1
|
Zhong G, Deng L. ACPScanner: Prediction of Anticancer Peptides by Integrated Machine Learning Methodologies. J Chem Inf Model 2024; 64:1092-1104. [PMID: 38277774 DOI: 10.1021/acs.jcim.3c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Novel therapeutic alternatives for cancer treatment are increasingly attracting global research attention. Although chemotherapy remains a primary clinical solution, it often results in significant side effects for patients. In recent years, anticancer peptides (ACPs) have emerged as promising candidates for highly specific anticancer drugs, and a number of computational approaches have been developed to identify ACPs. However, existing methods do not recognize specific types of anticancer function. In this article, we propose ACPScanner, an integrated approach to predict ACPs and non-ACPs at first and then predict several specific activity types for potential ACPs. We incorporate sequential, physicochemical properties, secondary structural information, and deep representation learning embeddings which are generated from artificial intelligence methods to build feature space. Customized deep learning and statistical learning methods are combined to form an integral architecture for the comprehensive two-level prediction task. To the best of our knowledge, ACPScanner is the first approach for specific ACP activity prediction. The comparative evaluation illustrates that ACPScanner achieves competitive prediction performance in both prediction phases in independent testings. We establish a web server at http://acpscanner.denglab.org to provide convenient usage of ACPScanner and make the predictive framework, source code, and data sets publicly available.
Collapse
Affiliation(s)
- Guolun Zhong
- School of Computer Science and Engineering, Central South University, Changsha 410000, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410000, China
| |
Collapse
|
2
|
Guan J, Yao L, Chung CR, Xie P, Zhang Y, Deng J, Chiang YC, Lee TY. Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning. J Chem Inf Model 2023; 63:7886-7898. [PMID: 38054927 DOI: 10.1021/acs.jcim.3c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Inflammation is a biological response to harmful stimuli, aiding in the maintenance of tissue homeostasis. However, excessive or persistent inflammation can precipitate a myriad of pathological conditions. Although current treatments such as NSAIDs, corticosteroids, and immunosuppressants are effective, they can have side effects and resistance issues. In this backdrop, anti-inflammatory peptides (AIPs) have emerged as a promising therapeutic approach against inflammation. Leveraging machine learning methods, we have the opportunity to accelerate the discovery and investigation of these AIPs more effectively. In this study, we proposed an advanced framework by ensemble machine learning and deep learning for AIP prediction. Initially, we constructed three individual models with extremely randomized trees (ET), gated recurrent unit (GRU), and convolutional neural networks (CNNs) with attention mechanism and then used stacking architecture to build the final predictor. By utilizing various sequence encodings and combining the strengths of different algorithms, our predictor demonstrated exemplary performance. On our independent test set, our model achieved an accuracy, MCC, and F1-score of 0.757, 0.500, and 0.707, respectively, clearly outperforming other contemporary AIP prediction methods. Additionally, our model offers profound insights into the feature interpretation of AIPs, establishing a valuable knowledge foundation for the design and development of future anti-inflammatory strategies.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yilun Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Junyang Deng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Iwata H, Nakai T, Koyama T, Matsumoto S, Kojima R, Okuno Y. VGAE-MCTS: A New Molecular Generative Model Combining the Variational Graph Auto-Encoder and Monte Carlo Tree Search. J Chem Inf Model 2023; 63:7392-7400. [PMID: 37993764 PMCID: PMC10716893 DOI: 10.1021/acs.jcim.3c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Molecular generation is crucial for advancing drug discovery, materials science, and chemical exploration. It expedites the search for new drug candidates, facilitates tailored material creation, and enhances our understanding of molecular diversity. By employing artificial intelligence techniques such as molecular generative models based on molecular graphs, researchers have tackled the challenge of identifying efficient molecules with desired properties. Here, we propose a new molecular generative model combining a graph-based deep neural network and a reinforcement learning technique. We evaluated the validity, novelty, and optimized physicochemical properties of the generated molecules. Importantly, the model explored uncharted regions of chemical space, allowing for the efficient discovery and design of new molecules. This innovative approach has considerable potential to revolutionize drug discovery, materials science, and chemical research for accelerating scientific innovation. By leveraging advanced techniques and exploring previously unexplored chemical spaces, this study offers promising prospects for the efficient discovery and design of new molecules in the field of drug development.
Collapse
Affiliation(s)
- Hiroaki Iwata
- Graduate
School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Taichi Nakai
- Graduate
School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Takuto Koyama
- Graduate
School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Shigeyuki Matsumoto
- Graduate
School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Ryosuke Kojima
- Graduate
School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Yasushi Okuno
- Graduate
School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
- HPC-
and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, Kobe-shi, Hyogo 650-0047, Japan
| |
Collapse
|
4
|
Khabaz H, Rahimi-Nasrabadi M, Keihan AH. Hierarchical machine learning model predicts antimicrobial peptide activity against Staphylococcus aureus. Front Mol Biosci 2023; 10:1238509. [PMID: 37790874 PMCID: PMC10544327 DOI: 10.3389/fmolb.2023.1238509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: Staphylococcus aureus is a dangerous pathogen which causes a vast selection of infections. Antimicrobial peptides have been demonstrated as a new hope for developing antibiotic agents against multi-drug-resistant bacteria such as S. aureus. Yet, most studies on developing classification tools for antimicrobial peptide activities do not focus on any specific species, and therefore, their applications are limited. Methods: Here, by using an up-to-date dataset, we have developed a hierarchical machine learning model for classifying peptides with antimicrobial activity against S. aureus. The first-level model classifies peptides into AMPs and non-AMPs. The second-level model classifies AMPs into those active against S. aureus and those not active against this species. Results: Results from both classifiers demonstrate the effectiveness of the hierarchical approach. A comprehensive set of physicochemical and linguistic-based features has been used, and after feature selection steps, only some physicochemical properties were selected. The final model showed the F1-score of 0.80, recall of 0.86, balanced accuracy of 0.80, and specificity of 0.73 on the test set. Discussion: The susceptibility to a single AMP is highly varied among different target species. Therefore, it cannot be concluded that AMP candidates suggested by AMP/non-AMP classifiers are able to show suitable activity against a specific species. Here, we addressed this issue by creating a hierarchical machine learning model which can be used in practical applications for extracting potential antimicrobial peptides against S. aureus from peptide libraries.
Collapse
Affiliation(s)
- Hosein Khabaz
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Wang Y, Xie Y, Luo Y, Jia P, Wei J, Zhang J, Yan W, Huang J. iASMP: An interpretable in-silico predictive tool focusing on species-specific antimicrobial peptides. J Pept Sci 2023; 29:e3490. [PMID: 36994602 DOI: 10.1002/psc.3490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/02/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Antimicrobial peptides (AMPs), a crucial part of the innate immune system, have been exploited as promising candidates for antibacterial agents. Many researchers have been devoting their efforts to develop novel AMPs in recent decades. In this term, many computational approaches have been developed to identify potential AMPs accurately. However, finding peptides specific to a particular bacterial species is challenging. Streptococcus mutans is a pathogen with an apparent cariogenic effect, and it is of great significance to study AMP that inhibit S. mutans for the prevention and treatment of caries. In this study, we proposed a sequence-based machine learning model, namely iASMP, to exactly identify potential anti-S. mutans peptides (ASMPs). After collecting ASMPs, the performances of models were compared by utilizing multiple feature descriptors and different classification algorithms. Among the baseline predictors, the model integrating the extra trees (ET) algorithm and the hybrid features exhibited optimal results. The feature selection method was utilized to remove redundant feature information to improve the model performance further. Finally, the proposed model achieved the maximum accuracy (ACC) of 0.962 on the training dataset and performed on the testing dataset with an ACC of 0.750. The results demonstrated that iASMP had an excellent predictive performance and was suitable for identifying potential ASMP. Furthermore, we also visualized the selected features and rationally explained the impact of individual features on the model output.
