1
|
Jia M, Ma R, Liu C, Yang T, Zhan J, Shen W, Tian Y. Isolated cassava cells: Comparison of structure and physicochemical properties with starch and whole flour. Carbohydr Polym 2024; 343:122467. [PMID: 39174128 DOI: 10.1016/j.carbpol.2024.122467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/24/2024]
Abstract
Individual cells are the smallest units of the plant tissue structure, and their structure and physicochemical properties are essential for whole food processing. In this study, cassava cells were isolated using acid-alkali, hydrothermal, and pectinase methods, and the differences in microstructure and physicochemical properties among the cells, starch, and whole flour were investigated. Cassava cells isolated using pectinase showed intact individual cells with a higher isolation rate and less damage to the cell wall structure and intracellular composition. The presence of cell walls in intact individual cells inhibited the swelling and leaching of starch, resulting in a lower peak viscosity and higher gelatinization temperature than those of starch. The intact cell structure and non-starch composition enhanced the shear resistance of the gels in the sample. Heat treatment led to the gelatinization of intracellular starch and increased the permeability of the cell wall, destroying the physical barrier function of the cell wall; however, the compact cell matrix and non-starch components can inhibit starch hydrolysis. This study suggests that cells isolated using pectinase can be used to investigate the effect of cell walls on the functional properties of intracellular starch in cassava. The isolated cells provide new insights into the cassava industry.
Collapse
Affiliation(s)
- Meng Jia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianyi Yang
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Meldrum OW, Yakubov GE. Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Crit Rev Food Sci Nutr 2024:1-29. [PMID: 39141568 DOI: 10.1080/10408398.2024.2390556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dietary fiber-rich foods have been associated with numerous health benefits, including a reduced risk of cardiovascular and metabolic diseases. Harnessing the potential to deliver positive health outcomes rests on our understanding of the underlying mechanisms that drive these associations. This review addresses data and concepts concerning plant-based food functionality by dissecting the cascade of physical and chemical digestive processes and interactions that underpin these physiological benefits. Functional transformations of dietary fiber along the gastrointestinal tract from the stages of oral processing and gastric emptying to intestinal digestion and colonic fermentation influence its capacity to modulate digestion, transit, and commensal microbiome. This analysis highlights the significance, limitations, and challenges in decoding the complex web of interactions to establish a coherent framework connecting specific fiber components' molecular and macroscale interactions across multiple length scales within the gastrointestinal tract. One critical area that requires closer examination is the interaction between fiber, mucus barrier, and the commensal microbiome when considering food structure design and personalized nutritional strategies for beneficial physiologic effects. Understanding the response of specific fibers, particularly concerning an individual's physiology, will offer the opportunity to exploit these functional characteristics to elicit specific, symptom-targeting effects or use fiber types as adjunctive therapies.
Collapse
Affiliation(s)
- Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Liu J, Dhital S, Ahmed Junejo S, Fu X, Huang Q, Zhang B. Structural changes and degradation mechanism of type 3 resistant starch during in vitro fecal fermentation. Food Res Int 2024; 190:114639. [PMID: 38945585 DOI: 10.1016/j.foodres.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The colonic fermentation metabolites of resistant starch (RS) are recognized to have various health benefits. However, the relationship between the structural variation of RS and the colonic fermentation properties, remains inadequately studied, especially for type 3 resistant starch. The in vitro fecal fermentation properties with multi-structure evolution of A- and B-type polymorphic resistant starch spherulites (RSS) were investigated. Both polymorphic types of RSS showed similar fermentation rate and total short-chain fatty acid profiles, while the butyrate concentration of the A-type RSS subjected to 24 h of fermentation was significantly higher compared to B-type RSS. In the case of recrystallized starch spherulites, irrespective of the polymorphic type, gut bacteria preferentially degraded the intermediate chains and crystalline regions, as the local molecule-ordered area potentially serves as suitable attachment sites or surfaces for microbial enzymes.
Collapse
Affiliation(s)
- Jiaying Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
4
|
Li X, Chen R, Wen J, Ji R, Chen X, Cao Y, Yu Y, Zhao C. The mechanisms in the gut microbiota regulation and type 2 diabetes therapeutic activity of resistant starches. Int J Biol Macromol 2024; 274:133279. [PMID: 38906356 DOI: 10.1016/j.ijbiomac.2024.133279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Resistant starch (RS) can potentially prevent type 2 diabetes through the modulation of intestinal microbiota and microbial metabolites. Currently, it has been wildly noted that altering the intestinal microbial composition and short-chain fatty acids levels can achieve therapeutic effects, although the specific mechanisms were rarely elucidated. This review systematically explores the structural characteristics of different RS, analyzes the cross-feeding mechanism utilized by intestinal microbiota, and outlines the pathways and targets of butyrate, a primary microbial metabolite, for treating diabetes. Different RS types may have a unique impact on microbiota composition and their cross-feeding, thus exploring regulatory mechanisms of RS on diabetes through intestinal flora interaction and their metabolites could pave the way for more effective treatment outcomes for host health. Furthermore, by understanding the mechanisms of strain-level cross-feeding and metabolites of RS, precise dietary supplementation methods targeted at intestinal composition and metabolites can be achieved to improve T2DM.
Collapse
Affiliation(s)
- Xiaoqing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruoxin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiahui Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruya Ji
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xu Chen
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Huang Z, Wells JM, Fogliano V, Capuano E. Microbial tryptophan catabolism as an actionable target via diet-microbiome interactions. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950607 DOI: 10.1080/10408398.2024.2369947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
6
|
Li J, Zhang H, Liu W, Yang X, Zhu L, Wu G, Zhang H. Methylglyoxal scavenging capacity of fiber-bound polyphenols from highland barley during colonic fermentation and its modulation on methylglyoxal-interfered gut microbiota. Food Chem 2024; 434:137409. [PMID: 37699313 DOI: 10.1016/j.foodchem.2023.137409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Methylglyoxal (MGO) scavenging capacity of fiber-bound polyphenols from highland barley during colonic fermentation and its potential role in modulating MGO-induced detrimental effects on gut microbiota were studied. Results showed that only 25.3 % of polyphenols were released after 24 h of colonic fermentation. More than 45.5 % of MGO was scavenged by the residual fiber-bound polyphenols in the model system, showing a vital role in scavenging MGO in the colonic lumen compared to the released polyphenols. Moreover, MGO promoted the increase of gut pathogens (Escherichia-Shigella and Klebsiella) and inhibited the proliferation of Megasphaera, Bifidobacterium and Megamonas, as well as reduced short-chain fatty acids (SCFAs) concentration. The addition of fiber-bound polyphenols of highland barley could effectively counteract MGO-induced detrimental consequences on gut microbiota and SCFAs production. These results demonstrate that fiber-bound polyphenols from highland barley can exert beneficial role through scavenging MGO and promises to be a functional ingredient to maintain colon heath.
