1
|
Arena S, De Pascale S, Ciaravolo V, Monroy MM, Gouw JW, Stahl B, Bäuerl C, Collado MC, De Filippo C, Scaloni A, Troise AD. Protein-bound and free glycation compounds in human milk: A comparative study with minimally processed infant formula and pasteurized bovine milk. Food Chem 2025; 463:141265. [PMID: 39293376 DOI: 10.1016/j.foodchem.2024.141265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The role of the Maillard reaction and the accumulation of non-enzymatic glycation compounds in human milk have been scarcely considered. In this study, we investigated the proteins most susceptible to glycation, the identity of the corresponding modified residues and the quantitative relationship between protein-bound and free glycation compounds in raw human milk and, for comparison, in minimally processed infant formula and pasteurized bovine milk. In human milk, total protein-bound lysine modifications were up to 10% of the counterparts in infant formula, while Nε-carboxymethyllysine reached up to 27% of the concentration in the other two products. We demonstrated that the concentration of free pyrraline and methylglyoxal-hydroimidazolone were of the same order of magnitude in the three milk types. Our results delineate how the occurrence of some glycation compounds in human milk can be an unavoidable part of the breastfeeding and not an exclusive attribute of infant formulas and pasteurized bovine milk.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Sabrina De Pascale
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Valentina Ciaravolo
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Mariela Mejia Monroy
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Pisa, Italy; NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Joost W Gouw
- Danone Research & Innovation, 3584, CT, Utrecht, the Netherlands
| | - Bernd Stahl
- Danone Research & Innovation, 3584, CT, Utrecht, the Netherlands
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Pisa, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy.
| |
Collapse
|
2
|
Nogueira Silva Lima MT, Delayre-Orthez C, Howsam M, Jacolot P, Niquet-Léridon C, Okwieka A, Anton PM, Perot M, Barbezier N, Mathieu H, Ghinet A, Fradin C, Boulanger E, Jaisson S, Gillery P, Tessier FJ. Early- and life-long intake of dietary advanced glycation end-products (dAGEs) leads to transient tissue accumulation, increased gut sensitivity to inflammation, and slight changes in gut microbial diversity, without causing overt disease. Food Res Int 2024; 195:114967. [PMID: 39277266 DOI: 10.1016/j.foodres.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Dietary advanced glycation end-products (dAGEs) accumulate in organs and are thought to initiate chronic low-grade inflammation (CLGI), induce glycoxidative stress, drive immunosenescence, and influence gut microbiota. Part of the toxicological interest in glycation products such as dietary carboxymethyl-lysine (dCML) relies on their interaction with receptor for advanced glycation end-products (RAGE). It remains uncertain whether early or lifelong exposure to dAGEs contributes physiological changes and whether such effects are reversible or permanent. Our objective was to examine the physiological changes in Wild-Type (WT) and RAGE KO mice that were fed either a standard diet (STD - 20.8 ± 5.1 µg dCML/g) or a diet enriched with dCML (255.2 ± 44.5 µg dCML/g) from the perinatal period for up to 70 weeks. Additionally, an early age (6 weeks) diet switch (dCML→STD) was explored to determine whether potential harmful effects of dCML could be reversed. Previous dCML accumulation patterns described by our group were confirmed here, with significant RAGE-independent accumulation of dCML in kidneys, ileum and colon over the 70-week dietary intervention (respectively 3-fold, 17-fold and 20-fold increases compared with controls). Diet switching returned tissue dCML concentrations to their baseline levels. The dCML-enriched diet had no significative effect on endogenous glycation, inflammation, oxidative stress or senescence parameters. The relative expression of TNFα, VCAM1, IL6, and P16 genes were all upregulated (∼2-fold) in an age-dependent manner, most notably in the kidneys of WT animals. RAGE knockout seemed protective in this regard, diminishing age-related renal expression of TNFα. Significant increases in TNFα expression were detectable in the intestinal tract of the Switch group (∼2-fold), suggesting a higher sensitivity to inflammation perhaps related to the timing of the diet change. Minor fluctuations were observed at family level within the caecal microbiota, including Eggerthellaceae, Anaerovoracaceae and Marinifilaceae communities, indicating slight changes in composition. Despite chronic dCML consumption resulting in higher free CML levels in tissues, there were no substantial increases in parameters related to inflammageing. Age was a more important factor in inflammation status, notably in the kidneys, while the early-life dietary switch may have influenced intestinal susceptibility to inflammation. This study affirms the therapeutic potential of RAGE modulation and corroborates evidence for the disruptive effect of dietary changes occurring too early in life. Future research should prioritize the potential influence of dAGEs on disease aetiology and development, notably any exacerbating effects they may have upon existing health conditions.
Collapse
Affiliation(s)
- M T Nogueira Silva Lima
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - C Delayre-Orthez
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Howsam
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - P Jacolot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - C Niquet-Léridon
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Okwieka
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France
| | - P M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Perot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - N Barbezier
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - H Mathieu
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Ghinet
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
| | - C Fradin
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - E Boulanger
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - S Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - P Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - F J Tessier
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
3
|
Togawa N, Yamada R, Aoki Y, Suehiro S, Uchida N, Haseda A, Kagami-Katsuyama H, Honma N, Nishihira J. Improvement of skin condition and intestinal microbiota via Heyndrickxia coagulans SANK70258 intake: A placebo-controlled, randomized, double-blind, parallel-group comparative study. Nutrition 2024; 126:112533. [PMID: 39127017 DOI: 10.1016/j.nut.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE Heyndrickxia coagulans SANK70258, a representative probiotic, is known for alleviating inflammation caused by cedar pollen, improving the intestinal environment and bowel movements. A previous study on consuming H. coagulans SANK70258 together with galactooligosaccharides showed a trend toward improvement in skin scaliness scores and subjective assessments of skin roughness. However, the effect of H. coagulans SANK70258 alone on the skin remains unclear. Thus, we aimed to re-evaluate the effects of the intake of H. coagulans SANK70258 alone on skin conditions and the intestinal environment through a clinical trial. METHODS This placebo-controlled, double-blind clinical trial involved 80 Japanese women aged 30 to 65 with perceived skin roughness. Participants were divided into placebo and test groups. Over eight weeks, the test group consumed H. coagulans SANK70258, and its effects on skin condition and intestinal health were examined. RESULTS The probiotic group showed significant intestinal improvements, with reduced fecal phenol levels (p = 0.044) and pH (p = 0.022), as well as enhanced skin lightness (L* value) (p = 0.040) and liver function tests. Metabolic analyses revealed decreases in fecal Nε-(carboxymethyl)lysine and plasma hydroxyproline, suggesting skin health benefits. There were also significant improvements in skin scaliness (p = 0.015) and bowel movement frequency (p = 0.032) in subgroup analysis. CONCLUSIONS H. coagulans SANK70258 can improve skin health by improving the intestinal lining. This probiotic reduces the levels of intestinal putrefactive products and advanced glycation end-product levels in feces, suggesting that it may affect not only skin health but also systemic tissues such as the liver.
Collapse
Affiliation(s)
- Naoyuki Togawa
- Food & Healthcare Group, Wellness Technology Department, Mitsubishi Chemical Corporation, Yokohama-shi, Japan.
| | - Ryouichi Yamada
- Food & Healthcare Group, Wellness Technology Department, Mitsubishi Chemical Corporation, Yokohama-shi, Japan
| | | | | | | | - Akane Haseda
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Hiroyo Kagami-Katsuyama
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Naoyuki Honma
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| |
Collapse
|
4
|
Sharifi‐Zahabi E, Soltani S, Hajizadeh‐Sharafabad F, Abdollahzad H. Dietary advanced glycation end-products (dAGEs) are not associated with the risk of cancer incidence. A systematic review and meta-analysis of prospective cohort studies. Food Sci Nutr 2024; 12:7788-7797. [PMID: 39479627 PMCID: PMC11521677 DOI: 10.1002/fsn3.4396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 11/02/2024] Open
Abstract
A growing body of evidence indicates the association of dietary advanced glycation end-products (dAGEs) with the risk of cancer. This systematic review and meta-analysis aimed to assess the overall association between dAGEs and cancer incidence. An extensive search was carried out through online databases including PubMed, Scopus, and Web of Science up to June 2024. All reported HRs and their 95% CIs for risk of cancer were used to estimate log HRs and their standard errors (SEs). The overall risk estimate was obtained using a random effects model. Inter-study heterogeneity was determined using Cochrane's Q test and I-squared. Five prospective cohort studies with a total of 1,220,096 participants and 23,229 incident cancer cases (2193 pancreatic cancers, 11,443 breast cancers, 6162 colorectal cancers, and 3431 total cancers) were included in this meta-analysis. Compared with the lowest category of dAGEs, the pooled hazard ratio (HR) for overall cancers was 1.04 (95% CI: 0.94, 1.15; I 2 = 67.9%) for the highest category of dAGEs. Pooled estimates for different types of cancer showed no significant relationship between dAGEs and risk of breast cancer (HR: 1.119; 95% CI: 0.868, 1.444; I 2 = 77.6%; N = 2 studies), pancreatic cancer (HR: 1.242; 95% CI: 0.971, 1.588; I 2 = 0.0%; N = 2 studies), colon cancer (HR: 10.985; 95% CI: 0.887, 1.094; I 2 = 0.0%; N = 2 studies) and rectal cancer (HR: 0.940; 95% CI: 0.616, 1.433; I 2 = 57.7%; N = 2 studies). Dietary AGEs had no significant link with cancer risk. More well-designed prospective studies are required.
