no cancer patient report exists. Various semi-synthetic derivatives of Piperine show efficacy as an anticancer drug across multiple cell lines. Piperine shows promise for use in cancer clinical trials, either as a standalone treatment or as a bioenhancer. Its bioenhancer properties may enhance the efficacy of existing chemotherapeutic agents, providing a valuable foundation for developing new anticancer therapies.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ilma Fauziah Ma'ruf
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Manickasamy MK, Kumar A, BharathwajChetty B, Alqahtani MS, Abbas M, Alqahtani A, Unnikrishnan J, Bishayee A, Sethi G, Kunnumakkara AB. Synergistic enhancement: Exploring the potential of piperine in cancer therapeutics through chemosensitization and combination therapies. Life Sci 2024; 354:122943. [PMID: 39117139 DOI: 10.1016/j.lfs.2024.122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/15/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Despite significant advancements in chemotherapy, effective treatments for advanced cancer stages remain largely elusive due to chemoresistance. Resistance to anticancer agents in cancer cells can arise through various mechanisms, including multi-drug resistance, inhibition of apoptosis, modification of drug targets, and enhancement of DNA repair capabilities. Consequently, there is a critical need for agents that can suppress the molecular signatures responsible for drug resistance. Piperine, an active alkaloid extracted from Piper nigrum L. (black pepper), is one such agent that has been extensively studied for its potential in addressing chronic diseases, including cancer. Piperine's antineoplastic properties are mediated through the regulation of numerous key cellular signaling pathways and the modulation of various biological processes. Its capability to enhance drug bioavailability and counteract mechanisms of drug resistance, such as the inhibition of P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP-1), emphasizes its potential as an adjunct in cancer therapy. Research across various cancer types has demonstrated piperine's role in chemosensitization by targeting P-gp and MRP-1 and altering drug-metabolizing enzymes. This review provides a comprehensive analysis of piperine's pharmacological characteristics and its capacity to modulate several cellular signaling pathways involved in drug resistance. Furthermore, the review emphasizes how piperine, when used in conjunction with other chemotherapeutic agents or natural compounds, can enhance therapeutic effects, leading to improved outcomes in cancer treatment.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India.
| |
Collapse
|
3
|
Xu ZY, Du NN, La CS, Huang XX, Song SJ. Two pairs of bioactive cyclohexene alkaloid enantiomers from the roots of Piper nigrum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-10. [PMID: 38594843 DOI: 10.1080/10286020.2024.2335279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Two pairs of cyclohexene amide alkaloid enantiomers were obtained from the root of Piper nigrum. Their plane structures were established by NMR and HRESIMS spectra. The absolute configurations of 1a/1b and 2a/2b were determined by the comparison between the experimental and calculated electronic circular dichroism (ECD) spectra. All identified compounds were tested for inhibitory effects on acetylcholinesterase (AChE) in vitro. Notably, compounds 1b and 2b showed strong inhibitory effects on AChE and the interaction between proteins and compounds was discussed by molecular docking studies.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Chang-Sheng La
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Liaoning 110016, China
| |
Collapse
|
4
|
Ma YY, Zhang GJ, Liu PF, Liu Y, Ding JC, Xu H, Hao L, Pan D, Wang HL, Wang JK, Xu P, Shi ZD, Pang K. Comprehensive Genomic Analysis of Puerarin in Inhibiting Bladder Urothelial Carcinoma Cell Proliferation and Migration. Recent Pat Anticancer Drug Discov 2024; 19:516-529. [PMID: 37694778 PMCID: PMC11348475 DOI: 10.2174/1574892819666230908110107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Bladder urothelial carcinoma (BUC) ranks second in the incidence of urogenital system tumors, and the treatment of BUC needs to be improved. Puerarin, a traditional Chinese medicine (TCM), has been shown to have various effects such as anti-cancer effects, the promotion of angiogenesis, and anti-inflammation. This study investigates the effects of puerarin on BUC and its molecular mechanisms. METHODS Through GeneChip experiments, we obtained differentially expressed genes (DEGs) and analyzed these DEGs using the Ingenuity® Pathway Analysis (IPA®), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses. The Cell Counting Kit 8 (CCK8) assay was used to verify the inhibitory effect of puerarin on the proliferation of BUC T24 cells. String combined with Cytoscape® was used to create the Protein-Protein Interaction (PPI) network, and the MCC algorithm in cytoHubba plugin was used to screen key genes. Gene Set Enrichment Analysis (GSEA®) was used to verify the correlation between key genes and cell proliferation. RESULTS A total of 1617 DEGs were obtained by GeneChip. Based on the DEGs, the IPA® and pathway enrichment analysis showed they were mainly enriched in cancer cell proliferation and migration. CCK8 experiments proved that puerarin inhibited the proliferation of BUC T24 cells, and its IC50 at 48 hours was 218μmol/L. Through PPI and related algorithms, 7 key genes were obtained: ITGA1, LAMA3, LAMB3, LAMA4, PAK2, DMD, and UTRN. GSEA showed that these key genes were highly correlated with BUC cell proliferation. Survival curves showed that ITGA1 upregulation was associated with poor prognosis of BUC patients. CONCLUSION Our findings support the potential antitumor activity of puerarin in BUC. To the best of our knowledge, bioinformatics investigation suggests that puerarin demonstrates anticancer mechanisms via the upregulation of ITGA1, LAMA3 and 4, LAMB3, PAK2, DMD, and UTRN, all of which are involved in the proliferation and migration of bladder urothelial cancer cells.