Collapse
Affiliation(s)
- Jinxin Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xijuan Yang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai University, Xining 810000, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Zhang Y, Bai Y, Wang Z, Ye H, Han D, Zhao J, Wang J, Li D. Effects of Resistant Starch Infusion, Solely and Mixed with Xylan or Cellulose, on Gut Microbiota Composition in Ileum-Cannulated Pigs. Microorganisms 2024; 12:356. [PMID: 38399760 PMCID: PMC10893309 DOI: 10.3390/microorganisms12020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Fermentation of dietary fiber (DF) is beneficial for gut health, but its prebiotic effects are often impeded in the distal large intestine because of the fast degradation of fermentable substrates. One way to enhance the prebiotic effect of DF is to deliver fibers to the lower parts of the gut, which can be achieved by mixing different kinds of fiber. Therefore, in the present study, an ileum-cannulated pig model was employed to investigate the fermentation influence in the large intestine by infusing resistant starch solely (RS, fast fermentable fiber) and mixing with other fibers (xylan or cellulose). Twenty-four ileum-cannulated growing pigs were divided into four groups: one control group receiving saline ileal infusions and three experimental groups infused with RS, RS with xylan, or RS with cellulose. Fecal and plasma samples were analyzed for gut microbiota composition, short-chain fatty acids (SCFAs), and blood biochemistry. Results indicated no significant differences between the RS and control group for the microbiome and SCFA concentration (p > 0.05). However, RS combined with fibers, particularly xylan, resulted in enhanced and prolonged fermentation, marked by an increase in Blautia and higher lactate and acetate production (p < 0.05). In contrast, RS with cellulose infusion enriched bacterial diversity in feces (p < 0.05). Blood biochemistry parameters showed no significant differences across groups (p > 0.05), though a trend of increased glucose levels was noted in the treatment groups (p < 0.1). Overall, RS alone had a limited impact on the distal hindgut microbiota due to rapid fermentation in the proximal gut, whereas combining RS with other fibers notably improved gut microecology by extending the fermentation process.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Yu Bai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Hao Ye
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Yin J, Cheng L, Hong Y, Li Z, Li C, Ban X, Zhu L, Gu Z. A Comprehensive Review of the Effects of Glycemic Carbohydrates on the Neurocognitive Functions Based on Gut Microenvironment Regulation and Glycemic Fluctuation Control. Nutrients 2023; 15:5080. [PMID: 38140339 PMCID: PMC10745758 DOI: 10.3390/nu15245080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.
Collapse
Affiliation(s)
- Jian Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Bas-Bellver C, Barrera C, Betoret N, Seguí L. Impact of Fermentation Pretreatment on Drying Behaviour and Antioxidant Attributes of Broccoli Waste Powdered Ingredients. Foods 2023; 12:3526. [PMID: 37835180 PMCID: PMC10572841 DOI: 10.3390/foods12193526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Valorisation of fruit and vegetable wastes by transforming residues and discards into functional powdered ingredients has gained interest in recent years. Moreover, fermentation has been recalled as an ancient technology available to increase the nutritional value of foods. In the present work, the impact of pretreatments (disruption and fermentation) on drying kinetics and functional properties of powdered broccoli stems was studied. Broccoli stems fermented with Lactiplantibacillus plantarum and non-fermented broccoli stems were freeze-dried and air-dried at different temperatures. Drying kinetics were obtained and fitted to several thin layer mathematical models. Powders were characterized in terms of physicochemical and antioxidant properties, as well as of probiotic potential. Fermentation promoted faster drying rates and increased phenols and flavonoids retention. Increasing drying temperature shortened the process and increased powders' antioxidant activity. Among the models applied, Page resulted in the best fit for all samples. Microbial survival was favoured by lower drying temperatures (air-drying at 50 °C and freeze-drying). Fermentation and drying conditions were proved to determine both drying behaviour and powders' properties.
Collapse
Affiliation(s)
| | - Cristina Barrera
- Institute of Food Engineering-FoodUPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain; (C.B.-B.); (N.B.); (L.S.)
| | | | | |
Collapse
|
10
|
Yamada M, Yoshimoto J, Maeda T, Ishii S, Kishi M, Taguchi T, Morita H. Effect of short-term consumption of yellow peas as noodles on the intestinal environment: A single-armed pre-post comparative pilot study. Food Sci Nutr 2023; 11:4572-4582. [PMID: 37576055 PMCID: PMC10420782 DOI: 10.1002/fsn3.3416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 08/15/2023] Open
Abstract
Legumes contain dietary fiber and resistant starch, which are beneficial to the intestinal environment. Here, we investigated the effects of yellow pea noodle consumption on the gut microbiota and fecal metabolome of healthy individuals. This single-armed pre-post comparative pilot study evaluated eight healthy female participants who consumed yellow pea noodles for 4 weeks. The gut microbiota composition and fecal metabolomic profile of each participant were evaluated before (2 weeks), during (4 weeks), and after (4 weeks) daily yellow pea noodle consumption. 16S rRNA gene sequencing was performed on stool samples, followed by clustering of operational taxonomic units using the Cluster Database at High Identity with Tolerance and integrated QIIME pipeline to elucidate the gut microbiota composition. The fecal metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry and liquid chromatography time-of-flight mass spectrometry. Compared to day 0, the relative abundances of five bacterial genera (Bacteroides, Bilophila, Hungatella, Parabacteroides, and Streptococcus) in the intestinal microbiota significantly decreased, wherein those of Bifidobacterium longum and Ruminococcus bromii were increased on day 29 and decreased to the basal level (day 0) on day 57. Fecal metabolomic analysis identified 11 compounds showing significant fluctuations in participants on day 29 compared to day 0. Although the average levels of short-chain fatty acids in participants did not differ significantly on day 29 compared to those on day 0, the levels tended to increase in individual participants with >8% relative abundance of R. bromii in their gut microbiota. In conclusion, incorporating yellow peas as a daily staple may confer human health benefits by favorably altering the intestinal environment.
Collapse
Affiliation(s)
- Mei Yamada
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Tetsuya Maeda
- New Business Development, Mizkan Holdings Co., Ltd.TokyoJapan
| | - Sho Ishii
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | | | - Hidetoshi Morita
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
11
|
Lu C, Zhao Z, Huang G, Liu J, Ye F, Chen J, Ming J, Zhao G, Lei L. The contribution of cell wall integrity to gastric emptying and in vitro starch digestibility and fermentation performance of highland barley foods. Food Res Int 2023; 169:112912. [PMID: 37254345 DOI: 10.1016/j.foodres.2023.112912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Studies have shown that the structure, composition, and bioavailability of compounds in whole grains are affected by processing and the role of cells walls. In this study, the effects of different processing methods on highland barley, one of the mostly widely produced whole grains worldwide, were investigated. The processing methods applied were flaking-boiling (HB flake), sand-roasting (Puffed HB), and sand-roasting-milling (Tsamba). Results showed Puffed HB and Tsamba had higher levels of damaged starch content, starch short-range molecular order, and relative crystallinity than HB flake. The half-time of gastric emptying (t1/2) was the slowest for Tsamba (132.3 min) compared to HB flake (122.5 min) and Puffed HB (84.0 min), indicating the slowest gastric emptying rate, which could be attributed to its high viscosity of gastric digesta. After in vitro gastroduodenal digestion, Puffed HB exhibited the lowest starch digestibility and the least amount of β-glucan due to its less damaged cellular structure. Furthermore, Puffed HB resulted in a 21% and 18% higher in vitro production of total short-chain fatty acids than Tsamba and HB flake, respectively. Besides, undigested starch of Puffed HB after in vitro gastroduodenal digestion delayed in vitro fecal fermentation of β-glucan. Our study provided insight into the potential mechanisms of how cell wall integrity affected the gastric emptying, in vitro starch digestibility, and in vitro fecal fermentation of highland barley foods.