Collapse
Affiliation(s)
- Elham Sharifi‐Zahabi
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research InstituteShahid Sadoughi University of Medical SciencesYazdIran
| | | | - Hadi Abdollahzad
- Department of Nutrition, School of MedicineUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
5
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Hao S, Ye M, Li N, Lu Z, Quan W, Xu H, Li M. Comparison of intestinal absorption of soybean protein isolate-, glutenin- and peanut protein isolate-bound N ε-(carboxymethyl) lysine after in vitro gastrointestinal digestion. Food Res Int 2024; 192:114811. [PMID: 39147508 DOI: 10.1016/j.foodres.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Advanced glycation end products (AGEs), a heterogeneous compound existed in processed foods, are related to chronic diseases when they are accumulated excessively in human organs. Protein-bound Nε-(carboxymethyl) lysine (CML) as a typical AGE, is widely determined to evaluate AGEs level in foods and in vivo. This study investigated the intestinal absorption of three protein-bound CML originated from main food raw materials (soybean, wheat and peanut). After in vitro gastrointestinal digestion, the three protein-bound CML digests were ultrafiltered and divided into four fractions: less than 1 kDa, between 1 and 3 kDa, between 3 and 5 kDa, greater than 5 kDa. Caco-2 cell monolayer model was further used to evaluate the intestinal absorption of these components. Results showed that the absorption rates of soybean protein isolate (SPI)-, glutenin (Glu)-, peanut protein isolate (PPI)-bound CML were 30.18%, 31.57% and 29.5%, respectively. The absorption rates of components with MW less than 5 kDa accounted for 19.91% (SPI-bound CML), 22.59% (Glu-bound CML), 23.64% (PPI-bound CML), respectively, and these samples were absorbed by paracellular route, transcytosis route and active route via PepT-1. Taken together, these findings demonstrated that all three protein-bound CML digests with different MW can be absorbed in diverse absorption pathways by Caco-2 cell monolayer model. This research provided a theoretical basis for scientific evaluation of digestion and absorption of AGEs in food.
Collapse
Affiliation(s)
- Shuqi Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengyu Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Na Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zeyu Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Yuan X, Liu J, Nie C, Ma Q, Wang C, Liu H, Chen Z, Zhang M, Li J. Comparative Study of the Effects of Dietary-Free and -Bound Nε-Carboxymethyllysine on Gut Microbiota and Intestinal Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5014-5025. [PMID: 38388339 DOI: 10.1021/acs.jafc.3c09395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nε-carboxymethyllysine (CML) is produced by a nonenzymatic reaction between reducing sugar and ε-amino group of lysine in food and exists as free and bound forms with varying digestibility and absorption properties in vivo, causing diverse interactions with gut microbiota. The effects of different forms of dietary CML on the gut microbiota and intestinal barrier of mice were explored. Mice were exposed to free and bound CML for 12 weeks, and colonic morphology, gut microbiota, fecal short-chain fatty acids (SCFAs), intestinal barrier, and receptor for AGE (RAGE) signaling cascades were measured. The results indicated that dietary-free CML increased the relative abundance of SCFA-producing genera including Blautia, Faecalibacterium, Agathobacter, and Roseburia. In contrast, dietary-bound CML mainly increased the relative abundance of Akkermansia. Moreover, dietary-free and -bound CML promoted the gene and protein expression of zonula occludens-1 and claudin-1. Additionally, the intake of free and bound CML caused an upregulation of RAGE expression but did not activate downstream inflammatory pathways due to the upregulation of oligosaccharyl transferase complex protein 48 (AGER1) expression, indicating a delicate balance between protective and proinflammatory effects in vivo. Dietary-free and -bound CML could modulate the gut microbiota community and increase tight-junction expression, and dietary-free CML might exert a higher potential benefit on gut microbiota and SCFAs than dietary-bound CML.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Shi A, Ji X, Li W, Dong L, Wu Y, Zhang Y, Liu X, Zhang Y, Wang S. The Interaction between Human Microbes and Advanced Glycation End Products: The Role of Klebsiella X15 on Advanced Glycation End Products' Degradation. Nutrients 2024; 16:754. [PMID: 38474882 DOI: 10.3390/nu16050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Previous studies have shown that advanced glycation end products (AGEs) are implicated in the occurrence and progression of numerous diseases, with dietary AGEs being particularly associated with intestinal disorders. In this study, methylglyoxal-beta-lactoglobulin AGEs (MGO-β-LG AGEs) were utilized as the exclusive nitrogen source to investigate the interaction between protein-bound AGEs and human gut microbiota. The high-resolution mass spectrometry analysis of alterations in peptides containing AGEs within metabolites before and after fermentation elucidated the capacity of intestinal microorganisms to enzymatically hydrolyze long-chain AGEs into short-chain counterparts. The 16S rRNA sequencing revealed Klebsiella, Lactobacillus, Escherichia-Shigella, and other genera as dominant microbiota at different fermentation times. A total of 187 potential strains of AGE-metabolizing bacteria were isolated from the fermentation broth at various time points. Notably, one strain of Klebsiella exhibited the most robust growth capacity when AGEs served as the sole nitrogen source. Subsequently, proteomics was employed to compare the changes in protein levels of Klebsiella X15 following cultivation in unmodified proteins and proteins modified with AGEs. This analysis unveiled a remodeled amino acid and energy metabolism pathway in Klebsiella in response to AGEs, indicating that Klebsiella may possess a metabolic pathway specifically tailored to AGEs. This study found that fermenting AGEs in healthy human intestinal microbiota altered the bacterial microbiota structure, especially by increasing Klebsiella proliferation, which could be a key factor in AGEs' role in causing diseases, particularly intestinal inflammation.
Collapse
Affiliation(s)
- Aiying Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wanhua Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoxia Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Cho KH, Kim JE, Kang DJ, Dominguez-Horta MDC, Martinez-Donato G. Synergistic Anti-Inflammatory Activity of Apolipoprotein A-I and CIGB-258 in Reconstituted High-Density Lipoproteins (rHDL) against Acute Toxicity of Carboxymethyllysine in Zebrafish and Its Embryo. Pharmaceuticals (Basel) 2024; 17:165. [PMID: 38399381 PMCID: PMC10892825 DOI: 10.3390/ph17020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
CIGB-258 is a 3 kDa altered peptide ligand from heat shock protein (HSP) 60 that exhibits anti-inflammatory activity against the acute toxicity of carboxymethyllysine (CML) with antioxidant and anti-glycation activities via protection of high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I). It is necessary to test a synergistic interaction between apoA-I and CIGB-258 in reconstituted high-density lipoproteins (rHDL). Several rHDLs were synthesized containing palmitoyloleoyl phosphatidylcholine (POPC), cholesterol, apoA-I, and CIGB-258 at molar ratios of 95:5:1:0, 95:5:1:0.1, 95:5:1:0.5, and 95:5:1:1 for rHDL-(1:0), rHDL-(1:0.1), rHDL-(1:0.5), and rHDL-(1:1), respectively. As the CIGB-258 content in rHDL was increased, the particle size of rHDL was 1.4-times higher than rHDL-(1:0) to rHDL-(1:1), from 60 nm to 83 nm, respectively. As the CIGB-258 content was increased, the rHDL showed the most resistance to isothermal denaturation by a urea treatment, and rHDL-(1:1) exhibited the highest structural stability and the strongest antioxidant ability against LDL oxidation. Co-treatment of rHDL-(1:0), rHDL-(1:0.5), and rHDL-(1:1) resulted in up to 10%, 24%, and 34% inhibition of HDL glycation, inhibition of HDL glycation, which was caused by the CML, with protection of apoA-I. Microinjection of each rHDL into zebrafish embryos in the presence of CML showed that a higher CIGB-258 content in rHDL was associated with higher survivability with the least inflammation and apoptosis. Furthermore, an intraperitoneal injection of rHDL and CML showed that a higher CIGB-258 content in rHDL was also associated with higher survivability of zebrafish and faster recovery of swimming ability. The rHDL-(1:1) group showed the lowest triglyceride, AST, and ALT serum levels with the least production of interleukin-6, oxidized product, and neutrophil infiltration in hepatic tissue. In conclusion, CIGB-258 could bind well to phospholipids and cholesterol to stabilize apoA-I in the rHDL structure against denaturation stress and larger particle sizes. The rHDL containing CIGB-258 enhanced the in vitro antioxidant ability against LDL oxidation, the anti-glycation activity to protect HDL, and the in vivo anti-inflammatory activity against CML toxicity in zebrafish adults and embryos. Overall, incorporating apoA-I and CIGB-258 in rHDL resulted in a synergistic interaction to enhance the structural and functional correlations in a dose-dependent manner of CIGB-258.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ji-Eun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Dae-Jin Kang
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | | | - Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology, Ave 31, e/158 y 190, Playa, La Havana 10600, Cuba
