1
|
Vanhakylä S, Salminen JP. Seasonal Variation in Plant Polyphenols and Related Bioactivities across Three Years in Ten Tree Species as Visualized by Mass Spectrometric Fingerprint Mapping. Molecules 2023; 28:6093. [PMID: 37630346 PMCID: PMC10458088 DOI: 10.3390/molecules28166093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/27/2023] Open
Abstract
The currently changing climates and environments place plants under many types of stresses that affect both their survival and levels of chemical defenses. The gradual induction of defenses in stressed plant populations could be monitored on a yearly basis unless a seasonal and yearly variation in natural defense levels obscures such monitoring schemes. Here, we studied the stability of the species-specific polyphenol composition and content of 10 tree species over three growing seasons using five replicate trees per species. We specifically measured hydrolyzable tannins (galloyl and hexahydroxydiphenoyl derivatives), proanthocyanidins (procyanidins and prodelphinidins), flavonols (kaempferol, quercetin and kaempferol derivatives) and quinic acid derivatives with the group-specific UHPLC-DAD-MS/MS tool, together with two bioactivities, the protein precipitation capacity and oxidative activity. With the help of a fingerprint mapping tool, we found out that species differed a lot in their seasonal and between-year variation in polyphenols and that the variation was also partially specific to compound groups. Especially ellagitannins tended to have declining seasonal patterns while the opposite was true for proanthocyanidins. Some of the species showed minimal variation in all measured variables, while others showed even induced levels of certain polyphenol groups during the 3-year study. For every species, we found either species-specific baseline levels in qualitative and quantitative polyphenol chemistry or the compound groups with the most plasticity in their production. The used tools could thus form a good combination for future studies attempting to monitor the overall changes in polyphenol chemistry due to various biotic or abiotic stress factors in plant populations or in more controlled environments.
Collapse
Affiliation(s)
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland;
| |
Collapse
|
2
|
da Silva Aguiar F, Bezerra LR, Cordão MA, Cavalcante ITR, de Oliveira JPF, do Nascimento RR, de Souza BB, Oliveira RL, Pereira ES, Filho JMP. Effects of Increasing Levels of Total Tannins on Intake, Digestibility, and Balance of Nitrogen, Water, and Energy in Hair Lambs. Animals (Basel) 2023; 13:2497. [PMID: 37570305 PMCID: PMC10416999 DOI: 10.3390/ani13152497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
This study aims to evaluate the effects of increasing tannin levels from Mimosa tenuiflora hay on the intake, digestibility, and balance of nitrogen (N), water, and energy in hair lambs. Thirty-two Santa Ines lambs, at an average age of 150 days and body weight of 26.75 ± 2.29 kg, were randomly assigned to four treatments in a completely randomized design. The treatments consisted of four diets: a control diet, tannin-free, and three diets with increasing levels of total tannin, 26.2, 52.4, and 78.6 g tannin/kg dry matter (DM). Including the total tannins in the lambs' diet led to a quadratic increase in the intake of nutrients, N-retention (g/day), water intake, water absorption and retention, energy intake, and energy excretion in feces and gases. However, the digestibility of crude protein, neutral and acid detergent fibers, and total carbohydrates decreased. It was observed that there is a correlation between the variable nutrient digestibility and N-ingested and the N-absorbed, N-urinary, and N-retained. However, the N-excreted in feces did not correlate with any of the variables studied. It is recommended to include 33 g/kg DM of total natural tannins from Mimosa tenuiflora hay in the diet of hair lambs, as it improves intake, energy balance, dietary N, and body water composition while reducing the excretion of N-urinary and gas emissions to the environment.