Collapse
Affiliation(s)
- Chun Lu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Zixuan Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Guobao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China
| | - Jia Liu
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Kadyan S, Park G, Wang B, Singh P, Arjmandi B, Nagpal R. Resistant starches from dietary pulses modulate the gut metabolome in association with microbiome in a humanized murine model of ageing. Sci Rep 2023; 13:10566. [PMID: 37386089 PMCID: PMC10310774 DOI: 10.1038/s41598-023-37036-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Emerging evidence suggests that plant-based fiber-rich diets improve ageing-associated health by fostering a healthier gut microbiome and microbial metabolites. However, such effects and mechanisms of resistant starches from dietary pulses remain underexplored. Herein, we examine the prebiotic effects of dietary pulses-derived resistant starch (RS) on gut metabolome in older (60-week old) mice carrying a human microbiome. Gut metabolome and its association with microbiome are examined after 20-weeks feeding of a western-style diet (control; CTL) fortified (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). NMR spectroscopy-based untargeted metabolomic analysis yield differential abundance linking phenotypic differences in specific metabolites among different RS groups. LEN and CKP increase butyrate, while INU promotes propionate. Conversely, bile acids and cholesterol are reduced in prebiotic groups along with suppressed choline-to-trimethylamine conversion by LEN and CKP, whereas amino acid metabolism is positively altered. Multi-omics microbiome-metabolome interactions reveal an association of beneficial metabolites with the Lactobacilli group, Bacteroides, Dubosiella, Parasutterella, and Parabacteroides, while harmful metabolites correlate with Butyricimonas, Faecalibaculum, Colidextribacter, Enterococcus, Akkermansia, Odoribacter, and Bilophila. These findings demonstrate the functional effects of pulses-derived RS on gut microbial metabolism and their beneficial physiologic responses in an aged host.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
13
|
Luo X, Huang Q, Fu X, Kraithong S, Hu Y, Yuan Y, Bao J, Zhang B. In vitro fecal fermentation characteristics of mutant rice starch depend more on amylose content than crystalline structure. Carbohydr Polym 2023; 307:120606. [PMID: 36781271 DOI: 10.1016/j.carbpol.2023.120606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
To obtain the relation between rice starch features and fermentation characteristics, rice starches with various polymorphic types and apparent amylose contents were subjected to in vitro fecal fermentation. Gas and short-chain fatty acid production was evaluated as a function of fermentation time, and the microbial responses were monitored by 16S rRNA sequencing technique at the end of fermentation. Regardless of polymorphic type, three high-amylose mutant rice starches (i.e., GM03, A-type; BP577, B-type; Wx21TT, C-type) displayed significantly slower fermentation rate during the first 12 h and higher final butyrate yield (17.6-17.9 mM) compared to the A-type normal starches (9311 and Wx22TT), and promoted the proliferation of Roseburia. However, A-type normal rice starches presented higher propionate production, and increased the growth of Bacteroides and Megamonas. The principal component and redundancy analyses indicated that three high-amylose mutant rice starches showed similar abundance and migration of microbial communities, and the apparent amylose content was closely correlated with the abundance of their five key amplicon sequence variants. Our results demonstrated that amylose content might be a controlling factor in determining the fermentation properties of rice starches than crystalline structure.
Collapse
Affiliation(s)
- Xiaoyi Luo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Supaluck Kraithong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
14
|
Bai Y, Zhou Y, Li X, Zhang R, Huang F, Fan B, Tong L, Wang F, Zhang M. Longan pulp polysaccharides regulate gut microbiota and metabolites to protect intestinal epithelial barrier. Food Chem 2023; 422:136225. [PMID: 37156018 DOI: 10.1016/j.foodchem.2023.136225] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Longan pulp polysaccharide is a bioactive component with prebiotic activity and intestinal barrier protection. This study aimed to evaluate the influence of digestion and fermentation on the bioavailability and intestinal barrier protection of polysaccharide LPIIa from longan pulp. The molecular weight of LPIIa didn't change significantly after gastrointestinal digestion in vitro. After fecal fermentation, 56.02% of LPIIa was consumed by gut microbiota. The short-chain fatty acid level in LPIIa group was 51.63% higher than that in blank group. LPIIa intake also increased short-chain fatty acid production and G-protein-coupled receptor 41 expression in the colon of mice. Moreover, LPIIa improved the relative richness of Lactobacillus, Pediococcus, and Bifidobacterium in colon content. Compared to LPIIa, fecal fermented LPIIa better protected intestinal epithelial barrier by increasing Zonula occludens-1 expression. These results provided an important basis for the design of functional food based on longan polysaccharides to prevent intestinal barrier damage related diseases.