Collapse
Affiliation(s)
- Yu-Yang Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| | - Ge-jin Zhang
- Department of Urology, Suqian Zhongwu Hospital. No. 3786, Development Avenue, Suqian Economic and Technological Development Zone, Suqian, China
| | - Peng-fei Liu
- Jiangsu Provincial Key Laboratory of Educational Big Data Science and Engineering, Jiangsu Normal University, 101 Shanghai Road, Tongshan, Xuzhou, 221116, China
- School of Mathematics and Statistics and Research Institute of Mathematical Sciences (RIMS), Jiangsu Normal University, 101 Shanghai Road, Tongshan, Xuzhou, 221116, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College. No.199, South Jiefang Road, Xuzhou, Jiangsu, China
| | - Ji-cun Ding
- Department of Burn and Plastic Surgery, Xuzhou First People's Hospital, No. 269, Daxue Road, Tongshan District, Xuzhou, Jiangsu, China
| | - Hao Xu
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
| | - Deng Pan
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| | - Hai-luo Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
| | - Jing-kai Wang
- Graduate School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Peng Xu
- Graduate School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| |
Collapse
|
5
|
Lv Y, Zhu J, Huang S, Xing X, Zhou S, Yao H, Yang Z, Liu L, Huang S, Miao Y, Liu X, Fernie AR, Ding Y, Luo J. Metabolome profiling and transcriptome analysis filling the early crucial missing steps of piperine biosynthesis in Piper nigrum L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:107-120. [PMID: 37753665 DOI: 10.1111/tpj.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Black pepper (Piper nigrum L.), the world renown as the King of Spices, is not only a flavorsome spice but also a traditional herb. Piperine, a species-specific piper amide, is responsible for the major bioactivity and pungent flavor of black pepper. However, several key steps for the biosynthesis of piperoyl-CoA (acyl-donor) and piperidine (acyl-acceptor), two direct precursors for piperine, remain unknown. In this study, we used guilt-by-association analysis of the combined metabolome and transcriptome, to identify two feruloyldiketide-CoA synthases responsible for the production of the C5 side chain scaffold feruloyldiketide-CoA intermediate, which is considered the first and important step to branch metabolic fluxes from phenylpropanoid pathway to piperine biosynthesis. In addition, we also identified the first two key enzymes for piperidine biosynthesis derived from lysine in P. nigrum, namely a lysine decarboxylase and a copper amine oxidase. These enzymes catalyze the production of cadaverine and 1-piperideine, the precursors of piperidine. In vivo and in vitro experiments verified the catalytic capability of them. In conclusion, our findings revealed enigmatic key steps of piperine biosynthetic pathway and thus provide a powerful reference for dissecting the biosynthetic logic of other piper amides.
Collapse
Affiliation(s)
- Yuanyuan Lv
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory (YNL), Sanya, 572025, China
| | - Jinjin Zhu
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Sihui Huang
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Xiaoli Xing
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Shen Zhou
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Hui Yao
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Zhuang Yang
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Ling Liu
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Sishu Huang
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Yuanyuan Miao
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Xianqing Liu
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Yuanhao Ding
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Jie Luo
- School of Breeding and Multiplication(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory (YNL), Sanya, 572025, China
| |
Collapse
|
6
|
Hui Z, Wen H, Zhu J, Deng H, Jiang X, Ye XY, Wang L, Xie T, Bai R. Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorg Chem 2024; 142:106957. [PMID: 37939507 DOI: 10.1016/j.bioorg.2023.106957] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Natural products represent a paramount source of novel drugs. Numerous plant-derived natural products have demonstrated potent anti-tumor properties, thereby garnering considerable interest in their potential as anti-tumor drugs. This review compiles an overview of 242 recently discovered natural products, spanning the period from 2018 to the present. These natural products, which include 69 terpenoids, 42 alkaloids, 39 flavonoids, 21 steroids, 14 phenylpropanoids, 5 quinolines and 52 other compounds, are characterized by their respective chemical structures, anti-tumor activities, and mechanisms of action. By providing an essential reference and fresh insights, this review aims to support and inspire researchers engaged in the fields of natural products and anti-tumor drug discovery.