Collapse
Affiliation(s)
- Fabrício da Silva Aguiar
- Graduate Program in Animal Science and Health, Federal University of Campina Grande, Patos 58708110, PB, Brazil; (F.d.S.A.); (R.R.d.N.); (B.B.d.S.)
| | - Leilson Rocha Bezerra
- Graduate Program in Animal Science and Health, Federal University of Campina Grande, Patos 58708110, PB, Brazil; (F.d.S.A.); (R.R.d.N.); (B.B.d.S.)
| | - Maiza Araújo Cordão
- Animal Science Departament, Faculdades Nova Esperança-FACENE, João Pessoa 58067698, PB, Brazil;
| | | | | | - Romilda Rodrigues do Nascimento
- Graduate Program in Animal Science and Health, Federal University of Campina Grande, Patos 58708110, PB, Brazil; (F.d.S.A.); (R.R.d.N.); (B.B.d.S.)
| | - Bonifácio Benício de Souza
- Graduate Program in Animal Science and Health, Federal University of Campina Grande, Patos 58708110, PB, Brazil; (F.d.S.A.); (R.R.d.N.); (B.B.d.S.)
| | - Ronaldo Lopes Oliveira
- Department of Animal Science, Federal University of Bahia, Salvador 40170115, BA, Brazil;
| | - Elzania Sales Pereira
- Department of Animal Science, Federal University of Ceara, 2977, Mister Hull Avenue, Fortaleza 60356000, CE, Brazil;
| | - José Morais Pereira Filho
- Graduate Program in Animal Science and Health, Federal University of Campina Grande, Patos 58708110, PB, Brazil; (F.d.S.A.); (R.R.d.N.); (B.B.d.S.)
| |
Collapse
|
3
|
Suominen E, Savila S, Sillanpää M, Damlin P, Karonen M. Affinity of Tannins to Cellulose: A Chromatographic Tool for Revealing Structure-Activity Patterns. Molecules 2023; 28:5370. [PMID: 37513244 PMCID: PMC10384774 DOI: 10.3390/molecules28145370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Food, feed and beverage processing brings tannins into contact with macromolecules, such as proteins and polysaccharides, leading to different chemical and physical interactions. The interactions of tannins with proteins are well known but less is known about the affinity of tannins to polysaccharides. We used bacterial cellulose from nata de coco as a model compound to investigate how tannins and cellulose interact by adsorption measurements using UPLC-DAD. We also explored how the structure of tannins influences these interactions. The model tannins included nine individual structurally different hydrolysable tannins (HTs) and eight well-defined proanthocyanidin (PA) fractions with different monomeric units, mean degree of polymerization and both A- and B-type linkages. Tannins were found to have both strong and weak interactions with bacterial cellulose, depending on the exact structure of the tannin. For HTs, the main structural features affecting the interactions were the structural flexibility of the HT molecule and the number of free galloyl groups. For PAs, prodelphinidins were found to have a higher affinity to cellulose than procyanidins. Similarly to HTs, the presence of free galloyl groups in galloylated PAs and the flexibility of the PA molecule led to a stronger interaction. Adsorption measurements by UPLC-DAD proved to be a sensitive and rapid tool to evaluate the affinity of tannins to cellulose.
Collapse
Affiliation(s)
- Essi Suominen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Santeri Savila
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Mimosa Sillanpää
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Pia Damlin
- Materials Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
4
|
Sillanpää M, Engström MT, Tähtinen P, Green RJ, Käpylä J, Näreaho A, Karonen M. Tannins Can Have Direct Interactions with Anthelmintics: Investigations by Isothermal Titration Calorimetry. Molecules 2023; 28:5261. [PMID: 37446937 DOI: 10.3390/molecules28135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Plant tannins are known for their anthelmintic and antiparasitic activities and have been increasingly studied to battle the ever-growing problem of anthelmintic resistance. While tannins have been shown to exhibit these activities on their own, one approach would be to use them as complementary nutrients alongside commercial anthelmintics. So far, research on the interactions between tannins and anthelmintics is limited, and few studies have reported both synergistic and antagonistic effects depending on the type of tannin and the method used. These interactions could either strengthen or weaken the efficacy of commercial anthelmintics, especially if tannin-rich diets are combined with anthelmintics used as oral drenches. To study these interactions, a series of hydrolysable tannins (HTs) was selected, and their direct interactions with thiabendazole (TBZ) were evaluated by isothermal titration calorimetry (ITC), which allowed the detection of the exothermic interaction but also the roles and significances of different structural features of HTs in these interactions. Our results show that HTs can have a direct interaction with the benzimidazole anthelmintic TBZ and that the interaction is strengthened by increasing the number of free galloyl groups and the overall molecular flexibility of HTs.