Collapse
Affiliation(s)
- Yajuan Bai
- Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Sanya Institute, Hainan Academy of Agricultural Sciences, Haikou 572025, PR China
| | - Yue Zhou
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China/College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Xiang Li
- Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Sanya Institute, Hainan Academy of Agricultural Sciences, Haikou 572025, PR China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Bei Fan
- Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Sanya Institute, Hainan Academy of Agricultural Sciences, Haikou 572025, PR China
| | - Litao Tong
- Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengzhong Wang
- Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Sanya Institute, Hainan Academy of Agricultural Sciences, Haikou 572025, PR China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
15
|
Kadyan S, Park G, Singh P, Arjmandi B, Nagpal R. Prebiotic mechanisms of resistant starches from dietary beans and pulses on gut microbiome and metabolic health in a humanized murine model of aging. Front Nutr 2023; 10:1106463. [PMID: 36824174 PMCID: PMC9941547 DOI: 10.3389/fnut.2023.1106463] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Dietary pulses, being a rich source of fiber and proteins, offer an ideal and inexpensive food choice for older adults to promote gut and metabolic health. However, the prebiotic effects of dietary pulses-derived resistant starches (RS), compared to RS from cereals and tubers, remain relatively underexplored, particularly in context to their gut modulatory potential in old age. We herein investigate the prebiotic effects of pulses-derived RS on the gut microbiome and intestinal health in aged (60-week old) mice colonized with human microbiota. C57B6/J mice were fed for 20 weeks with either a western-style high-fat diet (control; CTL) or CTL diet supplemented (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). We find that the RS supplementation modulates gut microbiome in a sex-dependent manner. For instance, CKP enriched α-diversity only in females, while β-diversity deviated for both sexes. Further, different RS groups exhibited distinct microbiome differences at bacterial phyla and genera levels. Notably, LEN fostered Firmicutes and depleted Proteobacteria abundance, whereas Bacteroidota was promoted by CKP and INU. Genus Dubosiella increased dominantly in males for all groups except PTB, whilst Faecalibaculum decreased in females by CKP and INU groups. Linear discriminant analysis effect size (LEfSe) and correlational analyzes reveal RS-mediated upregulation of key bacterial genera associated with short-chain fatty acids (butyrate) production and suppression of specific pathobionts. Subsequent machine-learning analysis validate decreased abundance of notorious genera, namely, Enterococcus, Odoribacter, Desulfovibrio, Alistipes and Erysipelatoclostridium among RS groups. CKP and LEN groups partly protected males against post-prandial glycemia. Importantly, RS ameliorated high-fat diet-induced gut hyperpermeability and enhanced expression of tight-junction proteins (claudin-1 and claudin-4), which were more pronounced for LEN. In addition, IL10 upregulation was more prominent for LEN, while TNF-α was downregulated by LEN, CKP, and INU. Together, these findings demonstrate that RS supplementation beneficially modulates the gut microbiome with a reduction in gut leakiness and inflammation, indicating their prebiotic potential for functional food and nutritional applications.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | | |
Collapse
|
16
|
Bai Y, Zhou Y, Zhang R, Chen Y, Wang F, Zhang M. Gut microbial fermentation promotes the intestinal anti-inflammatory activity of Chinese yam polysaccharides. Food Chem 2023; 402:134003. [DOI: 10.1016/j.foodchem.2022.134003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022]
|
17
|
Xiong W, Zhang B, Gu Z, Muir J, Dhital S. The microbiota and metabolites during the fermentation of intact plant cells depend on the content of starch, proteins and lipids in the cells. Int J Biol Macromol 2023; 226:965-973. [PMID: 36526066 DOI: 10.1016/j.ijbiomac.2022.12.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Intact cells, as the smallest unit of whole foods, were isolated from three legume crops and fermented with human faecal inoculum to elucidate the effect of food macro-nutrients compositional difference (starch, proteins and lipids) on in vitro colonic fermentation profiles. After 48 h of fermentation, the highest production of short-chain fatty acids (SCFAs) were observed for the pea cells, abundance in starch (64.9 %, db). In contrast, branch chain fatty acids (BCFAs) were the major metabolites for protein-enriched soybean cells (protein content 56.9 %, db). The peanut cells rich in lipids (49.2 %, db) has the lowest fermentation rate among the three varieties. Correspondingly, pea cells favoured the growth of Bifidobacterium, whereas soybean and peanut cells promoted an abundance of Bacteroides and Shigella, respectively. Furthermore, except the intact pea cells promoting the abundance of butyrate producer Roseburia, a similar fermentation pattern was found between intact and broken cells suggesting that macro-nutrient types, rather than structure, dominate the production of metabolites in colonic fermentation. The findings elucidate how the food compositional difference can modulate the gut microbiome and thus provide the knowledge to design whole food legumes-based functional foods.
Collapse
Affiliation(s)
- Weiyan Xiong
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Bin Zhang
- Sino-Singapore International Research Institute, Guangzhou 510555, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhipeng Gu
- Sino-Singapore International Research Institute, Guangzhou 510555, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jane Muir
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| |
Collapse
|
18
|
Xu M, Pan L, Wang B, Zou X, Zhang A, Zhou Z, Han Y. Simulated Digestion and Fecal Fermentation Behaviors of Levan and Its Impacts on the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1531-1546. [PMID: 36622938 DOI: 10.1021/acs.jafc.2c06897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Levan is a microbial fructan widely explored in various fields owing to its excellent physical and biochemical properties. However, little is known about its digestion and fermentation characteristics in vitro. This study evaluated the potential prebiotic properties of levan obtained by enzymatic synthesis. Scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the primary structures of levan remained stable after saliva-gastrointestinal digestion. The microtopography, molecular weight, and functional group of levan were seriously damaged during fecal fermentation. Moreover, the total short-chain fatty acid levels increased significantly, especially for propionic acid, butyric acid, and valeric acid. The 16S rDNA sequencing showed that levan mainly increased the abundance of Firmicutes; in genus levels, certain beneficial bacteria such as Megasphaera and Megamonas genera were remarkably promoted, and the proliferation of harmful genera was inhibited (such as Cedecea and Klebsiella). Overall, this study provided new insights into the potential probiotic mechanism of levan.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Aihua Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| |
Collapse
|
19
|
Lei J, Zhang Y, Guo D, Meng J, Feng C, Xu L, Cheng Y, Liu R, Chang M, Geng X. Extraction optimization, structural characterization of soluble dietary fiber from Morchella importuna, and its in vitro fermentation impact on gut microbiota and short-chain fatty acids. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2093979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Yuting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| |
Collapse
|
20
|
Li C. Understanding interactions among diet, host and gut microbiota for personalized nutrition. Life Sci 2022; 312:121265. [PMID: 36473543 DOI: 10.1016/j.lfs.2022.121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Human responses to the same diets may vary to a large extent, depending on the complex diet-host-microbiota interactions. Recent scientific advance has indicated that this diet-host-microbiota interaction could be quantified to develop strategies for improving individual health (personalized nutrition). Compared to the host related factors (which are difficult to manipulate), the gut microbiome is more readily modulated by dietary exposures and has important roles in affecting human health via the synthesis of various bioactive compounds and participating in the digestion and absorption process of macro- and micronutrients. Therefore, gut microbiota alterations induced by diets could possibly be utilized to improve human health in a targeted manner. However, limitations in the processing and analysis of 'big-data' concerning human microbiome still restrict the translational capacity of diet-host-microbiota interactions into tools to improve personalized human health. In the current review, recent advances in terms of understanding the specific diet-host-microbiota interactions were summarized, aiming to help the development of strategies for personalized nutrition.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
21
|
Han X, Zhou Q, Gao Z, Lin X, Zhou K, Cheng X, Chitrakar B, Chen H, Zhao W. In vitro digestion and fecal fermentation behaviors of polysaccharides from Ziziphus Jujuba cv. Pozao and its interaction with human gut microbiota. Food Res Int 2022; 162:112022. [DOI: 10.1016/j.foodres.2022.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
22
|
Cao S, Li C. Influence of Resistant Starch in Whole Rice on Human Gut Microbiota─From Correlation Implications to Possible Causal Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12760-12771. [PMID: 36190451 DOI: 10.1021/acs.jafc.2c05380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rice is the main staple food for a large population around the world, while it generally has a high glycemic index and low resistant starch (RS) content. Although many strategies have been applied to develop healthier rice products with increased RS contents, their actual effects on gut microbiota and human health remain elusive. In this review, currently available production methods of rice RS are briefly summarized, followed by a critical discussion on their interactions with gut microbiota and subsequent effects on human health, from correlation implications to causal mechanisms. Different contents, types, and structures of RS have been produced by strategies such as genetic manipulation and controlling cooking conditions. The difference can largely determine effects of rice RS on gut microbiota composition and metabolites by specific RS-gut microbiota interactions. This review can thus help the rice industry develop rice products with desirable RS contents and structures to generally improve human health.