Collapse
Affiliation(s)
- Yuqiang Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yihao Xie
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yang Luo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Pengfei Jia
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jiaqi Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Jie Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Wenjin Yan
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jinqi Huang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
6
|
Medvedeva A, Teimouri H, Kolomeisky AB. Predicting Antimicrobial Activity for Untested Peptide-Based Drugs Using Collaborative Filtering and Link Prediction. J Chem Inf Model 2023. [PMID: 37307501 DOI: 10.1021/acs.jcim.3c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increase of bacterial resistance to currently available antibiotics has underlined the urgent need to develop new antibiotic drugs. Antimicrobial peptides (AMPs), alone or in combination with other peptides and/or existing antibiotics, have emerged as promising candidates for this task. However, given that there are thousands of known AMPs and an even larger number can be synthesized, it is impossible to comprehensively test all of them using standard wet lab experimental methods. These observations stimulated an application of machine-learning methods to identify promising AMPs. Currently, machine learning studies combine very different bacteria without considering bacteria-specific features or interactions with AMPs. In addition, the sparsity of current AMP data sets disqualifies the application of traditional machine-learning methods or makes the results unreliable. Here, we present a new approach, featuring neighborhood-based collaborative filtering, to predict with high accuracy a given bacteria's response to untested AMPs based on similarities between bacterial responses. Furthermore, we also developed a complementary bacteria-specific link prediction approach that can be used to visualize networks of AMP-antibiotic combinations, enabling us to propose new combinations that are likely to be effective.
Collapse
Affiliation(s)
- Angela Medvedeva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Hamid Teimouri
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Bournez C, Riool M, de Boer L, Cordfunke RA, de Best L, van Leeuwen R, Drijfhout JW, Zaat SAJ, van Westen GJP. CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides. Antibiotics (Basel) 2023; 12:antibiotics12040725. [PMID: 37107088 PMCID: PMC10135148 DOI: 10.3390/antibiotics12040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
To combat infection by microorganisms host organisms possess a primary arsenal via the innate immune system. Among them are defense peptides with the ability to target a wide range of pathogenic organisms, including bacteria, viruses, parasites, and fungi. Here, we present the development of a novel machine learning model capable of predicting the activity of antimicrobial peptides (AMPs), CalcAMP. AMPs, in particular short ones (<35 amino acids), can become an effective solution to face the multi-drug resistance issue arising worldwide. Whereas finding potent AMPs through classical wet-lab techniques is still a long and expensive process, a machine learning model can be useful to help researchers to rapidly identify whether peptides present potential or not. Our prediction model is based on a new data set constructed from the available public data on AMPs and experimental antimicrobial activities. CalcAMP can predict activity against both Gram-positive and Gram-negative bacteria. Different features either concerning general physicochemical properties or sequence composition have been assessed to retrieve higher prediction accuracy. CalcAMP can be used as an promising prediction asset to identify short AMPs among given peptide sequences.
Collapse
Affiliation(s)
- Colin Bournez
- Computational Drug Discovery, Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Leonie de Boer
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Robert A Cordfunke
- Department Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Leonie de Best
- Madam Therapeutics B.V., Pivot Park Life Sciences Community, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Remko van Leeuwen
- Madam Therapeutics B.V., Pivot Park Life Sciences Community, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Jan Wouter Drijfhout
- Department Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Gerard J P van Westen
- Computational Drug Discovery, Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
ABP-Finder: A Tool to Identify Antibacterial Peptides and the Gram-Staining Type of Targeted Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11121708. [PMID: 36551365 PMCID: PMC9774453 DOI: 10.3390/antibiotics11121708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Multi-drug resistance in bacteria is a major health problem worldwide. To overcome this issue, new approaches allowing for the identification and development of antibacterial agents are urgently needed. Peptides, due to their binding specificity and low expected side effects, are promising candidates for a new generation of antibiotics. For over two decades, a large diversity of antimicrobial peptides (AMPs) has been discovered and annotated in public databases. The AMP family encompasses nearly 20 biological functions, thus representing a potentially valuable resource for data mining analyses. Nonetheless, despite the availability of machine learning-based approaches focused on AMPs, these tools lack evidence of successful application for AMPs' discovery, and many are not designed to predict a specific function for putative AMPs, such as antibacterial activity. Consequently, among the apparent variety of data mining methods to screen peptide sequences for antibacterial activity, only few tools can deal with such task consistently, although with limited precision and generally no information about the possible targets. Here, we addressed this gap by introducing a tool specifically designed to identify antibacterial peptides (ABPs) with an estimation of which type of bacteria is susceptible to the action of these peptides, according to their response to the Gram-staining assay. Our tool is freely available via a web server named ABP-Finder. This new method ranks within the top state-of-the-art ABP predictors, particularly in terms of precision. Importantly, we showed the successful application of ABP-Finder for the screening of a large peptide library from the human urine peptidome and the identification of an antibacterial peptide.