| |
Collapse
|
10
|
Bajaj JS, O'Leary JG, Jakab SS, Fagan A, Sikaroodi M, Gillevet PM. Gut microbiome profiles to exclude the diagnosis of hepatic encephalopathy in patients with cirrhosis. Gut Microbes 2024; 16:2392880. [PMID: 39189586 PMCID: PMC11352695 DOI: 10.1080/19490976.2024.2392880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Patients with cirrhosis who have cognitive complaints are presumed to have hepatic encephalopathy (HE), which leads to unwarranted medications while ignoring the underlying disease process causing these complaints. Since neuropsychological testing, the current gold standard for HE diagnosis, is not readily available, an orderable test is needed. We aimed to develop and validate a rapid gut microbiota test to exclude HE and determine stakeholder input on this approach. Stool was collected from two cohorts: a two-center training cohort (n = 305, on/not on HE-related therapy) and a multicenter validation cohort (n = 30, on HE treatment). Stool microbiota was analyzed rapidly using nanopore analysis. Stakeholder (patients and clinicians) needs assessment was evaluated using semi-quantitative questionnaires. In the training cohort, machine learning using neural network identified a 20-species signature that differentiated HE vs no-HE with 84% specificity compared to the gold standard neuropsychological testing. This high specificity persisted regardless of whether patients were on HE-related therapy or not. In the validation cohort, application of this profile led to reevaluation of the HE diagnosis and treatment in > 40% of the patients. This approach was acceptable to patients (Veterans in the validation cohort) and clinician (n = 40 nationwide) stakeholders. We conclude that a machine learning stool signature based on 20 microbial species developed in a training set and validated in a separate multicenter prospective cohort differentiated those with vs. without HE, identified patients misdiagnosed with HE, and was acceptable to patients and clinician stakeholders.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Department of Medicine, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Jacqueline G O'Leary
- Department of Medicine, North Texas VA Medical Center and UT Southwestern Medical Center, Dallas, TX, USA
| | - Sofia S Jakab
- Department of Medicine, West Haven VA Medical Center and Yale University School of Medicine, West Haven, CT, USA
| | - Andrew Fagan
- Department of Medicine, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | | | | |
Collapse
|
11
|
Pedreanez A, Robalino J, Tene D, Salazar P. Advanced glycation end products of dietary origin and their association with inflammation in diabetes - A minireview. Endocr Regul 2024; 58:57-67. [PMID: 38563294 DOI: 10.2478/enr-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse group of compounds that are formed as a result of the non-enzymatic reaction between a reducing sugar such as glucose and the free NH2 groups of an amino acid in a protein or other biomolecule. The chemical reaction, by which these products are generated, is known as the Maillard reaction and occurs as a part of the body's normal metabolism. Such a reaction is enhanced during diabetes due to hyperglycemia, but it can also occur during the preparation, processing, and preservation of certain foods. Therefore, AGEs can also be obtained from the diet (d-AGE) and contribute to an increase of the total serum pool of these compounds. They have been implicated in a wide variety of pathological processes, mainly because of their ability to induce inflammatory responses and oxidative stress increase. They are extensively accumulated as a part of the normal aging, especially in tissues rich in long half-life proteins, which can compromise the physiology of these tissues. d-AGEs are abundant in diets rich in processed fats and sugars. This review is addressed to the current knowledge on these products and their impact on the immunomodulation of various mechanisms that may contribute to exacerbation of the diabetes pathophysiology.
Collapse
Affiliation(s)
- Adriana Pedreanez
- Catedra de Inmunologia, Escuela de Bioanalisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | | | - Diego Tene
- Universidad Nacional del Chimborazo, Facultad de Ciencias de la Salud, Riobamba, Ecuador
| | - Patricio Salazar
- Departamento de Nutricion Clinica, Hospital General Santo Domingo, Ecuador
| |
Collapse
|
12
|
Lassak J, Aveta EF, Vougioukas P, Hellwig M. Non-canonical food sources: bacterial metabolism of Maillard reaction products and its regulation. Curr Opin Microbiol 2023; 76:102393. [PMID: 37844449 DOI: 10.1016/j.mib.2023.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Proteins are an important part of our regular diet. During food processing, their amino acid composition can be chemically altered by the reaction of free amino groups with sugars - a process termed glycation. The resulting Maillard reaction products (MRPs) have low bioavailability and thus predominantly end up in the colon where they encounter our gut microbiota. In the following review, we summarize bacterial strategies to efficiently metabolize these non-canonical amino acids. A particular focus will be on the complex regulatory mechanisms that allow a tightly controlled expression of metabolic genes to successfully occupy the ecological niches that result from the chemical diversity of MRPs.
Collapse
Affiliation(s)
- Jürgen Lassak
- Fakultät für Biologie, Lehrstuhl Mikrobiologie/AG Mikrobielle Biochemie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany.
| | - Erica F Aveta
- Fakultät für Biologie, Lehrstuhl Mikrobiologie/AG Mikrobielle Biochemie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Patroklos Vougioukas
- Fakultät Chemie und Lebensmittelchemie, Professur für Spezielle Lebensmittelchemie, Technische Universität Dresden, Bergstraße 66, D-01062 Dresden, Germany
| | - Michael Hellwig
- Fakultät Chemie und Lebensmittelchemie, Professur für Spezielle Lebensmittelchemie, Technische Universität Dresden, Bergstraße 66, D-01062 Dresden, Germany.
| |
Collapse
|
13
|
Manzocchi E, Ferlay A, Mendowski S, Chesneau G, Chapoutot P, Lemosquet S, Cantalapiedra-Hijar G, Nozière P. Extrusion of lupines with or without addition of reducing sugars: Effects on the formation of Maillard reaction compounds, partition of nitrogen and Nε-carboxymethyl-lysine, and performance of dairy cows. J Dairy Sci 2023; 106:7675-7697. [PMID: 37641332 DOI: 10.3168/jds.2022-22902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/12/2023] [Indexed: 08/31/2023]
Abstract
The extrusion of leguminous seeds induces the formation of Maillard reaction compounds (MRC) as a product of protein advanced glycation and oxidation, which lowers protein degradability in the rumen. However, the quantitative relationship between the parameters of pretreatment (i.e., addition of reducing sugars) and extrusion, and the formation of MRC has not been established yet. Moreover, the fate of the main stable MRC, Nε-carboxymethyl-lysine (CML), in the excretory routes has never been investigated in ruminants. We aimed to test the effects of the temperature of extrusion of white lupines with or without addition of reducing sugars on the formation of MRC, crude protein (CP) degradability in the rumen, N use efficiency for milk production (milk N/N intake), and performance of dairy cows. Two experiments with a replicated 4 × 4 Latin square design were conducted simultaneously with 16 (3 rumen-cannulated) multiparous Holstein cows to measure indicators of ruminal CP degradability (ruminal NH3 concentration, branched-chain volatile fatty acids), metabolizable protein supply (plasma essential AA concentration), N use efficiency (N isotopic discrimination), and dairy performance. In parallel, apparent total-tract digestibility of dry matter, organic matter, neutral detergent fibers, N, total Lys and CML, and partition of N and CML were measured with 4 cows in both experiments. The diets consisted on a DM basis of 20% raw or extruded lupines and 80% basal mixed ration of corn silage, silage and hay from permanent grasslands, pelleted concentrate, and a vitaminized mineral mix. Expected output temperatures of lupine extrusion were 115°C, 135°C, and 150°C, without and with the addition of reducing sugars before extrusion. The extrusion numerically reduced the in vitro ruminal CP degradability of the lupines, and consequently increased the predicted supply of CP to the small intestine. Nitrogen balance and urinary N excretion did not differ among dietary treatments in either experiment. Milk yield and N use efficiency for milk production increased with extrusion of lupines at 150°C without addition of reducing sugars compared with raw lupines. Nitrogen isotopic discrimination between dietary and animal proteins (the difference between δ15N in plasma and δ15N in the diet) were lower with lupines extruded at 150°C without and with addition of reducing sugars. Regardless of sugar addition, milk true protein yield was not affected, but milk urea concentration and fat:protein ratio were lower with lupines extruded at 150°C than with raw lupines. In the CML partition study, we observed that on average 26% of the apparently digested CML was excreted in urine, and a much lower proportion (0.63% on average) of the apparently digested CML was secreted in milk, with no differences among dietary treatments. In conclusion, we showed that the extrusion of white lupines without or with addition of reducing sugars numerically reduced enzymatic CP degradability, with limited effects on N partition, but increased milk yield and N use efficiency at the highest temperature of extrusion without addition of reducing sugars.