Collapse
Affiliation(s)
- Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
7
|
Ramos INDF, da Silva MF, Lopes JMS, Cruz JN, Alves FS, do Rego JDAR, Costa MLD, Assumpção PPD, Barros Brasil DDS, Khayat AS. Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer. Molecules 2023; 28:5587. [PMID: 37513459 PMCID: PMC10385350 DOI: 10.3390/molecules28145587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Gastric cancer is one of the most frequent types of neoplasms worldwide, usually presenting as aggressive and difficult-to-manage tumors. The search for new structures with anticancer potential encompasses a vast research field in which natural products arise as promising alternatives. In this scenario, piperine, an alkaloid of the Piper species, has received attention due to its biological activity, including anticancer attributes. The present work proposes three heating-independent, reliable, low-cost, and selective methods for obtaining piperine from Piper nigrum L. (Black pepper). Electronic (SEM) and optical microscopies, X-ray diffraction, nuclear magnetic resonance spectroscopies (13C and 1H NMR), and optical spectroscopies (UV-Vis, photoluminescence, and FTIR) confirm the obtention of piperine crystals. The MTT assay reveals that the piperine samples exhibit good cytotoxic activity against primary and metastasis models of gastric cancer cell lines from the Brazilian Amazon. The samples showed selective cytotoxicity on the evaluated models, revealing higher effectiveness in cells bearing a higher degree of aggressiveness. Moreover, the investigated piperine crystals demonstrated the ability to act as a good cytotoxicity enhancer when combined with traditional chemotherapeutics (5-FU and GEM), allowing the drugs to achieve the same cytotoxic effect in cells employing lower concentrations. These results establish piperine as a promising molecule for therapy investigations in aggressive gastric cancer, both in its isolated form or as a bioenhancer.
Collapse
Affiliation(s)
| | | | | | - Jordy Neves Cruz
- Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Fabrine Silva Alves
- Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | | | - Davi do Socorro Barros Brasil
- Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
- Graduate Program in Science and Environment, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém 66075-110, PA, Brazil
- Institute of Biological Science, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
8
|
Wan Q, Xu J, Zhu C, Liu X, Tu Y, Lei J, Yu J. Alkaloids from Piper longum Exhibit Anti-inflammatory Activity and Synergistic Effects with Chemotherapeutic Agents against Cervical Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37392181 DOI: 10.1021/acs.jafc.3c01667] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Piper longum L. is widely cultivated for food, medicine, and other purposes in tropical and subtropical regions. Sixteen compounds including nine new amide alkaloids were isolated from the roots of P. longum. The structures of these compounds were determined by spectroscopic data. All compounds showed better anti-inflammatory activities (IC50 = 1.90 ± 0.68-40.22 ± 0.45 μM) compared to indomethacin (IC50 = 52.88 ± 3.56 μM). Among the isolated compounds, five dimeric amide alkaloids exhibited synergistic effects with three chemotherapeutic drugs (paclitaxel, adriamycin, or vincristine) against cervical cancer cells. Moreover, these dimeric amide alkaloids also enhanced the efficacy of paclitaxel in paclitaxel-resistant cervical cancer cells. The combination treatment of one of these dimeric amide alkaloids and paclitaxel promoted cancer cell apoptosis, which is related to the Src/ERK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Qian Wan
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Chengjing Zhu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xingxing Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yijun Tu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiachuan Lei
- Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Jianqing Yu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
9
|
Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, Joshi P, Rai RC, Upadhyay SK. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract
Background
Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials.
Main body
The purpose of this study is to systematically comprehend the progress made in the area of prophylactic and therapeutic potential of the anticancerous plant derivatives. Besides, we aim to understand their anticancer potential in terms of specific sub-phenomena, such as anti-oxidative, anti-inflammatory, pro-apoptotic and inhibition of EMT, with an insight of the molecules/pathways associated with them. The study also provides details of classes of anticancer compounds, their plant source(s) and the molecular pathway(s) targeted by them. In addition to the antioxidative and antiproliferative potentials of anticancer plant derivatives, this study emphasizes on their EMT-inhibition potential and other ‘anticancer related’ properties. The EMT is highlighted as a phenomenon of choice for targeting cancer due to its role in the induction of metastasis and drug resistance. Different phytochemicals in pre-clinical or clinical trials, with promising chemopreventive/anticancer activities have been enlisted and the plant compounds showing synergistic anticancer activity in combination with the existing drugs have been discussed. The review also unravels the need of carrying out pan-signalome studies for identifying the cardinal pathways modulated by phytomedicine(s), as in many cases, the molecular pathway(s) has/have been randomly studied.
Conclusion
This review systematically compiles the studies regarding the impact of various plant derivatives in different cancers and oncogenic processes, as tested in diverse experimental model systems. Availability of more comprehensive information on anticancer phyto-constituents, their relative abundance in crude drugs, pathways/molecules targeted by phytomedicines, their long-term toxicity data and information regarding their safe use under the combinatorial settings, would open greater avenues of their utilization in future against this dreaded disease.
Graphical Abstract
Collapse
|
10
|
Gao Z, Chen Y, Nie Y, Chen K, Cao X, Ke S. Structural diversity-guided optimization of carbazole derivatives as potential cytotoxic agents. Front Chem 2023; 11:1104868. [PMID: 36742033 PMCID: PMC9890180 DOI: 10.3389/fchem.2023.1104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Carbazole alkaloids, as an important class of natural products, have been widely reported to have extensive biological activities. Based on our previous three-component reaction to construct carbazole scaffolds, we introduced a methylene group to provide a rotatable bond, and designed series of carbazole derivatives with structural diversity including carbazole amide, carbazole hydrazide and carbazole hydrazone. All synthesized carbazole derivatives were evaluated for their in vitro cytotoxic activity against 7901 (gastric adenocarcinoma), A875 (human melanoma) and MARC145 (African green monkey kidney) cell lines. The preliminary results indicated that compound 14a exhibited high inhibitory activities on 7901 and A875 cancer cells with the lowest IC50 of 11.8 ± 1.26 and 9.77 ± 8.32 μM, respectively, which might be the new lead compound for discovery of novel carbazole-type anticancer agents.