Collapse
|
9
|
Speck-Planche A, Kleandrova VV. Multi-Condition QSAR Model for the Virtual Design of Chemicals with Dual Pan-Antiviral and Anti-Cytokine Storm Profiles. ACS OMEGA 2022; 7:32119-32130. [PMID: 36120024 PMCID: PMC9476185 DOI: 10.1021/acsomega.2c03363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are infectious agents, which can cause pandemics. Although nowadays the danger associated with respiratory viruses continues to be evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the virus responsible for the current COVID-19 pandemic, other viruses such as SARS-CoV-1, the influenza A and B viruses (IAV and IBV, respectively), and the respiratory syncytial virus (RSV) can lead to globally spread viral diseases. Also, from a biological point of view, most of these viruses can cause an organ-damaging hyperinflammatory response known as the cytokine storm (CS). Computational approaches constitute an essential component of modern drug development campaigns, and therefore, they have the potential to accelerate the discovery of chemicals able to simultaneously inhibit multiple molecular and nonmolecular targets. We report here the first multicondition model based on quantitative structure-activity relationships and an artificial neural network (mtc-QSAR-ANN) for the virtual design and prediction of molecules with dual pan-antiviral and anti-CS profiles. Our mtc-QSAR-ANN model exhibited an accuracy higher than 80%. By interpreting the different descriptors present in the mtc-QSAR-ANN model, we could retrieve several molecular fragments whose assembly led to new molecules with drug-like properties and predicted pan-antiviral and anti-CS activities.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Grupo
de Química Computacional y Teórica (QCT-USFQ), Departamento
de Ingeniería Química, Universidad
San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - Valeria V. Kleandrova
- Laboratory
of Fundamental and Applied Research of Quality and Technology of Food
Production, Moscow State University of Food
Production, Volokolamskoe
shosse 11, 125080, Moscow, Russian Federation
| |
Collapse
|
10
|
Agüero-Chapin G, Galpert-Cañizares D, Domínguez-Pérez D, Marrero-Ponce Y, Pérez-Machado G, Teijeira M, Antunes A. Emerging Computational Approaches for Antimicrobial Peptide Discovery. Antibiotics (Basel) 2022; 11:antibiotics11070936. [PMID: 35884190 PMCID: PMC9311958 DOI: 10.3390/antibiotics11070936] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
In the last two decades many reports have addressed the application of artificial intelligence (AI) in the search and design of antimicrobial peptides (AMPs). AI has been represented by machine learning (ML) algorithms that use sequence-based features for the discovery of new peptidic scaffolds with promising biological activity. From AI perspective, evolutionary algorithms have been also applied to the rational generation of peptide libraries aimed at the optimization/design of AMPs. However, the literature has scarcely dedicated to other emerging non-conventional in silico approaches for the search/design of such bioactive peptides. Thus, the first motivation here is to bring up some non-standard peptide features that have been used to build classical ML predictive models. Secondly, it is valuable to highlight emerging ML algorithms and alternative computational tools to predict/design AMPs as well as to explore their chemical space. Another point worthy of mention is the recent application of evolutionary algorithms that actually simulate sequence evolution to both the generation of diversity-oriented peptide libraries and the optimization of hit peptides. Last but not least, included here some new considerations in proteogenomic analyses currently incorporated into the computational workflow for unravelling AMPs in natural sources.
Collapse
Affiliation(s)
- Guillermin Agüero-Chapin
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (G.A.-C.); (A.A.); Tel.: +351-22-340-1813 (G.A.-C. & A.A.)
| | - Deborah Galpert-Cañizares
- Departamento de Ciencia de la Computación, Universidad Central Marta Abreu de Las Villas (UCLV), Santa Clara 54830, Cuba;
| | - Dany Domínguez-Pérez
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Proquinorte, Unipessoal, Lda, Avenida 5 de Outubro, 124, 7º Piso, Avenidas Novas, 1050-061 Lisboa, Portugal
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Translacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Ecuador;
| | - Gisselle Pérez-Machado
- EpiDisease S.L—Spin-Off of Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46980 Valencia, Spain;
| | - Marta Teijeira
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain;
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Agostinho Antunes
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (G.A.-C.); (A.A.); Tel.: +351-22-340-1813 (G.A.-C. & A.A.)
| |
Collapse
|
11
|
Vishnepolsky B, Grigolava M, Managadze G, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M, Pirtskhalava M. Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction. Brief Bioinform 2022; 23:6611915. [PMID: 35724561 PMCID: PMC9294419 DOI: 10.1093/bib/bbac233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022] Open
Abstract
The evolution of drug-resistant pathogenic microbial species is a major global health concern. Naturally occurring, antimicrobial peptides (AMPs) are considered promising candidates to address antibiotic resistance problems. A variety of computational methods have been developed to accurately predict AMPs. The majority of such methods are not microbial strain specific (MSS): they can predict whether a given peptide is active against some microbe, but cannot accurately calculate whether such peptide would be active against a particular MS. Due to insufficient data on most MS, only a few MSS predictive models have been developed so far. To overcome this problem, we developed a novel approach that allows to improve MSS predictive models (MSSPM), based on properties, computed for AMP sequences and characteristics of genomes, computed for target MS. New models can perform predictions of AMPs for MS that do not have data on peptides tested on them. We tested various types of feature engineering as well as different machine learning (ML) algorithms to compare the predictive abilities of resulting models. Among the ML algorithms, Random Forest and AdaBoost performed best. By using genome characteristics as additional features, the performance for all models increased relative to models relying on AMP sequence-based properties only. Our novel MSS AMP predictor is freely accessible as part of DBAASP database resource at http://dbaasp.org/prediction/genome.
Collapse
Affiliation(s)
- Boris Vishnepolsky
- Corresponding authors: B. Vishnepolsky, Laboratory of Bioinformatics, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia. Tel: +995595771363; E-mail: ; M. Pirtskhalava, Laboratory of Bioinformatics, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia. Tel: +995574162397; E-mail:
| | - Maya Grigolava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Grigol Managadze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darrell E Hurt
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Tartakovsky
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Malak Pirtskhalava
- Corresponding authors: B. Vishnepolsky, Laboratory of Bioinformatics, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia. Tel: +995595771363; E-mail: ; M. Pirtskhalava, Laboratory of Bioinformatics, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia. Tel: +995574162397; E-mail:
| |
Collapse
|
12
|
Romero-Molina S, Ruiz-Blanco YB, Mieres-Perez J, Harms M, Münch J, Ehrmann M, Sanchez-Garcia E. PPI-Affinity: A Web Tool for the Prediction and Optimization of Protein-Peptide and Protein-Protein Binding Affinity. J Proteome Res 2022; 21:1829-1841. [PMID: 35654412 PMCID: PMC9361347 DOI: 10.1021/acs.jproteome.2c00020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Virtual screening
of protein–protein and protein–peptide
interactions is a challenging task that directly impacts the processes
of hit identification and hit-to-lead optimization in drug design
projects involving peptide-based pharmaceuticals. Although several
screening tools designed to predict the binding affinity of protein–protein
complexes have been proposed, methods specifically developed to predict
protein–peptide binding affinity are comparatively scarce.
Frequently, predictors trained to score the affinity of small molecules
are used for peptides indistinctively, despite the larger complexity
and heterogeneity of interactions rendered by peptide binders. To
address this issue, we introduce PPI-Affinity, a tool that leverages
support vector machine (SVM) predictors of binding affinity to screen
datasets of protein–protein and protein–peptide complexes,
as well as to generate and rank mutants of a given structure. The
performance of the SVM models was assessed on four benchmark datasets,
which include protein–protein and protein–peptide binding
affinity data. In addition, we evaluated our model on a set of mutants
of EPI-X4, an endogenous peptide inhibitor of the chemokine receptor
CXCR4, and on complexes of the serine proteases HTRA1 and HTRA3 with
peptides. PPI-Affinity is freely accessible at https://protdcal.zmb.uni-due.de/PPIAffinity.