Collapse
Affiliation(s)
- Senbin Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
23
|
Li QY, Dou ZM, Chen C, Jiang YM, Yang B, Fu X. Study on the Effect of Molecular Weight on the Gut Microbiota Fermentation Properties of Blackberry Polysaccharides In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11245-11257. [PMID: 36053142 DOI: 10.1021/acs.jafc.2c03091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effect of different molecular weights on the metabolic characteristics of blackberry polysaccharides (BBP). After degradation, three fractions, namely, BBP-8, BBP-16, and BBP-24, were obtained. During fermentation, all polysaccharide fractions were significantly degraded and utilized by the intestinal microbiota, and the lower-molecular-weight polysaccharides were easier to be fermented with higher gas production and carbohydrate consumption rates. Furthermore, the monosaccharide utilization sequence of all polysaccharides was glucose > galactose > arabinose > galacturonic acid. In addition, the lower-molecular-weight polysaccharides had a faster short-chain fatty acid (SCFA) production rate but did not affect the final SCFA yields. The fermentation of BBP promoted the increase of Bacteroidetes and the decrease of Firmicutes. The proportions of Bacteroidetes in BBP, BBP-8, BBP-16, and BBP-24 were 45.41, 47.50, 48.08, and 50.09%, respectively.
Collapse
Affiliation(s)
- Qiao-Yun Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zu-Man Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Yue-Ming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
24
|
Guo Y, Chen X, Gong P, Wang M, Yao W, Yang W, Chen F. In vitro digestion and fecal fermentation of Siraitia grosvenorii polysaccharide and its impact on human gut microbiota. Food Funct 2022; 13:9443-9458. [PMID: 35972431 DOI: 10.1039/d2fo01776h] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the structure of Siraitia grosvenorii polysaccharides (SGPs) changed significantly after digestion. After 48 h of in vitro fecal fermentation, Mw decreased and the content of CR showed a trend of increasing and then decreasing. The monosaccharide composition (glucose) of SGPs showed a trend of decreasing and then stabilizing during fecal fermentation, indicating that SGPs were partially degraded during in vitro fermentation and significantly degraded and utilized by the human intestinal microbiota. In addition, SGPs fermentation for 48 h increased the production of SCFAs especially acetic acid, propionic acid, and butyric acid. Moreover, after in vitro digestion and enzymatic digestion, the in vitro hypoglycemic activity of SGPs remained relatively high afterward, albeit reduced. This study contributes to a better understanding of the potential digestion and enzymatic mechanisms of SGP, which is important for the future development of SGP as a functional food and drug.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Mengrao Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
25
|
Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
The contribution of intact structure and food processing to functionality of plant cell wall-derived dietary fiber. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Kadyan S, Sharma A, Arjmandi BH, Singh P, Nagpal R. Prebiotic Potential of Dietary Beans and Pulses and Their Resistant Starch for Aging-Associated Gut and Metabolic Health. Nutrients 2022; 14:nu14091726. [PMID: 35565693 PMCID: PMC9100130 DOI: 10.3390/nu14091726] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Dietary pulses, including dry beans, lentils, chickpeas, and dry peas, have the highest proportion of fiber among different legume cultivars and are inexpensive, easily accessible, and have a long shelf-life. The inclusion of pulses in regular dietary patterns is an easy and effective solution for achieving recommended fiber intake and maintaining a healthier gut and overall health. Dietary pulses-derived resistant starch (RS) is a relatively less explored prebiotic ingredient. Several in vitro and preclinical studies have elucidated the crucial role of RS in fostering and shaping the gut microbiota composition towards homeostasis thereby improving host metabolic health. However, in humans and aged animal models, the effect of only the cereals and tubers derived RS has been studied. In this context, this review collates literature pertaining to the beneficial effects of dietary pulses and their RS on gut microbiome-metabolome signatures in preclinical and clinical studies while contemplating their potential and prospects for better aging-associated gut health. In a nutshell, the incorporation of dietary pulses and their RS in diet fosters the growth of beneficial gut bacteria and significantly enhances the production of short-chain fatty acids in the colon.
Collapse
|
28
|
Huyan Z, Pellegrini N, Steegenga W, Capuano E. Insights into gut microbiota metabolism of dietary lipids: the case of linoleic acid. Food Funct 2022; 13:4513-4526. [PMID: 35348564 DOI: 10.1039/d1fo04254h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been recognized that, next to dietary fibre and proteins, gut microbiota can metabolize lipids producing bioactive metabolites. However, the metabolism of dietary lipids by human gut microbiota has been poorly explored so far. This study aimed to examine the change in lipids, particularly linoleic acid (LA), induced by the chemical form of lipids and the presence of the plant matrix. Short-chain fatty acid (SCFA) production was monitored to get an insight into microbial activity. Free LA, glyceryl trilinoleate and soybean oil as well as digested intact (DS) and broken (BS) soybean cells were subjected to in vitro fermentation using human faecal inoculums. Confocal microscopy was used to visualize the soybean cell integrity. Three LA metabolites, including two conjugated fatty acids (CLAs, 9z,11e and 9e,11e) and 12hydroxy, 9z C18:1, were identified and monitored. Free LA addition improved the LA metabolite production but reduced SCFA concentrations compared to trilinoleate and soybean oil. Breaking cell integrity had impacts on CLA, hydroxy C18:1 and SCFA production and free fatty acid release within the first 24 h of fermentation, but this effect vanished with time. In contrast, soybean oil only increased free LA release and hydroxy C18:1 production. The content of several FAs decreased during fermentation suggesting a substantial conversion in microbial metabolites. Besides, LA metabolites were also identified in the fermentation pellets suggesting the incorporation of microbial FA metabolites into bacterial cells. This study expands our understanding of microbial metabolism of dietary lipids with a special emphasis on the role of food- and diet-related factors.
Collapse
Affiliation(s)
- Zongyao Huyan
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands.