Collapse
Affiliation(s)
- Mimosa Sillanpää
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Marica T Engström
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Petri Tähtinen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Rebecca J Green
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG6 6AP, UK
| | - Jarmo Käpylä
- Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Anu Näreaho
- Department of Veterinary Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Maarit Karonen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
5
|
Besharati M, Maggiolino A, Palangi V, Kaya A, Jabbar M, Eseceli H, De Palo P, Lorenzo JM. Tannin in Ruminant Nutrition: Review. Molecules 2022; 27:8273. [PMID: 36500366 PMCID: PMC9738529 DOI: 10.3390/molecules27238273] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tannins are polyphenols characterized by different molecular weights that plants are able to synthetize during their secondary metabolism. Macromolecules (proteins, structural carbohydrates and starch) can link tannins and their digestion can decrease. Tannins can be classified into two groups: hydrolysable tannins and condensed tannins. Tannins are polyphenols, which can directly or indirectly affect intake and digestion. Their ability to bind molecules and form complexes depends on the structure of polyphenols and on the macromolecule involved. Tannins have long been known to be an "anti-nutritional agent" in monogastric and poultry animals. Using good tannins' proper application protocols helped the researchers observe positive effects on the intestinal microbial ecosystem, gut health, and animal production. Plant tannins are used as an alternative to in-feed antibiotics, and many factors have been described by researchers which contribute to the variability in their efficiencies. The objective of this study was to review the literature about tannins, their effects and use in ruminant nutrition.
Collapse
Affiliation(s)
- Maghsoud Besharati
- Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar 5451785354, Iran
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Valiollah Palangi
- Department of Animal Science, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Adem Kaya
- Department of Animal Science, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Muhammad Jabbar
- Department of Zoology, Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Hüseyin Eseceli
- Department of Nutrition Sciences, Faculty of Health Sciences, Bandirma Onyedi Eylul University, Balikesir 10200, Turkey
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
6
|
Engström MT, Virtanen V, Salminen JP. Influence of the Hydrolyzable Tannin Structure on the Characteristics of Insoluble Hydrolyzable Tannin-Protein Complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13036-13048. [PMID: 35708502 PMCID: PMC9585579 DOI: 10.1021/acs.jafc.2c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precipitation of bovine serum albumin (BSA) by 21 hydrolyzable tannins (HTs) and the characteristics of the insoluble complexes were studied stoichiometrically by ultra-performance liquid chromatography. With regard to HT monomers, the protein precipitation and the characteristic of the formed precipitates were unique for each studied HT and depended upon the functional groups present in the structures. The monomeric units comprising the oligomers formed the functional units important for the protein precipitation capacity, and small structural differences among the monomer units were less important than the overall oligomer size and flexibility. In addition, the greater tendency of certain HTs to form insoluble complexes when mixed with BSA was partially linked to the higher self-association and consequent stronger cooperative binding of these HTs with BSA.
Collapse
|
7
|
Karonen M. Insights into Polyphenol-Lipid Interactions: Chemical Methods, Molecular Aspects and Their Effects on Membrane Structures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141809. [PMID: 35890443 PMCID: PMC9317924 DOI: 10.3390/plants11141809] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 05/12/2023]
Abstract
Plant polyphenols have many potential applications, for example, in the fields of chemical ecology and human and animal health and nutrition. These biological benefits are related to their bioavailability, bioaccessibility and interactions with other biomolecules, such as proteins, lipids, fibers and amino acids. Polyphenol-protein interactions are well-studied, but less is known about their interactions with lipids and cell membranes. However, the affinity of polyphenols for lipid bilayers partially determines their biological activity and is also important from the usability perspective. The polyphenol-lipid interactions can be studied with several chemical tools including, among others, partition coefficient measurements, calorimetric methods, spectroscopic techniques and molecular dynamics simulation. Polyphenols can variably interact with and penetrate lipid bilayers depending on the structures and concentrations of the polyphenols, the compositions of the lipids and the ambient conditions and factors. Polyphenol penetrating the lipid bilayer can perturb and cause changes in its structure and biophysical properties. The current studies have used structurally different polyphenols, diverse model lipids and various measuring techniques. This approach provides detailed information on polyphenol-lipid interactions, but there is much variability, and the results may even be contradictory, for example, in relation to the locations and orientations of the polyphenols in the lipid bilayers. Nevertheless, by using well-characterized model polyphenols and lipids systematically and combining the results obtained with several techniques within a study, it is possible to create a good overall picture of these fascinating interactions.