Collapse
Affiliation(s)
- Sandra Romero-Molina
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen 45141, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen 45141, Germany
| | - Joel Mieres-Perez
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen 45141, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany.,Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm 89081, Germany
| | - Michael Ehrmann
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen 45141, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen 45141, Germany
| |
Collapse
|
13
|
Synergistic antibacterial effects of low-intensity ultrasound and peptide LCMHC against Staphylococcus aureus. Int J Food Microbiol 2022; 373:109713. [DOI: 10.1016/j.ijfoodmicro.2022.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
|
14
|
Halder AK, Moura AS, Cordeiro MNDS. Moving Average-Based Multitasking In Silico Classification Modeling: Where Do We Stand and What Is Next? Int J Mol Sci 2022; 23:ijms23094937. [PMID: 35563327 PMCID: PMC9099502 DOI: 10.3390/ijms23094937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Conventional in silico modeling is often viewed as 'one-target' or 'single-task' computer-aided modeling since it mainly relies on forecasting an endpoint of interest from similar input data. Multitasking or multitarget in silico modeling, in contrast, embraces a set of computational techniques that efficiently integrate multiple types of input data for setting up unique in silico models able to predict the outcome(s) relating to various experimental and/or theoretical conditions. The latter, specifically, based upon the Box-Jenkins moving average approach, has been applied in the last decade to several research fields including drug and materials design, environmental sciences, and nanotechnology. The present review discusses the current status of multitasking computer-aided modeling efforts, meanwhile describing both the existing challenges and future opportunities of its underlying techniques. Some important applications are also discussed to exemplify the ability of multitasking modeling in deriving holistic and reliable in silico classification-based models as well as in designing new chemical entities, either through fragment-based design or virtual screening. Focus will also be given to some software recently developed to automate and accelerate such types of modeling. Overall, this review may serve as a guideline for researchers to grasp the scope of multitasking computer-aided modeling as a promising in silico tool.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.K.H.); (A.S.M.)
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ana S. Moura
- LAQV@REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.K.H.); (A.S.M.)
| | - Maria Natália D. S. Cordeiro
- LAQV@REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.K.H.); (A.S.M.)
- Correspondence: ; Tel.: +35-12-2040-2502
| |
Collapse
|
15
|
PTML Modeling for Pancreatic Cancer Research: In Silico Design of Simultaneous Multi-Protein and Multi-Cell Inhibitors. Biomedicines 2022; 10:biomedicines10020491. [PMID: 35203699 PMCID: PMC8962338 DOI: 10.3390/biomedicines10020491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PANC) is a dangerous type of cancer that is a major cause of mortality worldwide and exhibits a remarkably poor prognosis. To date, discovering anti-PANC agents remains a very complex and expensive process. Computational approaches can accelerate the search for anti-PANC agents. We report for the first time two models that combined perturbation theory with machine learning via a multilayer perceptron network (PTML-MLP) to perform the virtual design and prediction of molecules that can simultaneously inhibit multiple PANC cell lines and PANC-related proteins, such as caspase-1, tumor necrosis factor-alpha (TNF-alpha), and the insulin-like growth factor 1 receptor (IGF1R). Both PTML-MLP models exhibited accuracies higher than 78%. Using the interpretation from one of the PTML-MLP models as a guideline, we extracted different molecular fragments desirable for the inhibition of the PANC cell lines and the aforementioned PANC-related proteins and then assembled some of those fragments to form three new molecules. The two PTML-MLP models predicted the designed molecules as potentially versatile anti-PANC agents through inhibition of the three PANC-related proteins and multiple PANC cell lines. Conclusions: This work opens new horizons for the application of the PTML modeling methodology to anticancer research.
Collapse
|
16
|
Gull S, Minhas F. AMP 0: Species-Specific Prediction of Anti-microbial Peptides Using Zero and Few Shot Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:275-283. [PMID: 32750857 DOI: 10.1109/tcbb.2020.2999399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Evolution of drug-resistant microbial species is one of the major challenges to global health. Development of new antimicrobial treatments such as antimicrobial peptides needs to be accelerated to combat this threat. However, the discovery of novel antimicrobial peptides is hampered by low-throughput biochemical assays. Computational techniques can be used for rapid screening of promising antimicrobial peptide candidates prior to testing in the wet lab. The vast majority of existing antimicrobial peptide predictors are non-targeted in nature, i.e., they can predict whether a given peptide sequence is antimicrobial, but they are unable to predict whether the sequence can target a particular microbial species. In this work, we have used zero and few shot machine learning to develop a targeted antimicrobial peptide activity predictor called AMP0. The proposed predictor takes the sequence of a peptide and any N/C-termini modifications together with the genomic sequence of a microbial species to generate targeted predictions. Cross-validation results show that the proposed scheme is particularly effective for targeted antimicrobial prediction in comparison to existing approaches and can be used for screening potential antimicrobial peptides in a targeted manner with only a small number of training examples for novel species. AMP0 webserver is available at http://ampzero.pythonanywhere.com.
Collapse
|
17
|
Speck-Planche A, Kleandrova VV, Scotti MT. In Silico Drug Repurposing for Anti-Inflammatory Therapy: Virtual Search for Dual Inhibitors of Caspase-1 and TNF-Alpha. Biomolecules 2021; 11:biom11121832. [PMID: 34944476 PMCID: PMC8699067 DOI: 10.3390/biom11121832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation involves a complex biological response of the body tissues to damaging stimuli. When dysregulated, inflammation led by biomolecular mediators such as caspase-1 and tumor necrosis factor-alpha (TNF-alpha) can play a detrimental role in the progression of different medical conditions such as cancer, neurological disorders, autoimmune diseases, and cytokine storms caused by viral infections such as COVID-19. Computational approaches can accelerate the search for dual-target drugs able to simultaneously inhibit the aforementioned proteins, enabling the discovery of wide-spectrum anti-inflammatory agents. This work reports the first multicondition model based on quantitative structure–activity relationships and a multilayer perceptron neural network (mtc-QSAR-MLP) for the virtual screening of agency-regulated chemicals as versatile anti-inflammatory therapeutics. The mtc-QSAR-MLP model displayed accuracy higher than 88%, and was interpreted from a physicochemical and structural point of view. When using the mtc-QSAR-MLP model as a virtual screening tool, we could identify several agency-regulated chemicals as dual inhibitors of caspase-1 and TNF-alpha, and the experimental information later retrieved from the scientific literature converged with our computational results. This study supports the capabilities of our mtc-QSAR-MLP model in anti-inflammatory therapy with direct applications to current health issues such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Correspondence:
| | - Valeria V. Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe shosse 11, 125080 Moscow, Russia;
| | - Marcus T. Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
18
|
PTML modeling for peptide discovery: in silico design of non-hemolytic peptides with antihypertensive activity. Mol Divers 2021; 26:2523-2534. [PMID: 34802116 DOI: 10.1007/s11030-021-10350-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023]
Abstract
Hypertension is a medical condition that affects millions of people worldwide. Despite the high efficacy of the current antihypertensive drugs, they are associated with serious side effects. Peptides constitute attractive options for chemical therapy against hypertension, and computational models can accelerate the design of antihypertensive peptides. Yet, to the best of our knowledge, all the in silico models predict only the antihypertensive activity of peptides while neglecting their inherent toxic potential to red blood cells. In this work, we report the first sequence-based model that combines perturbation theory and machine learning through multilayer perceptron networks (SB-PTML-MLP) to enable the simultaneous screening of antihypertensive activity and hemotoxicity of peptides. We have interpreted the molecular descriptors present in the model from a physicochemical and structural point of view. By strictly following such interpretations as guidelines, we performed two tasks. First, we selected amino acids with favorable contributions to both the increase of the antihypertensive activity and the diminution of hemotoxicity. Then, we assembled those suitable amino acids, virtually designing peptides that were predicted by the SB-PTML-MLP model as antihypertensive agents exhibiting low hemotoxicity. The potentiality of the SB-PTML-MLP model as a tool for designing potent and safe antihypertensive peptides was confirmed by predictions performed by online computational tools reported in the scientific literature. The methodology presented here can be extended to other pharmacological applications of peptides.