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands. .,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Wilma Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Kraithong S, Wang S, Junejo SA, Fu X, Theppawong A, Zhang B, Huang Q. Type 1 resistant starch: Nutritional properties and industry applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Fang F, Junejo SA, Wang K, Yang X, Yuan Y, Zhang B. Fibre matrices for enhanced gut health: a mini review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science Purdue University West Lafayette IN 47906 USA
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health South China University of Technology Guangzhou 510640 China
| | - Kai Wang
- School of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xinquan Yang
- School of Life Sciences Guangzhou University Guangzhou 510006 China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| | - Bin Zhang
- School of Food Science and Engineering Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health South China University of Technology Guangzhou 510640 China
| |
Collapse
|
31
|
Guo D, Lei J, He C, Peng Z, Liu R, Pan X, Meng J, Feng C, Xu L, Cheng Y, Chang M, Geng X. In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose. Int J Biol Macromol 2022; 208:343-355. [PMID: 35337916 DOI: 10.1016/j.ijbiomac.2022.03.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the effects of in vitro simulated saliva-gastrointestinal digestion and fecal fermentation behavior on the chemical composition, structure and bioactivity of polysaccharides from Clitocybe squamulosa (CSFP). Results showed that gastric digestion significantly changed the chemical composition and structural properties of CSFP, such as total uronic acid, reducing sugar, molecular weight, rheological properties, particle size, and microscopic morphology. In particular, the molecular weight decreased from 19,480 Da to 10,945 Da, while the reducing-sugar content increased from 0.149 mg/mL to 0.293 mg/mL. Gastric digestion also affected the biological activity of CSFP. Although after gastric digestion, CSFP retained its vigorous antioxidant activity, ability to inhibit α-amylase activity, and the binding ability to bile acid, fat, and free cholesterol in vitro. However, there was an apparent weakening trend. After in vitro fermentation of gut microbiota, the content of total sugar was significantly decreased from 11.6 mg/mL to 2.4 mg/mL, and the pH value in the fecal culture significantly decreased to 5.20, indicating that CSFP could be broken down and utilized by gut microbiota. Compared to the blank, the concentrations of total short-chain fatty acids (SCFAs) including acetic, propionic and n-butyric significantly increased. Simultaneously, CSFP could remarkably reduce the proportions of Firmicutes and Bacteroides (F/B) and promote the growth of some beneficial intestinal microbiota. Therefore, CSFP can potentially be a new functional food as prebiotics to promote human gut health.
Collapse
Affiliation(s)
- Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Chang He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Zhijie Peng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| |
Collapse
|
32
|
Li C, Hu Y. New definition of resistant starch types from the gut microbiota perspectives - a review. Crit Rev Food Sci Nutr 2022; 63:6412-6422. [PMID: 35075962 DOI: 10.1080/10408398.2022.2031101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current definition of resistant starch (RS) types is largely based on their interactions with digestive enzymes from human upper gastrointestinal tract. However, this is frequently inadequate to reflect their effects on the gut microbiota, which is an important mechanism for RS to fulfill its function to improve human health. Distinct shifts of gut microbiota compositions and alterations of fermented metabolites could be resulted by the consumption of RS from the same type. This review summarized these defects from the current definitions of RS types, while more importantly proposed pioneering concepts for new definitions of RS types from the gut microbiota perspectives. New RS types considered the aspects of RS fermentation rate, fermentation end products, specificity toward gut microbiota and shifts of gut microbiota caused by the consumption of RS. These definitions were depending on the known outcomes from RS-gut microbiota interactions. The application of new RS types in understanding the complex RS-gut microbiota interactions and promoting human health should be focused in the future.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Xiong W, Devkota L, Zhang B, Muir J, Dhital S. Intact cells: “Nutritional capsules” in plant foods. Compr Rev Food Sci Food Saf 2022; 21:1198-1217. [DOI: 10.1111/1541-4337.12904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Weiyan Xiong
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong P. R. China
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong P. R. China
| | - Jane Muir
- Department of Gastroenterology Central Clinical School, Monash University Melbourne Victoria Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
| |
Collapse
|
34
|
|
35
|
Hu Y, Li C, Hou Y. Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review. Food Funct 2021; 12:11154-11164. [PMID: 34694313 DOI: 10.1039/d1fo02416g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Liver glycogen α particles in diabetic patients are fragile relative to those in healthy individuals, and restoring these fragile glycogen particles to a normal state shows potential to contribute to the remission of diabetes. Resistant starch (RS) is beneficial for diabetes management through its interactions with the gut microbiota. However, its effects on glycogen fragility are not fully understood. This review aims to summarize the recent understanding of the interactions between RS and the human gut microbiota and the possible connections to liver glycogen biosynthesis to elucidate its role in the development of glycogen fragility. RS might regulate glycogen fragility in diabetes by modulating the postprandial glycemic response and glycogen biosynthesis pathways. Before RS can be applied to repair fragile glycogen, more work should be done to better understand in vivo RS structures and identify the factor binding glycogen β particles together. This review contains important information on the connections between glycogen fragility and RS-gut microbiota interactions, which could help to better understand the health benefits of RS consumption.
Collapse
Affiliation(s)
- Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
36
|
Zhou Q, Fu X, Dhital S, Zhai H, Huang Q, Zhang B. In vitro fecal fermentation outcomes of starch-lipid complexes depend on starch assembles more than lipid type. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Yu M, Arıoğlu-Tuncil S, Xie Z, Fu X, Huang Q, Chen T, Zhang B. In vitro fecal fermentation profiles and microbiota responses of pulse cell wall polysaccharides: enterotype effect. Food Funct 2021; 12:8376-8385. [PMID: 34346458 DOI: 10.1039/d1fo01231b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gut microbiota community of individuals is predominated by diverse fiber-utilizing bacteria, and might have distinct fermentation outcomes for a given dietary substrate. In this research, we isolated pea cell walls (PCWs) from cotyledon seeds, and performed the in vitro fecal fermentation by individual Prevotella- and Bacteroides-enterotype inocula. The Prevotella-enterotype inoculum showed a higher fermentation rate and produced more short-chain fatty acids (SCFAs), especially propionate and butyrate, throughout the entire fermentation period from PCW degradation compared with the Bacteroides-enterotype one. Furthermore, the better monosaccharide utilization capacity of Prevotella-enterotype inoculum was shown, compared to the Bacteroides-enterotype inoculum. PCW fermentation with Prevotella- and Bacteroides-enterotype inocula resulted in different microbial changes, and the abundance of Prevotella and Bacteroides was promoted, respectively. These results may contribute to predicting the responses of Prevotella and Bacteroides enterotypes to diets and offer useful information in personalized nutrition.
Collapse
Affiliation(s)
- Miaomiao Yu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Seda Arıoğlu-Tuncil
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, 42090, Turkey
| | - Zhuqing Xie
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Department of Food Science, University of Copenhagen, Frederiksberg DK-1958, Denmark
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Tingting Chen
- School of Food Science, Nanchang University, Nanchang, China.