Collapse
Affiliation(s)
- Zilin Gao
- College of Science, Huazhong Agricultural University, Wuhan, China,National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yufei Nie
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Keming Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xiufang Cao
- College of Science, Huazhong Agricultural University, Wuhan, China,*Correspondence: Xiufang Cao, ; Shaoyong Ke,
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China,*Correspondence: Xiufang Cao, ; Shaoyong Ke,
| |
Collapse
|
11
|
Wang YX, Xu ZY, Qin SY, Du NN, Yao GD, Lin B, Huang XX, Song SJ. Novel Bisamide Alkaloids Enantiomers from Pepper Roots ( Piper nigrum L.) with Acetylcholinesterase Inhibitory and Anti-Neuroinflammatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15487-15498. [PMID: 36450093 DOI: 10.1021/acs.jafc.2c06733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The roots of Piper nigrum L., a seasoning for cooking various types of broths, are renowned for their high nutritional content and potential medicinal benefits. In this study, nine pairs of novel cyclohexene-type bisamide alkaloids (1a/1b-9a/9b) were isolated from the pepper roots using molecular network analysis strategies. Their structures were determined by extensive spectroscopic data, electronic circular dichroism (ECD) calculations, and X-ray diffraction analyses. Using an intermolecular Diels-Alder reaction, a strategy for the synthesis of bisamide alkaloids from different monomeric amide alkaloids was developed. Furthermore, these compounds were chirally separated for the first time, and compounds 3a and 5a/5b showed significant anti-neuroinflammation effects in the models of lipopolysaccharide(LPS)-induced BV2 microglial cells. Meanwhile, compounds 6b and 7a displayed concentration-dependent inhibitory activities against acetylcholinesterase with IC50 values of 6.05 ± 1.10 and 3.81 ± 0.10 μM, respectively. These findings confirmed that these bisamide alkaloids could be applied in functional food formulations and pharmaceutical products as well as facilitate the further development and usage of pepper roots.
Collapse
Affiliation(s)
- Yu-Xi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Zhi-Yong Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shu-Yan Qin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
12
|
Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed Pharmacother 2022; 155:113760. [DOI: 10.1016/j.biopha.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
|
13
|
Xu J, Wei Y, Liu Q, Liu X, Zhu C, Tu Y, Lei J, Yu J. The bioactive amide alkaloids from the stems of Piper nigrum. Food Chem 2022; 405:134736. [DOI: 10.1016/j.foodchem.2022.134736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
|
14
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
15
|
Saetang J, Tedasen A, Sangkhathat S, Sangkaew N, Dokduang S, Prompat N, Taraporn S, Graidist P. Low Piperine Fractional Piper nigrum Extract Enhanced the Antitumor Immunity via Regulating the Th1/Th2/Treg Cell Subsets on NMU-Induced Tumorigenesis Rats. PLANTA MEDICA 2022; 88:527-537. [PMID: 33902130 DOI: 10.1055/a-1458-5646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer is one of the major causes of death worldwide. In addition to standard regimens, tumor suppression ability has been demonstrated in many types of natural products, including Piper nigrum, or black pepper. In previous reports, we demonstrated the antitumor effect of low piperine fractional Piper nigrum extract in vitro and in vivo. However, the effects of low piperine fractional P. nigrum extract in the aspect of antitumor immunity has not yet been investigated. In this study, tumor-bearing rats were fed with 100 mg/kg BW or 200 mg/kg BW of low piperine fractional P. nigrum extract 3 times per week for 4 weeks. Tumor burden and hematological data were then evaluated. Immunological data was investigated using a cytokine array and flow cytometry. The results showed that both doses of low piperine fractional P. nigrum extract significantly suppressed tumor progression in N-nitrosomethylurea-induced mammary tumor rats. There were no significant changes observed in the total white blood cells, red blood cells, and hemoglobin. Low piperine fractional P. nigrum extract suppressed some cytokine and chemokine levels including CXCL7, sICAM-1, and L-selectin 0.2- to 0.6-fold. Interestingly, 200 mg/kg BW of low piperine fractional P. nigrum extract significantly promoted type 1 T helper cell, and suppressed neutrophil, basophil, type 2 T helper cell, and regulatory T cell compared to the control group. In summary, these results indicate that low piperine fractional P. nigrum extract had a high efficacy in supporting antitumor activity at immunological levels via regulating Th1/Th2/Treg cells.