Collapse
|
19
|
Kleandrova VV, Scotti MT, Speck-Planche A. Indirect-Acting Pan-Antivirals vs. Respiratory Viruses: A Fresh Perspective on Computational Multi-Target Drug Discovery. Curr Top Med Chem 2021; 21:2687-2693. [PMID: 34636311 DOI: 10.2174/1568026621666211012110819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Respiratory viruses continue to afflict mankind. Among them, pathogens such as coronaviruses [including the current pandemic agent known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] and the one causing influenza A (IAV) are highly contagious and deadly. These can evade the immune system defenses while causing a hyperinflammatory response that can damage different tissues/organs. Simultaneously targeting immunomodulatory proteins is a plausible antiviral strategy since it could lead to the discovery of indirect-acting pan-antiviral (IAPA) agents for the treatment of diseases caused by respiratory viruses. In this context, computational approaches, which are an essential part of the modern drug discovery campaigns, could accelerate the identification of multi-target immunomodulators. This perspective discusses the usefulness of computational multi-target drug discovery for the virtual screening (drug repurposing) of IAPA agents capable of boosting the immune system through the activation of the toll-like receptor 7 (TLR7) and/or the stimulator of interferon genes (STING) while inhibiting key pro-inflammatory proteins, such as caspase-1 and tumor necrosis factor-alpha (TNF-α).
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe shosse 11, 125080, Moscow. Russian Federation
| | - Marcus T Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa. Brazil
| | - Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa. Brazil
| |
Collapse
|
20
|
Kleandrova VV, Speck-Planche A. The QSAR Paradigm in Fragment-Based Drug Discovery: From the Virtual Generation of Target Inhibitors to Multi-Scale Modeling. Mini Rev Med Chem 2021; 20:1357-1374. [PMID: 32013845 DOI: 10.2174/1389557520666200204123156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
Fragment-Based Drug Design (FBDD) has established itself as a promising approach in modern drug discovery, accelerating and improving lead optimization, while playing a crucial role in diminishing the high attrition rates at all stages in the drug development process. On the other hand, FBDD has benefited from the application of computational methodologies, where the models derived from the Quantitative Structure-Activity Relationships (QSAR) have become consolidated tools. This mini-review focuses on the evolution and main applications of the QSAR paradigm in the context of FBDD in the last five years. This report places particular emphasis on the QSAR models derived from fragment-based topological approaches to extract physicochemical and/or structural information, allowing to design potentially novel mono- or multi-target inhibitors from relatively large and heterogeneous databases. Here, we also discuss the need to apply multi-scale modeling, to exemplify how different datasets based on target inhibition can be simultaneously integrated and predicted together with other relevant endpoints such as the biological activity against non-biomolecular targets, as well as in vitro and in vivo toxicity and pharmacokinetic properties. In this context, seminal papers are briefly analyzed. As huge amounts of data continue to accumulate in the domains of the chemical, biological and biomedical sciences, it has become clear that drug discovery must be viewed as a multi-scale optimization process. An ideal multi-scale approach should integrate diverse chemical and biological data and also serve as a knowledge generator, enabling the design of potentially optimal chemicals that may become therapeutic agents.
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe Shosse 11, 125080, Moscow, Russian Federation
| | - Alejandro Speck-Planche
- Department of Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, b. 2, 119992, Moscow, Russian Federation
| |
Collapse
|
21
|
Kleandrova VV, Scotti L, Bezerra Mendonça Junior FJ, Muratov E, Scotti MT, Speck-Planche A. QSAR Modeling for Multi-Target Drug Discovery: Designing Simultaneous Inhibitors of Proteins in Diverse Pathogenic Parasites. Front Chem 2021; 9:634663. [PMID: 33777898 PMCID: PMC7987820 DOI: 10.3389/fchem.2021.634663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Parasitic diseases remain as unresolved health issues worldwide. While for some parasites the treatments involve drug combinations with serious side effects, for others, chemical therapies are inefficient due to the emergence of drug resistance. This urges the search for novel antiparasitic agents able to act through multiple mechanisms of action. Here, we report the first multi-target model based on quantitative structure-activity relationships and a multilayer perceptron neural network (mt-QSAR-MLP) to virtually design and predict versatile inhibitors of proteins involved in the survival and/or infectivity of different pathogenic parasites. The mt-QSAR-MLP model exhibited high accuracy (>80%) in both training and test sets for the classification/prediction of protein inhibitors. Several fragments were directly extracted from the physicochemical and structural interpretations of the molecular descriptors in the mt-QSAR-MLP model. Such interpretations enabled the generation of four molecules that were predicted as multi-target inhibitors against at least three of the five parasitic proteins reported here with two of the molecules being predicted to inhibit all the proteins. Docking calculations converged with the mt-QSAR-MLP model regarding the multi-target profile of the designed molecules. The designed molecules exhibited drug-like properties, complying with Lipinski’s rule of five, as well as Ghose’s filter and Veber’s guidelines.
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Moscow, Russian Federation
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Eugene Muratov
- Laboratory for Molecular Modeling, The UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marcus T Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
22
|
Pirtskhalava M, Amstrong AA, Grigolava M, Chubinidze M, Alimbarashvili E, Vishnepolsky B, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res 2021; 49:D288-D297. [PMID: 33151284 PMCID: PMC7778994 DOI: 10.1093/nar/gkaa991] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
The Database of Antimicrobial Activity and Structure of Peptides (DBAASP) is an open-access, comprehensive database containing information on amino acid sequences, chemical modifications, 3D structures, bioactivities and toxicities of peptides that possess antimicrobial properties. DBAASP is updated continuously, and at present, version 3.0 (DBAASP v3) contains >15 700 entries (8000 more than the previous version), including >14 500 monomers and nearly 400 homo- and hetero-multimers. Of the monomeric antimicrobial peptides (AMPs), >12 000 are synthetic, about 2700 are ribosomally synthesized, and about 170 are non-ribosomally synthesized. Approximately 3/4 of the entries were added after the initial release of the database in 2014 reflecting the recent sharp increase in interest in AMPs. Despite the increased interest, adoption of peptide antimicrobials in clinical practice is still limited as a consequence of several factors including side effects, problems with bioavailability and high production costs. To assist in developing and optimizing de novo peptides with desired biological activities, DBAASP offers several tools including a sophisticated multifactor analysis of relevant physicochemical properties. Furthermore, DBAASP has implemented a structure modelling pipeline that automates the setup, execution and upload of molecular dynamics (MD) simulations of database peptides. At present, >3200 peptides have been populated with MD trajectories and related analyses that are both viewable within the web browser and available for download. More than 400 DBAASP entries also have links to experimentally determined structures in the Protein Data Bank. DBAASP v3 is freely accessible at http://dbaasp.org.