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
38
|
Li C, Hu Y. Align resistant starch structures from plant-based foods with human gut microbiome for personalized health promotion. Crit Rev Food Sci Nutr 2021; 63:2509-2520. [PMID: 34515592 DOI: 10.1080/10408398.2021.1976722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistant starch (RS) is beneficial for human health through its interactions with gut microbiota. However, the alignment between RS structures with gut microbiota profile and consequentially health benefits remain elusive. This review summarizes current understanding of RS complex structures and their interactions with the gut microbiota, aiming to highlight the possibility of manipulating RS structures for a targeted and predictable gut microbiota shift for human health in a personalized way. Current definition of RS types is strongly associated with starch digestion behaviors in small intestine, which does not precisely reflect their interactions with human gut microbiota. Distinct alterations of gut microbiota could be associated with the same RS type. The principles to describe the specificity of different RS structural characteristics in terms of aligning with human gut microbiota shift was proposed in this review, which could result in new definitions of RS types from the microbial perspectives. To consider the highly variable personal features, a machine-learning algorithm to integrate different personalized factors and better understand the complex interaction between RS and gut microbiota and its effects on individual health was explained. This review contains important information to bring interactions between RS and gut microbiota to translational practice.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Li HT, Chen SQ, Bui AT, Xu B, Dhital S. Natural ‘capsule’ in food plants: Cell wall porosity controls starch digestion and fermentation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Li C, Hu Y, Zhang B. Plant cellular architecture and chemical composition as important regulator of starch functionality in whole foods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Junejo SA, Ding L, Fu X, Xiong W, Zhang B, Huang Q. Pea cell wall integrity controls the starch and protein digestion properties in the INFOGEST in vitro simulation. Int J Biol Macromol 2021; 182:1200-1207. [PMID: 33984387 DOI: 10.1016/j.ijbiomac.2021.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/29/2022]
Abstract
The cell wall microstructure has been recognized to modulate the digestibility and bioaccessibility of nutrients in whole pulse foods, while the role of cell wall integrity is unclarified in the hydrolysis of intracellular nutrients during human gastrointestinal transit. Intact pea cells were isolated to prepare a series of cell wall integrity subjected to cooking and followed by the in vitro hydrolysis of starch and protein properties using the INFOGEST 2.0 in vitro simulation. Thermal properties showed that cell samples either in raw or cooked form with different wall integrity exhibited similar and higher starch gelatinization temperatures compared to the isolated starch counterpart. It was found that intact pea cells showed the limited hydrolysis extent of the maltose (16.2%) and NH2 (6.7%) compared to the damaged cells. In addition, intact cells also withheld the cell wall integrity throughout gastrointestinal digestion with minor rupture, and presented the higher protein molecular weight (70 kDa) in the SDS-PAGE profiles. Results suggested that the in vitro starch and protein digestion properties are modulated by the cell wall integrity, which may lead to lower glycemic response and open up the possibilities of designing health food products.
Collapse
Affiliation(s)
- Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Li Ding
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Weiyan Xiong
- Department of Chemical Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
42
|
Wang S, Dhital S, Wang K, Fu X, Zhang B, Huang Q. Side-by-side and exo-pitting degradation mechanism revealed from in vitro human fecal fermentation of granular starches. Carbohydr Polym 2021; 263:118003. [PMID: 33858585 DOI: 10.1016/j.carbpol.2021.118003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
The in vitro fecal fermentation characteristics and microbiota responses to A- and B-type polymorphic starches as model (whole) foods enriched with resistant starch was investigated. Marked difference in fermentation rate as well as microbial genera was observed during fermentation, the degradation pattern as well as structural evolution during fermentation was almost similar. The final butyrate concentrations of both HAMS and PS (ca. 38 mM) were significantly higher than that of WMS (23 mM) and NMS (33 mM), which was associated with the increase of the relative abundance of Roseburia, Blautia, and Lachnospiraceae. A-type polymorphic starches, on the other hand had remarkably faster fermentation rate and promoted Megamonas. X-ray diffraction and size-exclusion chromatography of residual starch during the fermentation course demonstrated the "side-by-side" fermentation pattern. Based on the structural changes observed, we conclude that in vitro fecal fermentation of starch granules predominantly controlled by the surface features rather than the molecular and supra-molecular structure.
Collapse
Affiliation(s)
- Shaokang Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Sino-Singapore International Research Institute, Guangzhou, 510555, China
| | - Sushil Dhital
- Department of Chemical Engineering, Monash University, Clayton Campus, VIC, 3800, Australia
| | - Kai Wang
- School of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Sino-Singapore International Research Institute, Guangzhou, 510555, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Sino-Singapore International Research Institute, Guangzhou, 510555, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Sino-Singapore International Research Institute, Guangzhou, 510555, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China.
| |
Collapse
|
43
|
Xie Z, Ding L, Huang Q, Fu X, Liu F, Dhital S, Zhang B. In vitro colonic fermentation profiles and microbial responses of propionylated high-amylose maize starch by individual Bacteroides-dominated enterotype inocula. Food Res Int 2021; 144:110317. [PMID: 34053522 DOI: 10.1016/j.foodres.2021.110317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/28/2022]
Abstract
The concept of "enterotype" has been proposed to differentiate the gut microbiota between individual humans, and different dominant bacteria utilize fiber substrates with different fermentation properties and microbial changes. In this study, we made propionylated high-amylose maize starch and investigated both in vitro fecal fermentation properties and microbial responses by individual Bacteroides-dominated enterotype inocula. Propionyl group substitution of HAMS did not significantly change gas production profiles, suggesting that the gas production during fermentation is independent of propionylation. The final concentration of released propionate significantly increased (10.26-12.60 mM) as a function of propionylation degree, suggesting that the introduced propionyl groups can increase the concentration of short-chain fatty acids (SCFA) during colonic fermentation. At the genus level, Bacteroides was obviously promoted for all donors with the final abundance in the range of 0.1-0.24, indicating that propionylated high-amylose maize starch changed the structure and abundance of microbiota compared to unmodified starch. Besides, the non-metric dimensional scoring (NMDS) plots showed that those changes were related to the initial microbiota composition. The results may offer useful information for the design of personalized food products and relevant therapies at least within Bacteroides-dominated enterotype.
Collapse
Affiliation(s)
- Zhuqing Xie
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Li Ding
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Feitong Liu
- H&H Group Global Research and Technology Center, Guangzhou 510700, China
| | - Sushil Dhital
- Department of Chemical Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
44
|
Wu DT, Yuan Q, Guo H, Fu Y, Li F, Wang SP, Gan RY. Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota. Food Res Int 2021; 141:109888. [PMID: 33641944 DOI: 10.1016/j.foodres.2020.109888] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
The in vitro simulated saliva-gastrointestinal digestion and human fecal fermentation of snow chrysanthemum polysaccharides (JHP) were investigated. Results showed that reducing sugar contents of JHP increased during the gastrointestinal digestion, and glucose released with the decrease of its molecular weight, suggesting that JHP could be partially degraded under the gastrointestinal digestion. Furthermore, after in vitro fecal fermentation, the molecular weight and molar ratio of constituent monosaccharides (galactose and galacturonic acid) of the indigestible JHP (JHP-I) significantly decreased, and both monosaccharides and oligosaccharides released, suggesting that JHP-I could be further degraded and consumed by gut microbiota. Some beneficial bacteria, such as genera Bifidobacterium, Lactobacillus, Megamonas, and Megasphaera, significantly increased, suggesting that JHP-I could change the composition and abundance of gut microbiota. These results suggest that JHP is a potential source of prebiotics, and can be helpful for better understanding of the potential digestion and fermentation mechanism of JHP.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qin Yuan
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Huan Guo
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, Sichuan, China
| | - Yuan Fu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, Sichuan, China
| | - Fen Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, Sichuan, China.