Collapse
Affiliation(s)
- E Manzocchi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France; Valorex, La Messayais, 35210 Combourtillé, France
| | - A Ferlay
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - S Mendowski
- Valorex, La Messayais, 35210 Combourtillé, France
| | - G Chesneau
- Valorex, La Messayais, 35210 Combourtillé, France
| | - P Chapoutot
- Université Paris Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 75005 Paris, France
| | - S Lemosquet
- UMR Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage, INRAE, Institut Agro, 35590 Saint Gilles, France
| | - G Cantalapiedra-Hijar
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - P Nozière
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
14
|
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 2023; 24:839-870. [PMID: 37119391 PMCID: PMC10148591 DOI: 10.1007/s11154-023-09798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 05/01/2023]
Abstract
Obesity has reached epidemic proportion worldwide and in all ages. Available evidence points to a multifactorial pathogenesis involving gene predisposition and environmental factors. Gut microbiota plays a critical role as a major interface between external factors, i.e., diet, lifestyle, toxic chemicals, and internal mechanisms regulating energy and metabolic homeostasis, fat production and storage. A shift in microbiota composition is linked with overweight and obesity, with pathogenic mechanisms involving bacterial products and metabolites (mainly endocannabinoid-related mediators, short-chain fatty acids, bile acids, catabolites of tryptophan, lipopolysaccharides) and subsequent alterations in gut barrier, altered metabolic homeostasis, insulin resistance and chronic, low-grade inflammation. Although animal studies point to the links between an "obesogenic" microbiota and the development of different obesity phenotypes, the translational value of these results in humans is still limited by the heterogeneity among studies, the high variation of gut microbiota over time and the lack of robust longitudinal studies adequately considering inter-individual confounders. Nevertheless, available evidence underscores the existence of several genera predisposing to obesity or, conversely, to lean and metabolically health phenotype (e.g., Akkermansia muciniphila, species from genera Faecalibacterium, Alistipes, Roseburia). Further longitudinal studies using metagenomics, transcriptomics, proteomics, and metabolomics with exact characterization of confounders are needed in this field. Results must confirm that distinct genera and specific microbial-derived metabolites represent effective and precision interventions against overweight and obesity in the long-term.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
15
|
Raupbach J, Müller SK, Schnell V, Friedrich S, Hellwig A, Grune T, Henle T. The Effect of Free and Protein-Bound Maillard Reaction Products N-ε-Carboxymethyllysine, N-ε-Fructosyllysine, and Pyrraline on Nrf2 and NFκB in HCT 116 Cells. Mol Nutr Food Res 2023; 67:e2300137. [PMID: 37465844 DOI: 10.1002/mnfr.202300137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Indexed: 07/20/2023]
Abstract
SCOPE Maillard reaction products (MRPs) are believed to interact with the receptor for advanced glycation endproducts (RAGE) and lead to a pro-inflammatory cellular response. The structural basis for this interaction is scarcely understood. This study investigates the effect of individual lysine modifications in free form or bound to casein on human colon cancer cells. METHODS AND RESULTS Selectively glycated casein containing either protein-bound N-ε-carboxymethyllysine (CML), N-ε-fructosyllysine (FL), or pyrraline is prepared and up to 94%, 97%, and 61% of lysine modification could be attributed to CML, FL, or pyrraline, respectively. HCT 116 cells are treated with free CML, pyrraline, FL, or modified casein for 24 h. Native casein is used as control. Intracellular MRP content is analyzed by UPLC-MS/MS. Microscopic analysis of the transcription factors shows no activation of NFκB by free or protein-bound FL or CML, whereas casein containing protein-bound pyrraline activates Nrf2. RAGE expression is not influenced by free or casein-bound MRPs. Activation of Nrf2 by pyrraline-modified casein is confirmed by analyzing Nrf2 target proteins NAD(P)H dehydrogenase (quinone 1) (NQO1) and heme oxygenase-1 (HO-1). CONCLUSION Studies on the biological effects of glycated proteins require an individual consideration of defined structures. General statements on the effect of "AGEs" in biological systems are scientifically unsound.
Collapse
Affiliation(s)
- Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Stephan K Müller
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| | - Vanessa Schnell
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Suse Friedrich
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Anne Hellwig
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
16
|
Toda M, Hellwig M, Hattori H, Henle T, Vieths S. Advanced glycation end products and allergy. ALLERGO JOURNAL INTERNATIONAL 2023; 32:296-301. [DOI: 10.1007/s40629-023-00259-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 01/03/2025]
|
17
|
Machado F, Coimbra MA, Castillo MDD, Coreta-Gomes F. Mechanisms of action of coffee bioactive compounds - a key to unveil the coffee paradox. Crit Rev Food Sci Nutr 2023; 64:10164-10186. [PMID: 37338423 DOI: 10.1080/10408398.2023.2221734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The knowledge of the relationship between the chemical structure of food components with their mechanisms of action is crucial for the understanding of diet health benefits. This review relates the chemical variability present in coffee beverages with the mechanisms involved in key physiological events, supporting coffee as a polyvalent functional food. Coffee intake has been related with several health-promoting properties such as neuroprotective (caffeine, chlorogenic acids and melanoidins), anti-inflammatory (caffeine, chlorogenic acids, melanoidins, diterpenes), microbiota modulation (polysaccharides, melanoidins, chlorogenic acids), immunostimulatory (polysaccharides), antidiabetic (trigonelline, chlorogenic acids), antihypertensive (chlorogenic acids) and hypocholesterolemic (polysaccharides, chlorogenic acids, lipids). Nevertheless, caffeine and diterpenes are coffee components with ambivalent effects on health. Additionally, a large range of potentially harmful compounds, including acrylamide, hydroxymethylfurfural, furan, and advanced glycation end products, are formed during the roasting of coffee and are present in the beverages. However, coffee beverages are part of the daily human dietary healthy habits, configuring a coffee paradox.
Collapse
Affiliation(s)
- Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | | | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Xie Y, van der Fels-Klerx HJ, van Leeuwen SPJ, Fogliano V. Occurrence of dietary advanced glycation end-products in commercial cow, goat and soy protein based infant formulas. Food Chem 2023; 411:135424. [PMID: 36652883 DOI: 10.1016/j.foodchem.2023.135424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Thermal treatment is a key step during infant formula (IF) processing which causes protein glycation and formation of dietary advanced glycation end-products (dAGEs). This study aimed to evaluate the glycation degree in IF in relation to the ingredients of the formula. dAGEs concentrations have been determined by UPLC-MS/MS in a range of commercial cow-based, goat-based, and soy-based IF. Results indicated that the protein source, protein composition, and amount and type of carbohydrates determines the level of protein glycation in IFs. The investigated soy-based formula had significant higher concentrations of arginine and arginine-derived dAGEs than cow-based and goat-based formulas. IF containing hydrolyzed proteins had higher dAGEs concentrations than those containing intact proteins. Lactose-containing formula was more prone to glycation than those containing sucrose and maltodextrin. Data showed glycation degree in IF cannot be estimated by a single compound, but the complete picture of the dAGEs should be considered.
Collapse
Affiliation(s)
- Yajing Xie
- Food Quality and Design Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | | | | | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
19
|
Chen J, Radjabzadeh D, Medina-Gomez C, Voortman T, van Meurs JBJ, Ikram MA, Uitterlinden AG, Kraaij R, Zillikens MC. Advanced Glycation End Products (AGEs) in Diet and Skin in Relation to Stool Microbiota: The Rotterdam Study. Nutrients 2023; 15:nu15112567. [PMID: 37299529 DOI: 10.3390/nu15112567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are involved in age-related diseases, but the interaction of gut microbiota with dietary AGEs (dAGEs) and tissue AGEs in the population is unknown. OBJECTIVE Our objective was to investigate the association of dietary and tissue AGEs with gut microbiota in the population-based Rotterdam Study, using skin AGEs as a marker for tissue accumulation and stool microbiota as a surrogate for gut microbiota. DESIGN Dietary intake of three AGEs (dAGEs), namely carboxymethyl-lysine (CML), N-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1), and carboxyethyl-lysine (CEL), was quantified at baseline from food frequency questionnaires. Following up after a median of 5.7 years, skin AGEs were measured using skin autofluorescence (SAF), and stool microbiota samples were sequenced (16S rRNA) to measure microbial composition (including alpha-diversity, beta-dissimilarity, and taxonomic abundances) as well as predict microbial metabolic pathways. Associations of both dAGEs and SAF with microbial measures were investigated using multiple linear regression models in 1052 and 718 participants, respectively. RESULTS dAGEs and SAF were not associated with either the alpha-diversity or beta-dissimilarity of the stool microbiota. After multiple-testing correction, dAGEs were not associated with any of the 188 genera tested, but were nominally inversely associated with the abundance of Barnesiella, Colidextribacter, Oscillospiraceae UCG-005, and Terrisporobacter, in addition to being positively associated with Coprococcus, Dorea, and Blautia. A higher abundance of Lactobacillus was associated with a higher SAF, along with several nominally significantly associated genera. dAGEs and SAF were nominally associated with several microbial pathways, but none were statistically significant after multiple-testing correction. CONCLUSIONS Our findings did not solidify a link between habitual dAGEs, skin AGEs, and overall stool microbiota composition. Nominally significant associations with several genera and functional pathways suggested a potential interaction between gut microbiota and AGE metabolism, but validation is required. Future studies are warranted, to investigate whether gut microbiota modifies the potential impact of dAGEs on health.