Collapse
Affiliation(s)
- Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
8
|
Virtanen V, Green RJ, Karonen M. Interactions between Hydrolysable Tannins and Lipid Vesicles from Escherichia coli with Isothermal Titration Calorimetry. Molecules 2022; 27:molecules27103204. [PMID: 35630681 PMCID: PMC9146631 DOI: 10.3390/molecules27103204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Isothermal titration calorimetry (ITC) was used to study the interactions between hydrolysable tannins (HTs) and lipid vesicles prepared from a phospholipid extract of Escherichia coli (E. coli). A group of 24 structurally different HTs was selected, and structural differences affecting their affinities to interact with lipid vesicles in aqueous buffered media were identified. In general, the interactions between HTs and lipid vesicles were exothermic in nature, and ITC as a technique functioned well in the screening of HTs for their affinity for lipids. Most notably, the galloyl moiety, the structural flexibility of the entire tannin structure, the hydrophobicity of the tannin, and higher molecular weight were observed to be important for the stronger interactions with the lipids. The strongest interactions with lipids were observed for rugosins D and G. It was also observed that some HTs with moderate hydrophobicities, such as geraniin, chebulagic acid, and chebulinic acid, did not have any detectable interactions with the lipid vesicles, suggesting that a hydrophobic structure alone does not guarantee an affinity for lipids.
Collapse
Affiliation(s)
- Valtteri Virtanen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Rebecca J Green
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG6 6AP, UK
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
9
|
Zhu S, Li J, Li W, Li S, Yang X, Liu X, Sun L. Enzymic catalyzing affinity to substrate affects inhibitor-enzyme binding interactions: Inhibition behaviors of EGCG against starch digestion by individual and co-existing α-amylase and amyloglucosidase. Food Chem 2022; 388:133047. [PMID: 35483290 DOI: 10.1016/j.foodchem.2022.133047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 02/09/2023]
Abstract
The inhibition of (-)-epigallocatechin-gallate (EGCG) against starch digestion by α-amylase (AA), amyloglucosidase (AMG) and co-existing enzymes (AA/AMG) were comparatively studied. EGCG inhibited AA only at slowly-digestible-starch (SDS) phase. This resulted from high catalytic efficiency of AA for rapidly-digestible-starch (RDS), counteracting the inhibition at this phase. EGCG inhibited AMG and AA/AMG during whole process. At RDS phase, the catalytic velocity of AMG was always higher than AA/AMG because of an antagonistic effect of two enzymes. However, at SDS phase with EGCG, the catalytic velocity of AA/AMG was higher than AMG. This is because binding of EGCG with both enzymes caused more unbound AMG that generated more glucose in co-existing AA/AMG than AMG. Although EGCG-AA binding affinity was higher than EGCG-AMG, competitive inhibition of EGCG against AA was weaker than AMG, indicating relatively higher binding/catalyzing affinity of AA to starch significantly weakened EGCG-AA binding due to competitive relationship between starch and EGCG.
Collapse
Affiliation(s)
- Shengnan Zhu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Jing Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Wenyue Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Shuangshuang Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xi Yang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
10
|
Caffeoyl substitution decreased the binding and inhibitory activity of quinic acid against α-amylase: The reason why chlorogenic acid is a relatively weak enzyme inhibitor. Food Chem 2022; 371:131278. [PMID: 34808763 DOI: 10.1016/j.foodchem.2021.131278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
α-Amylase inhibition of chlorogenic acid (CHA) and its component moieties including quinic acid (QA) and caffeic acid (CA) were characterized by IC50, inhibition kinetics, fluorescence quenching, isothermal titration calorimetry, differential scanning calorimetry and molecular docking. QA was found with the highest inhibitory activity in a competitive-mode, and caffeoyl substitution significantly decreased its inhibition but maintained inhibition type. Interestingly, QA hardly quenched α-amylase fluorescence, while CA quenched that significantly without inhibitory activity. This resulted from lack of aromatic ring in QA that can form π-conjugation with α-amylase fluorescent residues. Besides, the binding constant of QA with α-amylase was higher than CHA. Additionally, QA and CA decreased but CHA remained α-amylase thermal stability, indicating that change in α-amylase spatial structure was related with enzyme residue sites involved in interactions with inhibitors, instead of with inhibition effect. Conclusively, caffeoyl substitution decreased α-amylase inhibition of QA through reducing its binding affinity to the enzyme.