Collapse
Affiliation(s)
- Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Anthony A Amstrong
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maia Grigolava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Mindia Chubinidze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | | | - Boris Vishnepolsky
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darrell E Hurt
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Tartakovsky
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Puentes PR, Henao MC, Torres CE, Gómez SC, Gómez LA, Burgos JC, Arbeláez P, Osma JF, Muñoz-Camargo C, Reyes LH, Cruz JC. Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics (Basel) 2020; 9:E854. [PMID: 33265897 PMCID: PMC7759991 DOI: 10.3390/antibiotics9120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-space data distribution analyses in extremely large databases. We expect to tackle this challenge by using a recently developed classification algorithm based on deep learning models that rely on convolutional layers and gated recurrent units. This will be complemented by carefully tailored molecular dynamics simulations to elucidate specific interactions with lipid bilayers. Candidate AMPs will be recombinantly-expressed on the surface of microorganisms for further screening via different droplet-based microfluidic-based strategies to identify AMPs with the desired lytic abilities. We believe that the proposed approach opens opportunities for searching and screening bioactive peptides for other applications.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - María C. Henao
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carlos E. Torres
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Laura A. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Juan C. Burgos
- Chemical Engineering Program, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
24
|
Ortega-Tenezaca B, Quevedo-Tumailli V, Bediaga H, Collados J, Arrasate S, Madariaga G, Munteanu CR, Cordeiro MND, González-Díaz H. PTML Multi-Label Algorithms: Models, Software, and Applications. Curr Top Med Chem 2020; 20:2326-2337. [DOI: 10.2174/1568026620666200916122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
By combining Machine Learning (ML) methods with Perturbation Theory (PT), it is possible
to develop predictive models for a variety of response targets. Such combination often known as
Perturbation Theory Machine Learning (PTML) modeling comprises a set of techniques that can handle
various physical, and chemical properties of different organisms, complex biological or material
systems under multiple input conditions. In so doing, these techniques effectively integrate a manifold
of diverse chemical and biological data into a single computational framework that can then be applied
for screening lead chemicals as well as to find clues for improving the targeted response(s).
PTML models have thus been extremely helpful in drug or material design efforts and found to be
predictive and applicable across a broad space of systems. After a brief outline of the applied methodology,
this work reviews the different uses of PTML in Medicinal Chemistry, as well as in other
applications. Finally, we cover the development of software available nowadays for setting up PTML
models from large datasets.
Collapse
Affiliation(s)
| | | | - Harbil Bediaga
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Jon Collados
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Gotzon Madariaga
- Department of Condensed Matter Physics, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, 15071 A Coruna, Spain
| | - M. Natália D.S. Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, University of Porto, 4169-007 Porto, Portugal
| | - Humbert González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
25
|
Machine learning-guided discovery and design of non-hemolytic peptides. Sci Rep 2020; 10:16581. [PMID: 33024236 PMCID: PMC7538962 DOI: 10.1038/s41598-020-73644-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Reducing hurdles to clinical trials without compromising the therapeutic promises of peptide candidates becomes an essential step in peptide-based drug design. Machine-learning models are cost-effective and time-saving strategies used to predict biological activities from primary sequences. Their limitations lie in the diversity of peptide sequences and biological information within these models. Additional outlier detection methods are needed to set the boundaries for reliable predictions; the applicability domain. Antimicrobial peptides (AMPs) constitute an extensive library of peptides offering promising avenues against antibiotic-resistant infections. Most AMPs present in clinical trials are administrated topically due to their hemolytic toxicity. Here we developed machine learning models and outlier detection methods that ensure robust predictions for the discovery of AMPs and the design of novel peptides with reduced hemolytic activity. Our best models, gradient boosting classifiers, predicted the hemolytic nature from any peptide sequence with 95–97% accuracy. Nearly 70% of AMPs were predicted as hemolytic peptides. Applying multivariate outlier detection models, we found that 273 AMPs (~ 9%) could not be predicted reliably. Our combined approach led to the discovery of 34 high-confidence non-hemolytic natural AMPs, the de novo design of 507 non-hemolytic peptides, and the guidelines for non-hemolytic peptide design.
Collapse
|
26
|
Zanni R, Galvez-Llompart M, Garcia-Domenech R, Galvez J. What place does molecular topology have in today’s drug discovery? Expert Opin Drug Discov 2020; 15:1133-1144. [DOI: 10.1080/17460441.2020.1770223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Riccardo Zanni
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, Valencia, Spain
- Departamento de Microbiologia, Facultad de Ciencias, Universidad de Malaga, Málaga, Spain
| | - Maria Galvez-Llompart
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, Valencia, Spain
- Instituto de Tecnología Química, UPV-CSIC, Universidad Politécnica de Valencia, Valencia, Spain
| | - Ramon Garcia-Domenech
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, Valencia, Spain
| | - Jorge Galvez
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, Valencia, Spain
| |
Collapse
|
27
|
Romero-Molina S, Ruiz-Blanco YB, Green JR, Sanchez-Garcia E. ProtDCal-Suite: A web server for the numerical codification and functional analysis of proteins. Protein Sci 2020; 28:1734-1743. [PMID: 31271472 DOI: 10.1002/pro.3673] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022]
Abstract
Computational tools for the analysis of protein data and the prediction of biological properties are essential in life sciences and biomedical research. Here, we introduce ProtDCal-Suite, a web server comprising a set of machine learning-based methods for studying proteins. The main module of ProtDCal-Suite is the ProtDCal software. ProtDCal translates the structural information of proteins into numerical descriptors that serve as input to machine-learning techniques. The ProtDCal-Suite server also incorporates a post-processing optional stage that allows ranking and filtering the obtained descriptors by computing their Shannon entropy values across the input set of proteins. ProtDCal's codification was used in the development of models for the prediction of specific protein properties. Thus, the other modules of ProtDCal-Suite are protein analysis tools implemented using ProtDCal's descriptors. Among them are PPI-Detect, for predicting the interaction likelihood of protein-protein and protein-peptide pairs, Enzyme Identifier, for identifying enzymes from amino acid sequences or 3D structures, and Pred-NGlyco, for predicting N-glycosylation sites. ProtDCal-Suite is freely accessible at https://protdcal.zmb.uni-due.de.
Collapse
Affiliation(s)
- Sandra Romero-Molina
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - James R Green
- Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Speck-Planche A. Multiple Perspectives in Anti-cancer Drug Discovery: From old Targets and Natural Products to Innovative Computational Approaches. Anticancer Agents Med Chem 2019; 19:146-147. [PMID: 31298144 DOI: 10.2174/187152061902190418105054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alejandro Speck-Planche
- Research Program on Biomedical Informatics (GRIB) Hospital del Mar Medical Research Institute (IMIM) Barcelona, Spain
| |
Collapse
|
29
|
From biomedicinal to in silico models and back to therapeutics: a review on the advancement of peptidic modeling. Future Med Chem 2019; 11:2313-2331. [PMID: 31581914 DOI: 10.4155/fmc-2018-0365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bioactive peptides participate in numerous metabolic functions of living organisms and have emerged as potential therapeutics on a diverse range of diseases. Albeit peptide design does not go without challenges, overwhelming advancements on in silico methodologies have increased the scope of peptide-based drug design and discovery to an unprecedented amount. Within an in silico model versus an experimental validation scenario, this review aims to summarize and discuss how different in silico techniques contribute at present to the design of peptide-based molecules. Published in silico results from 2014 to 2018 were selected and discriminated in major methodological groups, allowing a transversal analysis, promoting a landscape vision and asserting its increasing value in drug design.