Collapse
Affiliation(s)
- Jinluan Chen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
20
|
Dong L, Li Y, Chen Q, Liu Y, Qiao Z, Sang S, Zhang J, Zhan S, Wu Z, Liu L. Research advances of advanced glycation end products in milk and dairy products: Formation, determination, control strategy and immunometabolism via gut microbiota. Food Chem 2023; 417:135861. [PMID: 36906946 DOI: 10.1016/j.foodchem.2023.135861] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhaohui Qiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jingshun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Shengnan Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
21
|
Tagliamonte S, Troise AD, Ferracane R, Vitaglione P. The Maillard reaction end product Nε-carboxymethyllysine is metabolized in humans and the urinary levels of the microbial metabolites are associated with individual diet. Food Funct 2023; 14:2074-2081. [PMID: 36728638 DOI: 10.1039/d2fo03480h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During food processing most of the thermally-driven chemical reactions start off on the side chain amino group of lysine generating structurally modified compounds with specific metabolic routes. Upon human digestion, dietary Nε-carboxymethyllysine (CML) may enter the colon and undergo gut microbial metabolism. However, little is known about the in vivo metabolic fate of dietary CML and its relationship with the habitual diet. We explored by hydrophilic interaction liquid chromatography tandem mass spectrometry the metabolites of CML in urine samples collected from 46 healthy subjects and studied the associations with diet. Mean concentration of N-carboxymethylcadaverine (CM-CAD), N-carboxymethylaminopentanoic acid (CM-APA), N-carboxymethylaminopentanol (CM-APO), and the N-carboxymethyl-Δ1-piperideinium ion were 0.49 nmol mg-1 creatinine, 1.45 nmol mg-1 creatinine, 4.43 nmol mg-1 creatinine and 4.79 nmol mg-1 creatinine, respectively. The urinary concentration of CML, its metabolites and lysine were positively correlated. Dietary intake of meat products negatively correlated with urinary excretion of CML and CM-APA; conversely dietary plant-to-animal proteins ratio positively correlated with urinary CML and its metabolites. The identification and quantification of CML metabolites in urine and the associations with diet corroborate the hypothesis that CML, an advanced glycation end-product, can undergo further biochemical transformations in vivo. The gut microbiome may have a major role in human metabolism of dietary CML.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| |
Collapse
|
22
|
Wang Y, Jian C, Salonen A, Dong M, Yang Z. Designing healthier bread through the lens of the gut microbiota. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Sun J, Akıllıoğlu HG, Aasmul‐Olsen K, Ye Y, Lund P, Zhao X, Brunse A, Nielsen CF, Chatterton DEW, Sangild PT, Lund MN, Bering SB. Ultra-High Temperature Treatment and Storage of Infant Formula Induces Dietary Protein Modifications, Gut Dysfunction, and Inflammation in Preterm Pigs. Mol Nutr Food Res 2022; 66:e2200132. [PMID: 36052940 PMCID: PMC9786312 DOI: 10.1002/mnfr.202200132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Ready-to-feed liquid infant formula is increasingly used for preterm infants when human milk is unavailable. These formulas are sterilized by ultra-high temperature treatment, but heating and storage may reduce bioactivity and increase formation of Maillard reaction products with potential negative consequences for immature newborns. METHODS AND RESULTS Using preterm pigs as a model for sensitive newborn infants, the study tests the intestinal responses of feeding experimental liquid formula within 5 days. A pasteurized formula (PAST) with the same nutrient composition but less protein modifications serves as control to ultra-high temperature-treated formula without (UHT) and with prolonged storage (SUHT). Relative to PAST, UHT contains lower levels of lactoferrin and IgG. Additional storage (40 °C, 60 days, SUHT) reduces antimicrobial capacity and increases non-reducible protein aggregates and Maillard reaction products (up to 13-fold). Pigs fed SUHT have more diarrhea and show signs of intestinal inflammation (necrotizing enterocolitis) compared with pigs fed PAST and UHT. These clinical effects are accompanied by accumulation of Maillard reaction products, protein cross-links, and inflammatory responses in the gut. CONCLUSION The results demonstrate that feeding UHT infant formulas, particularly after prolonged storage, adversely affects gut maturation and function in preterm pigs used as a model of preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | - Halise Gül Akıllıoğlu
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Karoline Aasmul‐Olsen
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | - Yuhui Ye
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Pernille Lund
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Xiao Zhao
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Anders Brunse
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | | | | | - Per Torp Sangild
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
- Department of Pediatrics and Adolescent MedicineRigshospitaletBlegdamsvej 9Copenhagen Ø2100Denmark
- Hans Christian Andersen Children's HospitalJ. B. Winsløws Vej 4Odense C5000Denmark
| | - Marianne N. Lund
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
- Department of Biomedical SciencesUniversity of CopenhagenBlegdamsvej 3BCopenhagen N2200Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| |
Collapse
|
24
|
van Dongen KCW, Belzer C, Bakker W, Rietjens IMCM, Beekmann K. Inter- and Intraindividual Differences in the Capacity of the Human Intestinal Microbiome in Fecal Slurries to Metabolize Fructoselysine and Carboxymethyllysine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11759-11768. [PMID: 36069406 PMCID: PMC9501902 DOI: 10.1021/acs.jafc.2c05756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The advanced glycation endproduct carboxymethyllysine and its precursor fructoselysine are present in heated, processed food products and are considered potentially hazardous for human health. Upon dietary exposure, they can be degraded by human colonic gut microbiota, reducing internal exposure. Pronounced interindividual and intraindividual differences in these metabolic degradations were found in anaerobic incubations with human fecal slurries in vitro. The average capacity to degrade fructoselysine was 27.7-fold higher than that for carboxymethyllysine, and degradation capacities for these two compounds were not correlated (R2 = 0.08). Analysis of the bacterial composition revealed that interindividual differences outweighed intraindividual differences, and multiple genera were correlated with the individuals' carboxymethyllysine and fructoselysine degradation capacities (e.g., Akkermansia, Alistipes).
Collapse
Affiliation(s)
- Katja C. W. van Dongen
- Division
of Toxicology, Wageningen University and
Research, P.O. Box 8000, Wageningen 6700 EA, The
Netherlands
| | - Clara Belzer
- Laboratory
of Microbiology, Wageningen University and
Research, P.O. Box 8033, Wageningen 6700 EH, The
Netherlands
| | - Wouter Bakker
- Division
of Toxicology, Wageningen University and
Research, P.O. Box 8000, Wageningen 6700 EA, The
Netherlands
| | - Ivonne M. C. M. Rietjens
- Division
of Toxicology, Wageningen University and
Research, P.O. Box 8000, Wageningen 6700 EA, The
Netherlands
| | - Karsten Beekmann
- Wageningen
Food Safety Research (WFSR), Part of Wageningen University and Research, P.O. Box 230, Wageningen 700 AE, The Netherlands
| |
Collapse
|
25
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
26
|
Mehler J, Behringer KI, Rollins RE, Pisarz F, Klingl A, Henle T, Heermann R, Becker NS, Hellwig M, Lassak J. Identification of Pseudomonas asiatica subsp. bavariensis str. JM1 as the first N ε -carboxy(m)ethyllysine degrading soil bacterium. Environ Microbiol 2022; 24:3229-3241. [PMID: 35621031 DOI: 10.1111/1462-2920.16079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
Abstract
Thermal food processing leads to the formation of advanced glycation end products (AGE) such as Nε -carboxymethyllysine (CML). Accordingly, these non-canonical amino acids are an important part of the human diet. However, CML is only partially decomposed by our gut microbiota and up to 30% are excreted via feces and, hence, enter the environment. In frame of this study, we isolated a soil bacterium that can grow on CML as well as its higher homologue Nε -carboxyethyllysine (CEL) as sole source of carbon. Bioinformatic analyses upon whole genome sequencing revealed a subspecies of Pseudomonas asiatica, which we named 'bavariensis'. We performed a metabolite screening of P. asiatica subsp. bavariensis str. JM1 grown either on CML or CEL and identified N-carboxymethylaminopentanoic acid (CM-APA), and N-carboxyethylaminopentanoic acid (CE-APA), respectively. We further detected α-aminoadipate as intermediate in the metabolism of CML. These reaction products suggest two routes of degradation: While CEL seems to be predominantly processed from the α-C-atom, decomposition of CML can also be initiated with cleavage of the carboxymethyl group and under the release of acetate. Thus, our study provides novel insights into the metabolism of two important AGEs and how these are processed by environmental bacteria. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Judith Mehler
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| | - Kim Ina Behringer
- Technische Universität Braunschweig - Institute of Food Chemistry, Braunschweig, Germany
| | - Robert Ethan Rollins
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| | - Friederike Pisarz
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Klingl
- Division of Botany, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Ralf Heermann
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Braunschweig, Germany.,Chair of Special Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Jürgen Lassak
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| |
Collapse
|
27
|
A 4-Week Diet Low or High in Advanced Glycation Endproducts Has Limited Impact on Gut Microbial Composition in Abdominally Obese Individuals: The deAGEing Trial. Int J Mol Sci 2022; 23:ijms23105328. [PMID: 35628138 PMCID: PMC9141283 DOI: 10.3390/ijms23105328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing. Despite a marked percentage difference in AGE intake, we observed no differences in microbial richness and the general community structure. Only the Anaerostipes spp. had a relative abundance >0.5% and showed differential abundance (0.5 versus 1.11%; p = 0.028, after low- or high-AGE diet, respectively). While the habitual intake of dicarbonyls was not associated with microbial richness or a general community structure, the intake of 3-deoxyglucosone was especially associated with an abundance of several genera. Thus, a 4-week diet low or high in AGEs has a limited impact on the gut microbial composition of abdominally obese humans, paralleling its previously observed limited biological consequences. The effects of dietary dicarbonyls on the gut microbiota composition deserve further investigation.