Collapse
|
11
|
Azevedo J, Jesus M, Brandão E, Soares S, Oliveira J, Lopes P, Mateus N, de Freitas V. Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chem 2021; 367:130607. [PMID: 34388630 DOI: 10.1016/j.foodchem.2021.130607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
This work reports the study of the interaction of human salivary proteins (SP) with phenolic compounds that migrate from cork stoppers to wine. This study yields valuable data to understand the influence that these compounds may have on the sensory perception of wine from an astringency perspective. For that, three cork fractions containing the phenolic compounds that migrate in greater amounts from cork to model wine solutions were selected. Fraction M1 contains gallic acid, protocatechuic acid, vanillin and protocatechuic aldehyde; fraction M2 comprises essentially gallic acid and ellagic acid, as well as castalagin and dehydrocastalagin; and fraction M3 contains the two isomeric ellagitannins castalagin and vescalagin. The reactivity of each fraction towards SP was M3 > M2 > M1. Within M3 fraction, castalagin showed a higher ability to precipitate SP (mainly aPRPs, statherin and P-B peptide) comparatively to vescalagin. In M1 fraction, caffeic and sinapic acids were the compounds with the highest interaction with SP, mainly cystatins. In addition, there also seems to be a matrix effect (presence of other compounds) that could be affecting these interactions.
Collapse
Affiliation(s)
- Joana Azevedo
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Mónica Jesus
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Elsa Brandão
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Susana Soares
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Joana Oliveira
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Paulo Lopes
- Amorim Cork S.A. Rua dos Corticeiros 830, 4536-904 Santa Maria de Lamas, Portugal
| | - Nuno Mateus
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV REQUIMTE, Laboratório Associado para a Química Verde- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| |
Collapse
|
12
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
13
|
Thurau EG, Rahajanirina AN, Irwin MT. Condensed tannins in the diet of folivorous diademed sifakas and the gap between crude and available protein. Am J Primatol 2021; 83:e23239. [PMID: 33544402 DOI: 10.1002/ajp.23239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 11/08/2022]
Abstract
Tannins, a type of plant secondary metabolite, are well-known for their ability to precipitate proteins and thereby reduce the protein available to consumers. Most primate studies have focused on condensed tannins (CTs) as they were thought to be the most effective type of tannin at preventing protein acquisition, but there is growing recognition that other types of tannins can bind to proteins, suggesting the division among tannin types is not as clear-cut as previously thought. Although previous studies have documented the presence of CTs in primate diets and primates' behavioral responses to them, our understanding of tannins remains limited because few researchers have used Sephadex column purification to accurately determine tannin concentrations, and few have used in vitro assays to determine available protein content and the tannins' effectiveness in binding protein. In this study, we documented diademed sifaka (Propithecus diadema) diet from June to August 2018 at Tsinjoarivo, Madagascar (in two forests with varying degrees of habitat disturbance) and quantified CT concentration and actual available protein in foods. Eleven of the fourteen top foods tested contained CTs (concentrations: 4.8%-39.3% dry matter). An in vitro assay showed available protein was strikingly low in six of the eleven top foods (e.g., little to no apparent available protein, despite high crude protein). Overall, our findings suggest sifakas acquire less protein than previously recognized and probably have adaptations to counteract tannins. Such studies of available protein are critical in understanding dietary constraints on sifaka populations and the evolution of their diet choice strategies; despite the conventional wisdom that leaves are protein-rich, folivorous primates may indeed be protein-limited. However, further studies are necessary to determine if sifakas have counter-adaptations to tannins, and if they absorb more protein than our analyses suggest, perhaps receiving protein that we were unable to detect with the current techniques (e.g., pollen).