Collapse
Affiliation(s)
- Jirakrit Saetang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Aman Tedasen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, Thailand
| | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Natnaree Sangkaew
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sirinapa Dokduang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, Thailand
| | - Napat Prompat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Siriporn Taraporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
16
|
Al Mamun A, Sufian MA, Uddin MS, Sumsuzzman DM, Jeandet P, Islam MS, Zhang HJ, Kong AN, Sarwar MS. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol 2022; 928:174991. [PMID: 35513016 DOI: 10.1016/j.ejphar.2022.174991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2023]
Abstract
During the last few decades, cancer has remained one of the deadliest diseases that endanger human health, emphasizing urgent drug discovery. Cellular senescence has gained a great deal of attention in recent years because of its link to the development of cancer therapy. Senescent cells are incapable of proliferating due to irreversibly inhibited the initiation of the cell cycle pathways. However, senescent cells aggregate in tissues and produce a pro-inflammatory secretome called senescence-associated secretory phenotype (SASP) that can cause serious harmful effects if not managed properly. There is mounting evidence that senescent cells lead to various phases of tumorigenesis in various anatomical sites, owing mostly to the paracrine activities of the SASP. Therefore, a new treatment field called senotherapeutics has been established. Senotherapeutics are newly developed anticancer agents that have been demonstrated to inhibit cancer effectively. In light of recent findings, several promising natural products have been identified as senescence inducers and senotherapeutics, including, miliusanes, epigallocatechin gallate, phloretin, silybin, resveratrol, genistein, sulforaphane, quercetin, allicin, fisetin, piperlongumine, berberine, triptolide, tocotrienols and curcumin analogs. Several of them have already been validated through preclinical trials and exert an enormous potential for clinical trials. This review article focuses on and summarises the latest advances on cellular senescence and its potential as a target for cancer treatment and highlights the well-known natural products as senotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims, Cedex 2, France
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
17
|
Combination of ruthenium (II) polypyridyl complex Δ-Ru1 and Taxol enhances the anti-cancer effect on Taxol-resistant cancer cells through Caspase-1/GSDMD-mediated pyroptosis. J Inorg Biochem 2022; 230:111749. [DOI: 10.1016/j.jinorgbio.2022.111749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
|
18
|
Ding Y, Mao Y, Cen Y, Hu L, Su Y, Ma X, Long L, Hu H, Hao C, Luo J. Small RNA sequencing reveals various microRNAs involved in piperine biosynthesis in black pepper (Piper nigrum L.). BMC Genomics 2021; 22:838. [PMID: 34794378 PMCID: PMC8603596 DOI: 10.1186/s12864-021-08154-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background Black pepper (Piper nigrum L.), an important and long-cultivated spice crop, is native to South India and grown in the tropics. Piperine is the main pungent and bioactive alkaloid in the berries of black pepper, but the molecular mechanism for piperine biosynthesis has not been determined. MicroRNAs (miRNAs), which are classical endogenous noncoding small RNAs, play important roles in regulating secondary metabolism in many species, but less is known regarding black pepper or piperine biosynthesis. Results To dissect the functions of miRNAs in secondary metabolism especially in piperine biosynthesis, 110 known miRNAs, 18 novel miRNAs and 1007 individual targets were identified from different tissues of black pepper by small RNA sequencing. qRT-PCR and 5′-RLM-RACE experiments were conducted to validate the reliability of the sequencing data and predicted targets. We found 3 miRNAs along with their targets including miR166-4CL, miR396-PER and miR397-CCR modules that are involved in piperine biosynthesis. Conclusion MiRNA regulation of secondary metabolism is a common phenomenon in plants. Our study revealed new miRNAs that regulate piperine biosynthesis, which are special alkaloids in the piper genus, and they might be useful for future piperine genetic improvement of black pepper. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08154-4.
Collapse
Affiliation(s)
- Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuyuan Mao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yi Cen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China.,Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Wanning, 571533, Hainan, China
| | - Yuefeng Su
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Xuemin Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004, Henan, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China. .,Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Wanning, 571533, Hainan, China. .,Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, Hainan, China.
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
19
|
Potential Mechanisms of Plant-Derived Natural Products in the Treatment of Cervical Cancer. Biomolecules 2021; 11:biom11101539. [PMID: 34680171 PMCID: PMC8533981 DOI: 10.3390/biom11101539] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the second most common gynecological malignancy globally; it seriously endangers women’s health because of its high morbidity and mortality. Conventional treatments are prone to drug resistance, recurrence and metastasis. Therefore, there is an urgent need to develop new drugs with high efficacy and low side effects to prevent and treat cervical cancer. In recent years, plant-derived natural products have been evaluated as potential anticancer drugs that preferentially kill tumor cells without severe adverse effects. A growing number of studies have shown that natural products can achieve practical anti-cervical-cancer effects through multiple mechanisms, including inhibition of tumor-cell proliferation, induction of apoptosis, suppression of angiogenesis and telomerase activity, enhancement of immunity and reversal of multidrug resistance. This paper reviews the therapeutic effects and mechanisms of plant-derived natural products on cervical cancer and provides references for developing anti-cervical-cancer drugs with high efficacy and low side effects.