Collapse
|
28
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
29
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
30
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
31
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
32
|
Golchinfar Z, Farshi P, Mahmoudzadeh M, Mohammadi M, Tabibiazar M, Smith JS. Last Five Years Development In Food Safety Perception of n-Carboxymethyl Lysine. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Golchinfar
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Parastou Farshi
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - J. Scott Smith
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
33
|
Hellwig M, Nitschke J, Henle T. Glycation of N-ε-carboxymethyllysine. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe Maillard reaction is traditionally subdivided into three stages that start consecutively and run in parallel. Here, we show that N-ε-carboxymethyllysine (CML), a compound formed in the late stage of the reaction, can undergo a second glycation event at its secondary amino group leading to a new class of Amadori rearrangement products. When N-α-hippuryl-CML was incubated in the presence of reducing sugars such as glucose, galactose, ribose, xylose, maltose, or lactose in solution for 1 h at 75 °C, the compound was degraded by 6–21%, and N-ε-carboxymethyl-N-ε-deoxyketosyl lysine derivatives were formed. Under the same conditions, lysine was 5–10 times more reactive than CML. N-α-hippuryl-N-ε-carboxymethyl-N-ε-(1-deoxyfructosyl)-l-lysine (hippuryl-CMFL) and N-ε-carboxymethyl-N-ε-(1-deoxyfructosyl)-l-lysine (CMFL) were synthesized, isolated and characterized by MS/MS and NMR experiments. Depending on the reaction conditions, up to 21% of CMFL can be converted to the furosine analogue N-ε-carboxymethyl-N-ε-furoylmethyl-l-lysine (CM-Fur) during standard acid protein hydrolysis with hydrochloric acid. Incubation of bovine serum albumin (BSA) with glucose for up to 9 weeks at 37 °C revealed the formation of CMFL in the protein as assessed by HPLC–MS/MS in the MRM mode. Under these conditions, ca. 13% of lysine residues had been converted to fructosyllysine, and 0.03% had been converted to CMFL. The detection of glycation products of glycated amino acids (heterogeneous multiple glycation) reveals a novel pathway in the Maillard reaction.
Collapse
|
34
|
Marousez L, Sprenger N, De Lamballerie M, Jaramillo-Ortiz S, Tran L, Micours E, Gottrand F, Howsam M, Tessier FJ, Ley D, Lesage J. High hydrostatic pressure processing of human milk preserves milk oligosaccharides and avoids formation of Maillard reaction products. Clin Nutr 2021; 41:1-8. [PMID: 34861623 DOI: 10.1016/j.clnu.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the treatment of human milk. HHP preserves numerous milk bioactive components that are degraded by HoP, but no data are available for milk oligosaccharides (HMOs) or the formation of Maillard reaction products, which may be deleterious for preterm newborns. METHODS We evaluated the impact of HHP processing of human milk on 22 HMOs measured by liquid chromatography with fluorescence detection and on furosine, lactuloselysine, carboxymethyllysine (CML) and carboxyethyllysine (CEL) measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), four established indicators of the Maillard reaction. Human raw milk was sterilized by HoP (62.5 °C for 30 min) or processed by HHP (350 MPa at 38 °C). RESULTS Neither HHP nor HoP processing affected the concentration of HMOs, but HoP significantly increased furosine, lactuloselysine, CML and CEL levels in milk. CONCLUSIONS Our findings demonstrate that HPP treatment preserves HMOs and avoids formation of Maillard reaction products. Our study confirms and extends previous findings that HHP treatment of human milk provides safe milk, with fewer detrimental effects on the biochemically active milk components than HoP.
Collapse
Affiliation(s)
- Lucie Marousez
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | | - Sarahi Jaramillo-Ortiz
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Léa Tran
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Edwina Micours
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France; Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000 Lille, France
| | - Michael Howsam
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Frederic J Tessier
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France; Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000 Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
35
|
Yuan X, Nie C, Liu H, Ma Q, Peng B, Zhang M, Chen Z, Li J. Comparison of metabolic fate, target organs, and microbiota interactions of free and bound dietary advanced glycation end products. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34698575 DOI: 10.1080/10408398.2021.1991265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Increased intake of Western diets and ultra-processed foods is accompanied by increased intake of advanced glycation end products (AGEs). AGEs can be generated exogenously in the thermal processing of food and endogenously in the human body, which associated with various chronic diseases. In food, AGEs can be divided into free and bound forms, which differ in their bioavailability, digestion, absorption, gut microbial interactions and untargeted metabolites. We summarized the measurements and contents of free and bound AGE in foods. Moreover, the ingestion, digestion, absorption, excretion, gut microbiota interactions, and metabolites and metabolic pathways between free and bound AGEs based on animal and human studies were compared. Bound AGEs were predominant in most of the selected foods, while beer and soy sauce were rich in free AGEs. Only 10%-30% of AGEs were absorbed into the systemic circulation when orally administered. The excretion of ingested free and bound AGEs was approximately 90% and 60%, respectively. Dietary free CML has a detrimental effect on gut microbiota composition, while bound AGEs have both detrimental and beneficial impacts. Free and bound dietary AGEs changed amino acid metabolism, energy metabolism and carbohydrate metabolism. And besides, bound dietary AGEs altered vitamin metabolism, and glycerolipid metabolism.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bo Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
36
|
Aglago EK, Mayén AL, Knaze V, Freisling H, Fedirko V, Hughes DJ, Jiao L, Eriksen AK, Tjønneland A, Boutron-Ruault MC, Rothwell JA, Severi G, Kaaks R, Katzke V, Schulze MB, Birukov A, Palli D, Sieri S, Santucci de Magistris M, Tumino R, Ricceri F, Bueno-de-Mesquita B, Derksen JWG, Skeie G, Gram IT, Sandanger T, Quirós JR, Luján-Barroso L, Sánchez MJ, Amiano P, Chirlaque MD, Gurrea AB, Johansson I, Manjer J, Perez-Cornago A, Weiderpass E, Gunter MJ, Heath AK, Schalkwijk CG, Jenab M. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021; 13:3132. [PMID: 34579010 PMCID: PMC8470201 DOI: 10.3390/nu13093132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Dietary advanced glycation end-products (dAGEs) have been hypothesized to be associated with a higher risk of colorectal cancer (CRC) by promoting inflammation, metabolic dysfunction, and oxidative stress in the colonic epithelium. However, evidence from prospective cohort studies is scarce and inconclusive. We evaluated CRC risk associated with the intake of dAGEs in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Dietary intakes of three major dAGEs: Nε-carboxy-methyllysine (CML), Nε-carboxyethyllysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated in 450,111 participants (median follow-up = 13 years, with 6162 CRC cases) by matching to a detailed published European food composition database. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of dAGEs with CRC were computed using multivariable-adjusted Cox regression models. Inverse CRC risk associations were observed for CML (HR comparing extreme quintiles: HRQ5vs.Q1 = 0.92, 95% CI = 0.85-1.00) and MG-H1 (HRQ5vs.Q1 = 0.92, 95% CI = 0.85-1.00), but not for CEL (HRQ5vs.Q1 = 0.97, 95% CI = 0.89-1.05). The associations did not differ by sex or anatomical location of the tumor. Contrary to the initial hypothesis, our findings suggest an inverse association between dAGEs and CRC risk. More research is required to verify these findings and better differentiate the role of dAGEs from that of endogenously produced AGEs and their precursor compounds in CRC development.