Collapse
Affiliation(s)
- Emma G Thurau
- Department of Anthropology, The Graduate Center of the City University of New York, New York, USA.,New York City Consortium of Evolutionary Primatology (NYCEP), New York, USA.,Department of Anthropology, Hunter College of City University of New York, New York, USA
| | - Andry Narcisse Rahajanirina
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar.,Division of Research, ONG SADABE, Antananarivo, Madagascar
| | - Mitchell T Irwin
- Division of Research, ONG SADABE, Antananarivo, Madagascar.,Department of Anthropology, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
14
|
Ellagitannin-Lipid Interaction by HR-MAS NMR Spectroscopy. Molecules 2021; 26:molecules26020373. [PMID: 33445813 PMCID: PMC7828275 DOI: 10.3390/molecules26020373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
Ellagitannins have antimicrobial activity, which might be related to their interactions with membrane lipids. We studied the interactions of 12 different ellagitannins and pentagalloylglucose with a lipid extract of Escherichia coli by high-resolution magic angle spinning NMR spectroscopy. The nuclear Overhauser effect was utilized to measure the cross relaxation rates between ellagitannin and lipid protons. The shifting of lipid signals in 1H NMR spectra of ellagitannin–lipid mixture due to ring current effect was also observed. The ellagitannins that showed interaction with lipids had clear structural similarities. All ellagitannins that had interactions with lipids had glucopyranose cores. In addition to the central polyol, the most important structural feature affecting the interaction seemed to be the structural flexibility of the ellagitannin. Even dimeric and trimeric ellagitannins could penetrate to the lipid bilayers if their structures were flexible with free galloyl and hexahydroxydiphenoyl groups.
Collapse
|
15
|
Puljula E, Walton G, Woodward MJ, Karonen M. Antimicrobial Activities of Ellagitannins against Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. Molecules 2020; 25:E3714. [PMID: 32824081 PMCID: PMC7465317 DOI: 10.3390/molecules25163714] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
In this study, we tested the growth inhibition effect of 22 individual ellagitannins and of pentagalloylglucose on four bacterial species, i.e., Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. All tested compounds showed antimicrobial effects against S. aureus, and almost all against E. coli and C. perfringens. For L. plantarum, no or very weak growth inhibition was detected. The level of inhibition was the greatest for S. aureus and the weakest for C. perfringens. For S. aureus, the molecular size or flexibility of ellagitannins did not show a clear relationship with their antimicrobial activity, even though rugosins E and D and pentagalloylglucose with four or five free galloyl groups had a stronger growth inhibition effect than the other ellagitannins with glucopyranose cores but with less free galloyl groups. Additionally, our results with S. aureus showed that the oligomeric linkage of ellagitannin might have an effect on its antimicrobial activity. For E. coli, the molecular size, but not the molecular flexibility, of ellagitannins seemed to be an important factor. For C. perfringens, both the molecular size and the flexibility of ellagitannin were important factors. In previous studies, corilagin was used as a model for ellagitannins, but our results showed that other ellagitannins are much more efficacious; therefore, the antimicrobial effects of ellagitannins could be more significant than previously thought.
Collapse
Affiliation(s)
- Elina Puljula
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland;
| | - Gemma Walton
- Department of Food and Nutritional Studies, The University of Reading, Reading RG6 6AH, UK; (G.W.); or
| | - Martin J. Woodward
- Department of Food and Nutritional Studies, The University of Reading, Reading RG6 6AH, UK; (G.W.); or
- Folium Science, Unit-DX, Bristol BS2 OXJ, UK
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland;
| |
Collapse
|
16
|
Virtanen V, Karonen M. Partition Coefficients ( logP) of Hydrolysable Tannins. Molecules 2020; 25:molecules25163691. [PMID: 32823639 PMCID: PMC7465006 DOI: 10.3390/molecules25163691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023] Open
Abstract
The partition coefficients (logP) between n-octanol and water of 47 purified and characterized hydrolysable tannins were measured with the shake flask method utilizing UPLC and HPLC with UV detection. Results show that galloyl glucoses and gallotannins are clearly more hydrophobic than ellagitannins but the differences in hydrophobicity within ellagitannins are more varied than within galloyl glucoses or gallotannins. Most notable structural features that were found to influence the hydrophobicity of ellagitannins were the number of free galloyl groups, acyclic versus cyclic polyol, substitution of the anomeric position of glucose and 4C1 versus 1C4 conformation of the glucopyranose core.