Collapse
|
20
|
Lv J, Xie M, Zhao S, Qiu W, Wang S, Cao M. Synergetic fabrication of hybrid drug formulation using biodegradable tri-block copolymeric liquid nanoparticle delivery for gastric cancer chemotherapy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Chen YX, You YX, Rao L, Liu Y, He Q, Xu YK, Lin B, Zhang CR. Neolignans and Sesquiterpenoid from Piper yunnanense. Chem Biodivers 2021; 18:e2100458. [PMID: 34369666 DOI: 10.1002/cbdv.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Two biphenyl-type neolignans with a rare dibenzofuran skeleton, including a new one piyunneolignan A (1) and a known one piperneolignan D (2), together with a new sesquiterpenoid piyunin A (3), were isolated from the leaves and twigs of Piper yunnanense. Their structures were established on the basis of comprehensive spectroscopic data analysis and electronic circular dichroism (ECD) calculation. Piyunneolignan A (1) featured a rare C-2-C-2'/C-3-O-C-3' linkage. Compounds 1-3 were evaluated for their antimicrobial and cytotoxic activities against a panel of bacteria, fungi, and human cancer cell lines, respectively.
Collapse
Affiliation(s)
- Yu-Xi Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yun-Xia You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Li Rao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Qian He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - You-Kai Xu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, P. R. China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Chuan-Rui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
22
|
Zheng X, Wu Z, Xu J, Zhang X, Tu Y, Lei J, Yuan R, Cheng H, Wang Q, Yu J. Bioactive sesquiterpenes from Inula helenium. Bioorg Chem 2021; 114:105066. [PMID: 34134031 DOI: 10.1016/j.bioorg.2021.105066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023]
Abstract
Twenty-one eudesmane-type sesquiterpenes, including five new compounds, were isolated from the roots of Inula helenium. The structures of the new compounds (1-5) were determined by extensive spectroscopic data interpretation, single-crystal X-ray diffraction analysis and ECD calculations. Six compounds can synergistically enhance cisplatin effect against ovarian cancer cells, the structure - activity relationship for the synergistic effect of these compounds with cisplatin was revealed for the first time, which provides useful clues to develop novel sensitizers to overcome drug resistance in cancer. In addition, fifteen sesquiterpenes exhibited significant anti-inflammatory activity, which provided promising candidates for development of anti-inflammatory agent.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zi Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jie Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xinxin Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yijun Tu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jiachuan Lei
- Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ruiying Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Medical College, Tibet University, China
| | - Haitao Cheng
- College of Pharmacy, South Central University for Nationalities, 708 Minyuan Road, Wuhan 430074, China
| | - Qiang Wang
- College of Pharmacy, South Central University for Nationalities, 708 Minyuan Road, Wuhan 430074, China
| | - Jianqing Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| |
Collapse
|
23
|
Jangid AK, Pooja D, Jain P, Gupta N, Ramesan S, Kulhari H. Self-assembled and pH-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells. RSC Adv 2021; 11:13928-13939. [PMID: 35423920 PMCID: PMC8697741 DOI: 10.1039/d1ra01574e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is an essential component of breast cancer therapy, but it is associated with serious side effects. Herein, a pluronic F68-based pH-responsive, and self-assembled nanomicelle system was designed to improve the delivery of paclitaxel (PTX) to breast cancer cells. Two pH-responsive pluronic F68-PTX conjugates i.e. succinoyl-linked conjugate (F68-SA-PTX) and cis-aconityl-linked conjugate (F68-CAA-PTX) were designed to respond the varying pH-environment in tumour tissue. Although both the linkers showed pH-sensitivity, the F68-CAA-PTX exhibited superior pH-sensitivity over the F68-SA-PTX and achieved a more selective release of PTX from the self-assembled nanomicelles. The prepared nanomicelles were characterized by dynamic light scattering, transmittance electron microscopy, differential scanning calorimetry and powder X-ray diffraction techniques. The anticancer activity of prepared nanomicelles and pure PTX were evaluated by 2D cytotoxicity assay against breast cancer cell line MDA-MB-231 and in the real tumour environments i.e. 3D tumor spheroids of MDA-MB-231 cells. The highest cytotoxicity effect of PTX was observed with F68-CAA-PTX nanomicelles followed by F68-SA-PTX and free PTX. Further, the F68-CAA-PTX nanomicelles also induced significant apoptosis with a combination of increase in ROS generation, decrease in the depolarisation of MMP and G2/M cell cycle arrest. These observed results provide a new insight for breast cancer treatment using pluronic nanomicelles.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Deep Pooja
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University 124 La Trobe Street 3000 Melbourne Australia
| | - Poonam Jain
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Nitin Gupta
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Shwathy Ramesan
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| |
Collapse
|
24
|
Therapeutic Potential of Natural Products in Treatment of Cervical Cancer: A Review. Nutrients 2021; 13:nu13010154. [PMID: 33466408 PMCID: PMC7824868 DOI: 10.3390/nu13010154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most common cancer among women worldwide. Though several natural products have been reported regarding their efficacies against cervical cancer, there has been no review article that categorized them according to their anti-cancer mechanisms. In this study, anti-cancerous natural products against cervical cancer were collected using Pubmed (including Medline) and google scholar, published within three years. Their mechanisms were categorized as induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis, reduction of resistance, and regulation of miRNAs. A total of 64 natural products suppressed cervical cancer. Among them, Penicillium sclerotiorum extracts from Cassia fistula L., ethanol extracts from Bauhinia variegate candida, thymoquinone obtained from Nigella sativa, lipid-soluble extracts of Pinellia pedatisecta Schott., and 1'S-1'-acetoxychavicol extracted from Alpinia conchigera have been shown to have multi-effects against cervical cancer. In conclusion, natural products could be attractive candidates for novel anti-cancer drugs.