Collapse
Affiliation(s)
- Elom K. Aglago
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Viktoria Knaze
- Early Detection, Prevention, and Infections Branch, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Heinz Freisling
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Veronika Fedirko
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - David J. Hughes
- Cancer Biology and Therapeutics Group (CBT), Conway Institute, School of Biomolecular and Biomedical Science (SBBS), University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Anne Tjønneland
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (A.K.E.); (A.T.)
| | - Marie-Christine Boutron-Ruault
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
| | - Joseph A. Rothwell
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
| | - Gianluca Severi
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, 50121 Florence, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (V.K.)
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (V.K.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (M.B.S.); (A.B.)
- Institute of Nutrition Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Anna Birukov
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (M.B.S.); (A.B.)
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | | | - Rosario Tumino
- Hyblean Association for Epidemiological Research AIRE-ONLUS, 97100 Ragusa, Italy;
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy;
- Unit of Epidemiology, Regional Health Service ASL TO3, Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Jeroen W. G. Derksen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | - Inger Torhild Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | - Torkjel Sandanger
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | | | - Leila Luján-Barroso
- Unit of Nutrition and Cancer, Catalan Institute of Oncology—ICO; and Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute—IDIBELL, L’Hospitalet de Llobregat, Av. Granvia 199-203, 08908 Barcelona, Spain;
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, 20014 Donostia-San Sebastian, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia University, 30003 Murcia, Spain
| | - Aurelio Barricarte Gurrea
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Navarra Public Health Institute, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ingegerd Johansson
- Department of Radiation Sciences, Oncology, Umeå University, 907 36 Umeå, Sweden;
| | - Jonas Manjer
- Department of Clinical Sciences, Malmö, Lund University, 221 00 Lund, Sweden;
- Division of Surgery, Malmö, Lund University, 221 00 Lund, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK;
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK;
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 HX Maastrich, The Netherlands;
| | - Mazda Jenab
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| |
Collapse
|
37
|
Akıllıoğlu HG, Lund MN. Quantification of advanced glycation end products and amino acid cross-links in foods by high-resolution mass spectrometry: Applicability of acid hydrolysis. Food Chem 2021; 366:130601. [PMID: 34298391 DOI: 10.1016/j.foodchem.2021.130601] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
An analytical method was developed and validated for simultaneous identification and quantification of advanced glycation end products (AGEs), amino acid cross-links, lysine and arginine in foodstuffs based on acid hydrolysis, hydrophilic interaction chromatography and high-resolution mass spectrometry. The method proved to be sensitive, reproducible and accurate for furosine, N-Ɛ-(carboxymethyl)lysine, N-Ɛ-(carboxyethyl)lysine, methylglyoxal and glyoxal-derived hydroimidazolones (MG-H and GO-H isomers, respectively), glyoxal lysine dimer, lysinoalanine, lanthionine, lysine and arginine. LOD and LOQ values in water were found to be 0.9-15.5 ng/mL and 2.8-47 ng/mL, respectively, and increased to 1.4-60 ng/mL and 4.4-182 ng/mL in liquid infant formula. Recovery values ranged from 76 to 118% in four different food matrices. Microwave-assisted hydrolysis for 11 min had similar efficiency as conventional hydrolysis, which requires overnight incubation. Acid stability of each compound was determined during microwave and conventional hydrolysis, and showed that the MG-H1 isomer is partially converted to the MG-H3 isomer during acid hydrolysis.
Collapse
Affiliation(s)
- Halise Gül Akıllıoğlu
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| |
Collapse
|
38
|
Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Res Int 2021; 147:110547. [PMID: 34399524 DOI: 10.1016/j.foodres.2021.110547] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Dietary advanced glycation endproducts (AGEs) are associated with negative biological effects, possibly due to accumulation in plasma and tissues and through modulation of inflammation and gut microbiota. Whether these biological consequences are reversible by limiting dietary AGE intake is unknown. METHODS AND RESULTS Young healthy C57BL/6 mice were fed a standard chow (n = 10) or a baked chow high AGE-diet (n = 10) (~1.8-6.9 fold increased protein-bound Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)) for 10 weeks or a switch diet with baked chow for 5 weeks followed by 5 weeks of standard chow (n = 10). We assessed accumulation of AGEs in plasma, kidney, and liver and measured inflammatory markers and gut microbial composition. After 10 weeks of baked chow, a substantial panel of AGEs were increased in plasma, liver, and kidney. These increases were normalized after the switch diet. The inflammatory z-score increased after the baked chow diet. Gut microbial composition differed significantly between groups, with enriched Dubosiella spp. dominating these alterations. CONCLUSION A high AGE-diet led to an increase of AGEs in plasma, kidney, and liver and to more inflammation and modification of the gut microbiota. These effects were reversed or discontinued by a diet lower in AGEs.
Collapse
|
39
|
Bui TPN, de Vos WM. Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Pract Res Clin Endocrinol Metab 2021; 35:101504. [PMID: 33785319 DOI: 10.1016/j.beem.2021.101504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human gut microbiota has appeared as an important factor affecting host health and intestinal bacteria have recently emerged as potential therapeutics to treat diabetes and other endocrine diseases. These mainly anaerobic bacteria have been identified either via comparative "omics" analysis of the intestinal microbiota in healthy and diseased subjects or of data collected by fecal microbiota transplantation studies. Both approaches require advanced and in-depth sequencing technologies to perform massive genomic screening to select bacteria with potential benefits. It has been shown that these potentially therapeutic bacteria can either produce bioactive products that directly influence the host patho-physiology and endocrine systems or produce specific signaling molecules that may do so. These bioactive compounds can be formed via degradation of dietary or host-derived components or the conversion of intermediate compounds produced by fermentation of intestinal bacteria. Several of these bacteria have shown causality in preclinical models and entered clinical phase studies, while their mode of action is being analyzed. In this review, we summarize the research on the most promising bacterial candidates with therapeutic properties with a specific focus on diabetes.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Caelus Pharmaceuticals BV, 3474, KG, Zegveld, the Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
40
|
Snelson M, Tan SM, Clarke RE, de Pasquale C, Thallas-Bonke V, Nguyen TV, Penfold SA, Harcourt BE, Sourris KC, Lindblom RS, Ziemann M, Steer D, El-Osta A, Davies MJ, Donnellan L, Deo P, Kellow NJ, Cooper ME, Woodruff TM, Mackay CR, Forbes JM, Coughlan MT. Processed foods drive intestinal barrier permeability and microvascular diseases. SCIENCE ADVANCES 2021; 7:7/14/eabe4841. [PMID: 33789895 PMCID: PMC8011970 DOI: 10.1126/sciadv.abe4841] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/12/2021] [Indexed: 05/04/2023]
Abstract
Intake of processed foods has increased markedly over the past decades, coinciding with increased microvascular diseases such as chronic kidney disease (CKD) and diabetes. Here, we show in rodent models that long-term consumption of a processed diet drives intestinal barrier permeability and an increased risk of CKD. Inhibition of the advanced glycation pathway, which generates Maillard reaction products within foods upon thermal processing, reversed kidney injury. Consequently, a processed diet leads to innate immune complement activation and local kidney inflammation and injury via the potent proinflammatory effector molecule complement 5a (C5a). In a mouse model of diabetes, a high resistant starch fiber diet maintained gut barrier integrity and decreased severity of kidney injury via suppression of complement. These results demonstrate mechanisms by which processed foods cause inflammation that leads to chronic disease.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Rachel E Clarke
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cassandra de Pasquale
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Vicki Thallas-Bonke
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Tuong-Vi Nguyen
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karly C Sourris
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Runa S Lindblom
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Mark Ziemann
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - David Steer
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Assam El-Osta
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leigh Donnellan
- Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Permal Deo
- Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, Victoria, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia.
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Glowacki RWP, Martens EC. If you eat it, or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. J Bacteriol 2020; 203:JB.00481-20. [PMID: 33168637 PMCID: PMC8092160 DOI: 10.1128/jb.00481-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to persist, successful bacterial inhabitants of the human gut need to adapt to changing nutrient conditions, which are influenced by host diet and a variety of other factors. For members of the Bacteroidetes and several other phyla, this has resulted in diversification of a variety of enzyme-based systems that equip them to sense and utilize carbohydrate-based nutrients from host, diet, and bacterial origin. In this review, we focus first on human gut Bacteroides and describe recent findings regarding polysaccharide utilization loci (PULs) and the mechanisms of the multi-protein systems they encode, including their regulation and the expanding diversity of substrates that they target. Next, we highlight previously understudied substrates such as monosaccharides, nucleosides, and Maillard reaction products that can also affect the gut microbiota by feeding symbionts that possess specific systems for their metabolism. Since some pathogens preferentially utilize these nutrients, they may represent nutrient niches competed for by commensals and pathogens. Finally, we address recent work to describe nutrient acquisition mechanisms in other important gut species such as those belonging to the Gram-positive anaerobic phyla Actinobacteria and Firmicutes, as well as the Proteobacteria Because gut bacteria contribute to many aspects of health and disease, we showcase advances in the field of synthetic biology, which seeks to engineer novel, diet-controlled nutrient utilization pathways within gut symbionts to create rationally designed live therapeutics.