Collapse
|
30
|
“Ideal correlations” for biological activity of peptides. Biosystems 2019; 181:51-57. [DOI: 10.1016/j.biosystems.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
|
31
|
Ambure P, Halder AK, González Díaz H, Cordeiro MNDS. QSAR-Co: An Open Source Software for Developing Robust Multitasking or Multitarget Classification-Based QSAR Models. J Chem Inf Model 2019; 59:2538-2544. [PMID: 31083984 DOI: 10.1021/acs.jcim.9b00295] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quantitative structure-activity relationships (QSAR) modeling is a well-known computational technique with wide applications in fields such as drug design, toxicity predictions, nanomaterials, etc. However, QSAR researchers still face certain problems to develop robust classification-based QSAR models, especially while handling response data pertaining to diverse experimental and/or theoretical conditions. In the present work, we have developed an open source standalone software "QSAR-Co" (available to download at https://sites.google.com/view/qsar-co ) to setup classification-based QSAR models that allow mining the response data coming from multiple conditions. The software comprises two modules: (1) the Model development module and (2) the Screen/Predict module. This user-friendly software provides several functionalities required for developing a robust multitasking or multitarget classification-based QSAR model using linear discriminant analysis or random forest techniques, with appropriate validation, following the principles set by the Organisation for Economic Co-operation and Development (OECD) for applying QSAR models in regulatory assessments.
Collapse
Affiliation(s)
- Pravin Ambure
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry , University of Porto , 4169-007 Porto , Portugal
| | - Amit Kumar Halder
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry , University of Porto , 4169-007 Porto , Portugal
| | - Humbert González Díaz
- Department of Organic Chemistry II , University of Basque Country UPV/EHU , 48940 Leioa , Spain
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry , University of Porto , 4169-007 Porto , Portugal
| |
Collapse
|
32
|
Concu R, D. S. Cordeiro MN, Munteanu CR, González-Díaz H. PTML Model of Enzyme Subclasses for Mining the Proteome of Biofuel Producing Microorganisms. J Proteome Res 2019; 18:2735-2746. [DOI: 10.1021/acs.jproteome.8b00949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Riccardo Concu
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - M. Natália. D. S. Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Cristian R. Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruña, 15071 A Coruña, Spain
- INIBIC Biomedical Research Institute of Coruña, CHUAC University Hospital, 15006 A Coruña, Spain
| | - Humbert González-Díaz
- Department of Organic Chemistry II, University of Basque Country UPV/EHU, 48940 Leioa, Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain
| |
Collapse
|
33
|
Bellera CL, Talevi A. Quantitative structure-activity relationship models for compounds with anticonvulsant activity. Expert Opin Drug Discov 2019; 14:653-665. [PMID: 31072145 DOI: 10.1080/17460441.2019.1613368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction: Third-generation antiepileptic drugs have seemingly failed to improve the global figures of seizure control and can still be regarded as symptomatic treatments. Quantitative structure-activity relationships (QSAR) can be used to guide hit-to-lead and lead optimization projects and applied to the large-scale virtual screening of chemical libraries. Areas covered: In this review, the authors cover reports on QSAR models related to antiepileptic drugs and drug targets in epilepsy, analyzing whether they refer to classic or non-classic QSAR and if they apply QSAR as a descriptive or predictive approach, among other considerations. The article finally focuses on a more detailed discussion of those predictive studies which include some sort of experimental validation, i.e. papers in which the reported models have been used to identify novel active compounds which have been tested in vitro and/or in vivo. Expert opinion: There are significant opportunities to apply the QSAR methodology to assist the discovery of more efficacious antiepileptic drugs. Considering the intrinsic complexity of the disorder, such applications should focus on state-of-the-art approximations (e.g. systemic, multi-target and multi-scale QSAR as well as ensemble and deep learning) and modeling the effects on novel drug targets and modern screening tools.
Collapse
Affiliation(s)
- Carolina L Bellera
- a Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata, Buenos Aires , Argentina.,b CCT La Plata , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Alan Talevi
- a Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata, Buenos Aires , Argentina.,b CCT La Plata , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
34
|
Nocedo-Mena D, Cornelio C, Camacho-Corona MDR, Garza-González E, Waksman de Torres N, Arrasate S, Sotomayor N, Lete E, González-Díaz H. Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure Information with Microorganism Metabolic Networks. J Chem Inf Model 2019; 59:1109-1120. [PMID: 30802402 DOI: 10.1021/acs.jcim.9b00034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Predicting the activity of new chemical compounds over pathogenic microorganisms with different metabolic reaction networks (MRN s) is an important goal due to the different susceptibility to antibiotics. The ChEMBL database contains >160 000 outcomes of preclinical assays of antimicrobial activity for 55 931 compounds with >365 parameters of activity (MIC, IC50, etc.) and >90 bacteria strains of >25 bacterial species. In addition, the Leong and Barabàsi data set includes >40 MRNs of microorganisms. However, there are no models able to predict antibacterial activity for multiple assays considering both drug and MRN structures at the same time. In this work, we combined perturbation theory, machine learning, and information fusion techniques to develop the first PTMLIF model. The best linear model found presented values of specificity = 90.31/90.40 and sensitivity = 88.14/88.07 in training/validation series. We carried out a comparison to nonlinear artificial neural network (ANN) techniques and previous models from the literature. Next, we illustrated the practical use of the model with an experimental case of study. We reported for the first time the isolation and characterization of terpenes from the plant Cissus incisa. The antibacterial activity of the terpenes was experimentally determined. The more active compounds were phytol and α-amyrin, with MIC = 100 μg/mL for Vancomycin-resistant Enterococcus faecium and Acinetobacter baumannii resistant to carbapenems. These compounds are already known from other sources. However, they have been isolated and evaluated for the first time here against several strains of multidrug-resistant bacteria including World Health Organization (WHO) priority pathogens. Last, we used the model to predict the activity of these compounds versus other microorganisms with different MRNs in order to find other potential targets.