Collapse
|
25
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
26
|
Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif 2020; 53:e12894. [PMID: 32881115 PMCID: PMC7574878 DOI: 10.1111/cpr.12894] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is the principal cause of death and a dominant public health problem which seriously threatening human life. Among various ways to treat cancer, traditional Chinese medicine (TCM) and natural products have outstanding anti‐cancer effects with their unique advantages of high efficiency and minimal side effects. Cell senescence is a physiological process of cell growth stagnation triggered by stress, which is an important line of defence against tumour development. In recent years, active ingredients of TCM and natural products, as an interesting research hotspot, can induce cell senescence to suppress the occurrence and development of tumours, by inhibiting telomerase activity, triggering DNA damage, inducing SASP, and activating or inactivating oncogenes. In this paper, the recent research progress on the main compounds derived from TCM and natural products that play anti‐cancer roles by inducing cell senescence is systematically reviewed, aiming to provide a reference for the clinical treatment of pro‐senescent cancer.
Collapse
Affiliation(s)
- Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Hou D, Xiong J, Li Y, Peng Y, Xiong L. Efficacy and safety of Xiaoaiping injection for liver cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21993. [PMID: 32871951 PMCID: PMC7458193 DOI: 10.1097/md.0000000000021993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Xiaoaiping injection, extracted from the Chinese herb Marsdenia tenacissima (Roxb.) Wight et Arn., is a broad-spectrum anti-tumor drug and has been widely used for the treatment of liver cancer in China. The aim of this study is to systematically investigate the efficacy and safety of Xiaoaiping injection for the treatment of liver cancer. METHODS AND ANALYSIS Seven electronic databases including the Cochrane Library, PubMed, Excerpt Medica Database, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, China Scientific Journal Database, and Wanfang Database will be systematically retrieved for data extraction from their inceptions to August 2020. Cochrane Risk of Bias tool will be used to assess the risk of bias of included studies. The RevMan 5.4 and Stata 16.0 software will be applied for statistical analyses. Statistical heterogeneity will be computed by I tests. Sensitivity analysis will be conducted to evaluate the stability of the results. The publication bias will be evaluated by funnel plots and Eggers test. The quality of evidence will be assessed by the GRADE system. RESULTS The results of our research will be published in a peer-reviewed journal. CONCLUSION The conclusion of this study will provide helpful evidence of the effect and safety of Xiaoaiping injection for the treatment of liver cancer in clinical practice. OSF REGISTRATION NUMBER 10.17605/OSF.IO/9BD6A.
Collapse
Affiliation(s)
- Daorui Hou
- Department of Traditional Chinese Medicine Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan Province
| | - Jian Xiong
- Department of Oncology, Guang’anmen Hospital, Beijing
| | - Ya Li
- Hangzhou Lin’an TCM Hospital, Hangzhou, Zhejiang Province
| | | | - Lu Xiong
- Department of Oncology, Guang’anmen Hospital, Beijing
| |
Collapse
|
28
|
Li Y, Chen L, Pu R, Zhou L, Zhou X, Li X. Effects of a Matrine- and Sophoridine-Containing Herbal Compound Medicine (AH-05) on Liver Cancer. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20935227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herbal medicine can present an alternative way of treating liver cancer. Here, we explored a matrine- and sophoridine-containing herbal compound medicine (AH-05) extracted from Adenophora capillaris, Sophora flavescens, Astragalus, and other plants. H22 and HepG2 cell models, as well as an H22 xenograft model, were established. Cell proliferation and apoptosis were measured in vitro, and tumor volume and weight were observed in vivo. The activation of AKT/mTOR and nuclear factor-κB (NF-κB) pathways in tumor cells and the polarization of CD4/CD8 T cells in the spleen were tested. To assess safety, hematological toxicity and pathology of the liver, kidney, spleen, and intestine were evaluated. AH-05 inhibited cell viability in a dose- and time-dependent manner. In vivo, tumor volume and weight were reduced, and the activation of NF-κB p50, NF-κB p65, AKT, p-AKT Ser473, and mTOR was suppressed. In addition, AH-05 promoted CD4+ T cell polarization in the spleen. With regard to safety, slight intestinal mucosa edema was observed, but no severe pathological or hematological toxicity was detected. AH-05 exhibited its therapeutic effects against liver cancer by regulating the AKT/mTOR and NF-κB signaling pathways, and the immune environment, by promoting CD4+ T cell polarization in the spleen. Thus, AH-05 represents a potential supplementary herbal compound medicine for liver cancer.