Collapse
|
17
|
The Effect of Growth Medium Strength on Minimum Inhibitory Concentrations of Tannins and Tannin Extracts against E. coli. Molecules 2020; 25:molecules25122947. [PMID: 32604845 PMCID: PMC7355419 DOI: 10.3390/molecules25122947] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
In this study the effect of growth medium strength on the minimum inhibitory concentration (MIC) of different tannins and tannin extracts against Escherichia coli was systematically investigated for the first time. Three pure compounds (vescalagin, castalagin and gallic acid) and five extracts (chestnut, quebracho, mimosa, Colistizer and tannic acid) were studied. Broth microdilution was assayed and bacteria were grown using different growth medium strengths varying from half to double the concentration recommended by the producer. MICs were determined using the iodonitrotetrazolium chloride (INT) dye or turbidity measurements. It was observed that MIC values depend on the growth medium strength. With an increase in the growth medium concentration MIC values rose roughly linearly for all samples, while their relative order remained unchanged, indicating that a direct interaction of tannins with growth medium nutrients represents the likely source of their antimicrobial activity. Understanding the effect of growth medium strength can finally yield a plausible explanation for the observed variation in MIC values reported in the scientific literature as well as provide help in planning proper applications of tannins in the livestock production.
Collapse
|
18
|
Karonen M, Ahern JR, Legroux L, Suvanto J, Engström MT, Sinkkonen J, Salminen JP, Hoste H. Ellagitannins Inhibit the Exsheathment of Haemonchus contortus and Trichostrongylus colubriformis Larvae: The Efficiency Increases Together with the Molecular Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4176-4186. [PMID: 32181655 PMCID: PMC7146859 DOI: 10.1021/acs.jafc.9b06774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 05/26/2023]
Abstract
Worldwide, parasitic gastrointestinal nematodes continue to threaten animal health, welfare, and production in outdoor breeding systems of small ruminants. For more than 50 years, the control of these parasitic worms has relied on the use of commercial synthetic anthelmintics. However, anthelmintic resistance in worm populations is nowadays widespread and requires novel solutions. The use of tannin-rich plants has been suggested as an alternative to synthetic anthelmintics to control gastrointestinal nematodes. The majority of previous studies have focused on the activity of proanthocyanidins (syn condensed tannins), and less is known about ellagitannins. In this study, the effects of 30 structurally unique ellagitannins on the exsheathment of third-stage infective larvae were examined on Haemonchus contortus and Trichostrongylus colubriformis by the in vitro larval exsheathment inhibition assay. Ellagitannins were found to be promising natural anthelmintics as they showed direct inhibition on larval exsheathment for both nematode species. In general, ellagitannins were more efficient at inhibiting the exsheathment of H. contortus larvae than those of T. colubriformis. The efficiency of inhibition increased as the degree of oligomerization or the molecular weight of the ellagitannin increased. Otherwise, we found no other structural features of ellagitannins that significantly affected the anthelmintic activity on the third-stage infective larvae. The effective concentrations were physiologically relevant and should be achievable in the gastrointestinal tract also in in vivo conditions.
Collapse
Affiliation(s)
- Maarit Karonen
- Natural
Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Jeffrey R. Ahern
- Natural
Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Lucie Legroux
- UMR
1225 IHAP, INRAE/ENVT, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Jussi Suvanto
- Natural
Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Marica T. Engström
- Natural
Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Jari Sinkkonen
- Natural
Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Juha-Pekka Salminen
- Natural
Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Hervé Hoste
- UMR
1225 IHAP, INRAE/ENVT, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| |
Collapse
|