Collapse
Affiliation(s)
- Robert W. P. Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
42
|
Intestinimonas-like bacteria are important butyrate producers that utilize Nε-fructosyllysine and lysine in formula-fed infants and adults. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
43
|
Gutiérrez-Sarmiento W, Sáyago-Ayerdi SG, Goñi I, Gutiérrez-Miceli FA, Abud-Archila M, Rejón-Orantes JDC, Rincón-Rosales R, Peña-Ocaña BA, Ruíz-Valdiviezo VM. Changes in Intestinal Microbiota and Predicted Metabolic Pathways During Colonic Fermentation of Mango ( Mangifera indica L.)-Based Bar Indigestible Fraction. Nutrients 2020; 12:E683. [PMID: 32138281 PMCID: PMC7146491 DOI: 10.3390/nu12030683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mango (Mangifera indica L.) peel and pulp are a source of dietary fiber (DF) and phenolic compounds (PCs) that constituent part of the indigestible fraction (IF). This fraction reaches the colon and acts as a carbon and energy source for intestinal microbiota. The effect of mango IF on intestinal microbiota during colonic fermentation is unknown. In this study, the isolated IF of a novel 'Ataulfo' mango-based bar (snack) UV-C irradiated and non-irradiated (UVMangoB and MangoB) were fermented. Colonic fermentation occurred in vitro under chemical-enzymatic, semi-anaerobic, batch culture and controlled pH colonic conditions. Changes in the structure of fecal microbiota were analyzed by 16s rRNA gene Illumina MiSeq sequencing. The community´s functional capabilities were determined in silico. The MangoB and UVMangoB increased the presence of Faecalibacterium, Roseburia, Eubacterium, Fusicatenibacter, Holdemanella, Catenibacterium, Phascolarctobacterium, Buttiauxella, Bifidobacterium, Collinsella, Prevotella and Bacteroides genera. The alpha indexes showed a decrease in microbial diversity after 6 h of colonic fermentation. The coordinates analysis indicated any differences between irradiated and non-irradiated bar. The metabolic prediction demonstrated that MangoB and UVMangoB increase the microbiota carbohydrate metabolism pathway. This study suggests that IF of mango-based bar induced beneficial changes on microbial ecology and metabolic pathway that could be promissory to prevention or treatment of metabolic dysbiosis. However, in vivo interventions are necessary to confirm the interactions between microbiota modulating and intestinal beneficial effects.
Collapse
Affiliation(s)
- Wilbert Gutiérrez-Sarmiento
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| | | | - Isabel Goñi
- Department Nutrition and Food Science, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | | | - Miguel Abud-Archila
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| | - José del Carmen Rejón-Orantes
- Pharmacobiology Experimental Laboratory, Faculty of Human Medicine, Universidad Autónoma de Chiapas, Calle Central-Sur S/N, San Francisco, Tuxtla Gutiérrez 29090, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| | - Betsy Anaid Peña-Ocaña
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| |
Collapse
|
44
|
Zhao D, Sheng B, Wu Y, Li H, Xu D, Nian Y, Mao S, Li C, Xu X, Zhou G. Comparison of Free and Bound Advanced Glycation End Products in Food: A Review on the Possible Influence on Human Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14007-14018. [PMID: 31789029 DOI: 10.1021/acs.jafc.9b05891] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Debate on the hazards of advanced glycation end products (AGEs) in food has continued for many years as a result of their uncertain bioavailability and ability to bind to their receptors (RAGEs) in vivo. There are increasing evidence that free and bound AGEs have many differences in gastrointestinal digestion, intestinal absorption, binding with RAGEs, in vivo circulation, and renal clearance. Therefore, this paper compares these aspects between free and bound AGEs by summarizing the available knowledge. On the basis of the current knowledge, we conclude that it is time to differentiate free AGEs from bound AGEs in food in future studies, because they vary in many aspects that are closely related to their influence on human health. Several perspectives were proposed at the end of this review for further exploring the difference between free and bound AGEs in food.
Collapse
Affiliation(s)
| | - Bulei Sheng
- Department of Food Science , Aarhus University , Blichers Allé 20 , 8830 Tjele , Denmark
| | - Yi Wu
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou , Guangdong 510640 , People's Republic of China
| | | | - Dan Xu
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou , Guangdong 510640 , People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Zhang W, Poojary MM, Rauh V, Ray CA, Olsen K, Lund MN. Quantitation of α-Dicarbonyls and Advanced Glycation Endproducts in Conventional and Lactose-Hydrolyzed Ultrahigh Temperature Milk during 1 Year of Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12863-12874. [PMID: 31670949 DOI: 10.1021/acs.jafc.9b05037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A comprehensive quantitative characterization of Maillard reaction products was carried out for conventional (CON) and lactose-hydrolyzed (LH) ultrahigh temperature (UHT) milk during storage at 20, 30, and 40 °C for 1 year. The accumulation of 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal) in LH-UHT milk ranged from 20-fold (at 20 °C) to 44-fold (at 40 °C) higher than that in CON-UHT milk. High temperature storage (40 °C) significantly accelerated the accumulation of 3-DG, 3-DGal, and 5-hydroxymethyl furfural but not the majority of the analyzed advanced glycation endproducts (AGEs). The concentrations of major AGEs including N-ε-carboxymethyllysine (CML), N-ε-carboxyethyllysine (CEL), methylglyoxal-hydroimidazolone isomers (MG-H1/H3), glyoxal-hydroimidazolone isomers (G-H1/H3), and G-H2 detected in CON milk during storage were in the range 12-700, 1-14, 8-45, 4-13, and 1-30 μM, respectively, while they were 30-570, 2-88, 17-150, 9-20, and 5-34 μM, respectively, in LH milk. Pyrraline, S-(carboxymethyl)cysteine (CMC), and glyoxal-lysine dimer were detected in lower levels, while MG-H2, methylglyoxal-lysine dimer, argpyrimidine, glyoxal-lysine-amide, glycolic acid-lysine-amide, and pentosidine were not detected in any of the milk samples. This work demonstrates for the first time that five of the analyzed AGEs (CML, CEL, MG-H1/H3, G-H1/H3, and G-H2) could be selected as markers for evaluation of the extent of the Maillard reaction in UHT milk. These results contribute to a better understanding of how Maillard reactions progress during storage of UHT milk and can be used to develop strategies to inhibit Maillard reactions in LH milk.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Valentin Rauh
- Arla Foods Amba , Agro Food Park 19 , 8200 Aarhus N , Denmark
| | - Colin A Ray
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Karsten Olsen
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Blegdamsvej 3 , 2200 Copenhagen N , Denmark
| |
Collapse
|
46
|
Xu D, Li L, Zhang X, Yao H, Yang M, Gai Z, Li B, Zhao D. Degradation of Peptide-Bound Maillard Reaction Products in Gastrointestinal Digests of Glyoxal-Glycated Casein by Human Colonic Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12094-12104. [PMID: 31566978 DOI: 10.1021/acs.jafc.9b03520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A large portion of Maillard reaction products (MRPs) cannot be absorbed in the upper gut and therefore may be further decomposed and utilized by colonic microbiota (CM). This work reported the stability of UV-absorbent MRPs, fluorescent MRPs and peptide-bound N(ε)-(carboxymethyl)-lysine (CML) in high molecular weight (HMW, >10 kDa), medium molecular weight (MMW, 1-10 kDa), and low molecular weight (LMW, <1 kDa) gastrointestinal digests of glyoxal-glycated casein in the presence of CM. Fluorescent MRPs showed high stability, whereas UV-absorbent MRPs may be partially decomposed. A higher depletion rate of CML was found in the LMW fraction (38.7%) than in the MMW (21.7%) and HMW (9.6%) fractions. The 16S rRNA sequencing results revealed both beneficial and detrimental changes in CM composition induced by the glycated fractions. Generation of short-chain and branched-chain fatty acids in fermentation solutions with glycated fractions was significantly suppressed compared with that in fermentation solution with unglycated digests. This work revealed the possible interplay between peptide-bound MRPs and CM.
Collapse
Affiliation(s)
- Dan Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education , South China University of Technology , Guangzhou 510640 , China
| | - Lin Li
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , College Road 1 , Dongguan 523808 , China
- College of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xia Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education , South China University of Technology , Guangzhou 510640 , China
- College of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Hong Yao
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Mingquan Yang
- Guangdong Meiweixian Flavoring Foods Company, Ltd. , Zhongshan 528437 , China
| | - Zuoqi Gai
- College of Life Science and Engineering , Foshan University , Foshan 528231 , China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education , South China University of Technology , Guangzhou 510640 , China
- College of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Zhongqing Font Biochemical Science and Technology Company, Ltd. , Maoming , Guangdong 525427 , China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|