Collapse
Affiliation(s)
- Yanchu Li
- Oncology Department, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Chen
- Research Department, Chengdu Fuxing Hospital, China
| | - Rong Pu
- Oncology Department, Chengdu Fuxing Hospital, China
| | - Lu Zhou
- Research Department, Chengdu Fuxing Hospital, China
| | - Xufeng Zhou
- Research Department, Chengdu Fuxing Hospital, China
| | - Xianyong Li
- Oncology Department, Chengdu Fuxing Hospital, China
| |
Collapse
|
29
|
Dasari S, Bakthavachalam V, Chinnapaka S, Venkatesan R, Samy ALPA, Munirathinam G. Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism. Phytother Res 2020; 34:2366-2384. [PMID: 32364634 DOI: 10.1002/ptr.6687] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 12/19/2022]
Abstract
Apoptosis and autophagy are important processes that control cellular homeostasis and have been highlighted as promising targets for novel anticancer drugs. This study aims to investigate the inhibitory effects and mechanisms of Neferine (Nef), an alkaloid from the lotus seed embryos of Nelumbo nucifera (N. nucifera), as a dual inducer of apoptosis and autophagy through the reactive oxygen species (ROS) activation in cervical cancer cells. Nef and N. nucifera extract suppressed the cell viability of HeLa and SiHa cells in a dose-dependent manner. Importantly, Nef showed minimal toxicity to normal cells. Furthermore, Nef inhibited anchorage-independent growth, colony formation and migration ability of cervical cancer cells. Nef induces mitochondrial apoptosis by increasing pro-apoptotic protein bax, cytochrome-c, cleaved caspase-3 and caspase-9, poly-ADP ribose polymerase (PARP) cleavage, DNA damage (pH2 AX) while downregulating Bcl-2, procaspase-3 and procaspase-9, and TCTP. Of note, apoptotic effect by Nef was significantly attenuated in the presence of N-acetylcysteine (NAC), suggesting pro-oxidant activity of this compound. Nef also promoted autophagy induction through increasing beclin-1, atg-4, atg-5 and atg-12, LC-3 activation, and P 62/SQSTM1 as determined by western blot analysis. Collectively, these results demonstrate that Nef is a potent anticancer compound against cervical cancer cells through inducing apoptosis and autophagic pathway involving ROS.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Velavan Bakthavachalam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Somaiah Chinnapaka
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Reshmii Venkatesan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Angela L P A Samy
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| |
Collapse
|
30
|
Ding Y, Ding Y, Wang Y, Wang C, Gao M, Xu Y, Ma X, Wu J, Li L. Soluplus ®/TPGS mixed micelles for co-delivery of docetaxel and piperine for combination cancer therapy. Pharm Dev Technol 2019; 25:107-115. [PMID: 31603017 DOI: 10.1080/10837450.2019.1679834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, mixed micelles of Soluplus® and TPGS were developed for co-administering docetaxel (DTX) and piperine (PIP) for exerting the synergistic effect, which increased the cytotoxicity and improved the anti-cancer activity in HepG2 cell lines compared to free DTX. These in vitro (MTT assay, intracellular uptake of micelles) and in vivo (pharmacokinetic study, immunostaining, TUNEL analysis) studies exhibited the advantages of co-delivery of anticancer drugs with Soluplus®/TPGS by mixed micelles and furthermore established that co-delivery of DTX and PIP via the mixed micelles of Soluplus®/TPGS could be a promising strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yanfang Ding
- School of Basic Medicine, Dalian Medical University, Dalian, PR China
| | - Yingying Ding
- School of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Yutong Wang
- School of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Changyuan Wang
- School of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Meng Gao
- School of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Youwei Xu
- School of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Xiaodong Ma
- School of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Jianping Wu
- School of Pharmacy, Dalian Medical University, Dalian, PR China
| | - Lei Li
- School of Pharmacy, Dalian Medical University, Dalian, PR China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, PR China
| |
Collapse
|
31
|
Liu C, Yang S, Wang K, Bao X, Liu Y, Zhou S, Liu H, Qiu Y, Wang T, Yu H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed Pharmacother 2019; 120:109543. [PMID: 31655311 DOI: 10.1016/j.biopha.2019.109543] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become one of the major diseases that are threatening human health in the 21st century. Currently there are many approaches to treat liver cancer, but each has its own advantages and disadvantages. Among various methods of treating liver cancer, natural medicine treatment has achieved promising results because of their superiorities of high efficiency and availability, as well as low side effects. Alkaloids, as a class of natural ingredients derived from traditional Chinese medicines, have previously been shown to exert prominent anti-hepatocarcinogenic effects, through various mechanisms including inhibition of proliferation, metastasis and angiogenesis, changing cell morphology, promoting apoptosis and autophagy, triggering cell cycle arrest, regulating various cancer-related genes as well as pathways and so on. As a consequence, alkaloids suppress the development and progression of liver cancer. In this study, the mechanisms of representative alkaloids against hepatocarcinoma in each class are described systematically according to the structure classification, which mainly divides alkaloids into piperidine alkaloids, isoquinoline alkaloids, indole alkaloids, terpenoids alkaloids, steroidal alkaloids and other alkaloids. Besides using them alone, synergistic effects created together with other chemotherapy drugs and some special preparation methods also have been demonstrated. In this review, we have summarized the potential roles of several common alkaloids in the prevention and treatment of HCC, by revising the preclinical studies, highlighting the potential applications of alkaloids when they function as a therapeutic choice for HCC treatment, and integrating them into clinical practices.
Collapse
Affiliation(s)
- Caiyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|