| |
Collapse
|
45
|
Pallares Pallares A, Gwala S, Pälchen K, Duijsens D, Hendrickx M, Grauwet T. Pulse seeds as promising and sustainable source of ingredients with naturally bioencapsulated nutrients: Literature review and outlook. Compr Rev Food Sci Food Saf 2021; 20:1524-1553. [DOI: 10.1111/1541-4337.12692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Pallares Pallares
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Dorine Duijsens
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| |
Collapse
|
46
|
Huang Y, Dhital S, Liu F, Fu X, Huang Q, Zhang B. Cell wall permeability of pinto bean cotyledon cells regulate in vitro fecal fermentation and gut microbiota. Food Funct 2021; 12:6070-6082. [PMID: 34042922 DOI: 10.1039/d1fo00488c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Processing induced structural changes of whole foods for the regulation of the colonic fermentation rate and microbiota composition are least understood and often overlooked. In the present study, intact cotyledon cells from pinto beans were isolated as a whole pulse food model and subjected to a series of processing temperatures to modulate the structure, most dominantly the cell wall permeability. The cell wall permeability, observed with the diffusion of fluorescently labeled dextran (FITC-dextran), was increased as a function of the hydrothermal temperature, which is in line with the rise in the in vitro fecal fermentation rate and production of short-chain fatty acids (SCFAs) from the pinto bean cells. Further, the abundance of beneficial microbiota, such as Roseburia, Lachnospiraceae, Bacteroides, and Coprococcus, were significantly higher for cells processed at 100 °C compared to the 60 °C-treated ones. We conclude that cell wall provides an effective barrier for the microbial fermentation of intact cells. With an increase in cell wall permeability, microbes and/or microbial enzymes have easier access to intracellular starch for fermentation, leading to an increase in the production of metabolites and the abundance of beneficial microbes. Thus, desired colonic fermentation profiles can be achieved with the controlled processing of whole foods for enhanced gut health.
Collapse
Affiliation(s)
- Yanrong Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. and SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
| | - Sushil Dhital
- Department of Chemical Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Feitong Liu
- H&H Group Global Research and Technology Center, Guangzhou 510700, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. and SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China and Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. and SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China and Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. and SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China and Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
47
|
Wu DT, Fu Y, Guo H, Yuan Q, Nie XR, Wang SP, Gan RY. In vitro simulated digestion and fecal fermentation of polysaccharides from loquat leaves: Dynamic changes in physicochemical properties and impacts on human gut microbiota. Int J Biol Macromol 2020; 168:733-742. [PMID: 33232697 DOI: 10.1016/j.ijbiomac.2020.11.130] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
The aim of this study was to well understand the dynamic changes of physicochemical properties of polysaccharides from loquat leaves (LLP) during in vitro simulated saliva-gastrointestinal digestion and fecal fermentation and its related impacts on human gut microbiota. Results showed that the contents of reducing sugar of LLP slightly increased during the gastrointestinal digestion, and its molecular weight also slightly decreased, suggesting that LLP could be slightly degraded under the gastrointestinal digestion conditions. Moreover, during the fecal fermentation, the molecular weight of the indigestible LLP (LLP-I) significantly decreased, and the molar ratio of constituent monosaccharides of LLP-I, such as glucuronic acid, galacturonic acid, galactose, and arabinose, significantly changed, indicating that LLP-I could be degraded and consumed by human gut microbiota. Indeed, some beneficial bacteria such as Megasphaera, Megamonas, Bifidobacterium, Phascolarctobacterium, and Desulfovibrio significantly increased, suggesting that LLP-I could change the composition and abundance of gut microbiota. LLP-I could also promote the production of health-promoting short chain fatty acids. Results from this study are benefical to well understand the in vitro digestion and fecal fermentation behaviors of LLP, and LLP can be developed as a potential prebiotic in the functional food industry.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yuan Fu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Huan Guo
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Qin Yuan
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xi-Rui Nie
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| |
Collapse
|
48
|
Ojo BA, Lu P, Alake SE, Keirns B, Anderson K, Gallucci G, Hart MD, El-Rassi GD, Ritchey JW, Chowanadisai W, Lin D, Clarke S, Smith BJ, Lucas EA. Pinto beans modulate the gut microbiome, augment MHC II protein, and antimicrobial peptide gene expression in mice fed a normal or western-style diet. J Nutr Biochem 2020; 88:108543. [PMID: 33144228 DOI: 10.1016/j.jnutbio.2020.108543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
The onset of type 2 diabetes in obesity is associated with gut dysbiosis and a failure to confine commensal bacteria and toxins to the gut lumen while prebiotics may prevent these effects. This study evaluated the effects of pinto beans (PB) supplementation on cecal bacteria, short-chain fatty acids (SCFAs), distal ileal antigen presentation marker (major histocompatibility complex [MHC] II) and antimicrobial peptide genes during short-term high-fat, high sucrose (HFS) feeding. Six-week-old, male C57BL/6J mice were randomly assigned to four groups (n=12/group), and fed a control (C) or HFS diet with or without cooked PB (10%, wt/wt) for 30 days. Supplemental PB in both the C and HFS diets decreased the abundance of Tenericutes and the sulfate-reducing bacteria Bilophila. In contrast, PB raised the abundance of taxa within the SCFAs-producing family, Lachnospiraceae, compared to groups without PB. Consequently, fecal butyric acid was significantly higher in PB-supplemented groups compared to C and HFS groups. PB reversed the HFS-induced ablation of the distal ileal STAT3 phosphorylation, and up-regulated antimicrobial peptide genes (Reg3γ and Reg3β). Furthermore, the expression of MHC II protein was elevated in the PB supplemented groups compared to C and HFS. Tenericutes and Bilophilia negatively correlated with activated STAT3 and MHC II proteins. Finally, supplemental PB improved fasting blood glucose, glucose tolerance and suppressed TNFα and inducible nitric oxide synthase mRNA in the visceral adipose tissue. Put together, the beneficial impact of PB supplementation on the gut may be central to its potential to protect against diet-induced inflammation and impaired glucose tolerance.
Collapse
Affiliation(s)
- Babajide A Ojo
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Peiran Lu
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Sanmi E Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Bryant Keirns
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Kendall Anderson
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Grace Gallucci
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Guadalupe Davila El-Rassi
- Robert M Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Winyoo Chowanadisai
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Stephen Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
49
|
Effect of bean structure on microbiota utilization of plant nutrients: An in-vitro study using the simulator of the human intestinal microbial ecosystem (SHIME®). J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|