Collapse
Affiliation(s)
- Deyani Nocedo-Mena
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain.,Facultad de Ciencias Químicas , Universidad Autónoma de Nuevo León , CP 66455 San Nicolás de los Garza , Nuevo León , México
| | - Carlos Cornelio
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain
| | - María Del Rayo Camacho-Corona
- Facultad de Ciencias Químicas , Universidad Autónoma de Nuevo León , CP 66455 San Nicolás de los Garza , Nuevo León , México
| | - Elvira Garza-González
- Servicio de Gastroenterología, Hospital Universitario, Dr. Eleuterio González , Universidad Autónoma de Nuevo León , CP 64460 Monterrey , Nuevo León , México
| | - Noemi Waksman de Torres
- Facultad de Medicina , Universidad Autónoma de Nuevo León , CP 64460 Monterrey , Nuevo León , México
| | - Sonia Arrasate
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain
| | - Nuria Sotomayor
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain
| | - Esther Lete
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain
| | - Humbert González-Díaz
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Biscay , Spain
| |
Collapse
|
35
|
Romero-Molina S, Ruiz-Blanco YB, Harms M, Münch J, Sanchez-Garcia E. PPI-Detect: A support vector machine model for sequence-based prediction of protein-protein interactions. J Comput Chem 2019; 40:1233-1242. [PMID: 30768790 DOI: 10.1002/jcc.25780] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/29/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022]
Abstract
The prediction of peptide-protein or protein-protein interactions (PPI) is a challenging task, especially if amino acid sequences are the only information available. Machine learning methods allow us to exploit the information content in PPI datasets. However, the numerical codification of these datasets often influences the performance of data mining approaches. Here, we introduce a procedure for the general-purpose numerical codification of polypeptides. This procedure transforms pairs of amino acid sequences into a machine learning-friendly vector, whose elements represent numerical descriptors of residues in proteins. We used this numerical encoding procedure for the development of a support vector machine model (PPI-Detect), which allows predicting whether two proteins will interact or not. PPI-Detect (https://ppi-detect.zmb.uni-due.de/) outperforms state of the art sequence-based predictors of PPI. We employed PPI-Detect for the analysis of derivatives of EPI-X4, an endogenous peptide inhibitor of CXCR4, a G-protein-coupled receptor. There, we identified with high accuracy those peptides which bind better than EPI-X4 to the receptor. Also using PPI-Detect, we designed a novel peptide and then experimentally established its anti-CXCR4 activity. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra Romero-Molina
- Center of Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Yasser B Ruiz-Blanco
- Center of Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Elsa Sanchez-Garcia
- Center of Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
36
|
Toropova AP, Toropov AA, Benfenati E, Leszczynska D, Leszczynski J. Prediction of antimicrobial activity of large pool of peptides using quasi-SMILES. Biosystems 2018; 169-170:5-12. [DOI: 10.1016/j.biosystems.2018.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022]
|
37
|
Vishnepolsky B, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M, Managadze G, Grigolava M, Makhatadze GI, Pirtskhalava M. Predictive Model of Linear Antimicrobial Peptides Active against Gram-Negative Bacteria. J Chem Inf Model 2018; 58:1141-1151. [DOI: 10.1021/acs.jcim.8b00118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Boris Vishnepolsky
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Darrell E. Hurt
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michael Tartakovsky
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Grigol Managadze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Maya Grigolava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| | | | - Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia
| |
Collapse
|
38
|
Scotti L, Ishiki HM, Duarte MC, Oliveira TB, Scotti MT. Computational Approaches in Multitarget Drug Discovery. Methods Mol Biol 2018; 1800:327-345. [PMID: 29934901 DOI: 10.1007/978-1-4939-7899-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current therapeutic strategies entail identifying and characterizing a single protein receptor whose inhibition is likely to result in the successful treatment of a disease of interest, and testing experimentally large libraries of small molecule compounds "in vitro" and "in vivo" to identify promising inhibitors in model systems and determine if the findings are extensible to humans. This highly complex process is largely based on tests, errors, risk, time, and intensive costs. The virtual computational study of compounds simulates situations predicting possible drug linkages with multiple protein target atomic structures, taking into account the dynamic protein inhibitor, and can help identify inhibitors efficiently, particularly for complex drug-resistant diseases. Some discussions will relate to the potential benefits of this approach, using HIV-1 and Plasmodium falciparum infections as examples. Some authors have proposed a virtual drug discovery that not only identifies efficient inhibitors but also helps to minimize side effects and toxicity, thus increasing the likelihood of successful therapies. This chapter discusses concepts and research of bioactive multitargets related to toxicology.
Collapse
Affiliation(s)
- Luciana Scotti
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, PB, Brazil.
- Teaching and Research Management - University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | | | | | | | - Marcus T Scotti
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
39
|
Antanasijević D, Antanasijević J, Trišović N, Ušćumlić G, Pocajt V. From Classification to Regression Multitasking QSAR Modeling Using a Novel Modular Neural Network: Simultaneous Prediction of Anticonvulsant Activity and Neurotoxicity of Succinimides. Mol Pharm 2017; 14:4476-4484. [PMID: 29130688 DOI: 10.1021/acs.molpharmaceut.7b00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Succinimides, which contain a pharmacophore responsible for anticonvulsant activity, are frequently used antiepileptic drugs and the synthesis of their new derivatives with improved efficacy and tolerability presents an important task. Nowadays, multitarget/tasking methodologies focused on quantitative-structure activity relationships (mt-QSAR/mtk-QSAR) have an important role in the rational design of drugs since they enable simultaneous prediction of several standard measures of biological activities at diverse experimental conditions and against different biological targets. Relating to this very topic, the mt-QSAR/mtk-QSAR methodology can give only binary classification models, and as such, in this study a regression mtk-QSAR (rmtk-QSAR) model based on a novel modular neural network (MNN) has been proposed. The MNN uses standard classification mtk-QSAR models as input modules, while the regression is performed by the output module. The rmtk-QSAR model has been successfully developed for the simultaneous prediction of anticonvulsant activity and neurotoxicity of succinimides, with a satisfactory accuracy in testing (R2 = 0.87). Thus, the proposed mtk-QSAR regression method can be regarded as a viable alternative to the standard QSAR methodology.
Collapse
Affiliation(s)
- Davor Antanasijević
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| | - Jelena Antanasijević
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| | - Nemanja Trišović
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| | - Gordana Ušćumlić
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| | - Viktor Pocajt
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| |
Collapse
|
40
|
Speck-Planche A, Dias Soeiro Cordeiro MN. Speeding up Early Drug Discovery in Antiviral Research: A Fragment-Based in Silico Approach for the Design of Virtual Anti-Hepatitis C Leads. ACS COMBINATORIAL SCIENCE 2017; 19:501-512. [PMID: 28437091 DOI: 10.1021/acscombsci.7b00039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hepatitis C constitutes an unresolved global health problem. This infectious disease is caused by the hepatotropic hepatitis C virus (HCV), and it can lead to the occurrence of life-threatening medical conditions, such as cirrhosis and liver cancer. Nowadays, major clinical concerns have arisen because of the appearance of multidrug resistance (MDR) and the side effects especially associated with long-term treatments. In this work, we report the first multitasking model for quantitative structure-biological effect relationships (mtk-QSBER), focused on the simultaneous exploration of anti-HCV activity and in vitro safety profiles related to the absorption, distribution, metabolism, elimination, and toxicity (ADMET). The mtk-QSBER model was created from a data set formed by 40 158 cases, displaying accuracy higher than 95% in both training and prediction (test) sets. Several molecular fragments were selected, and their quantitative contributions to anti-HCV activity and ADMET profiles were calculated. By combining the analysis of the fragments with positive contributions and the physicochemical meanings of the different molecular descriptors in the mtk-QSBER, six new molecules were designed. These new molecules were predicted to exhibit potent anti-HCV activity and desirable in vitro ADMET properties. In addition, the designed molecules have good druglikeness according to the Lipinski's rule of five and its variants.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- LAQV@REQUIMTE/Department
of Chemistry and Biochemistry, University of Porto, 4169-007 Porto, Portugal
| | | |
Collapse
|
41
|
Ruiz-Blanco YB, Agüero-Chapin G, García-Hernández E, Álvarez O, Antunes A, Green J. Exploring general-purpose protein features for distinguishing enzymes and non-enzymes within the twilight zone. BMC Bioinformatics 2017; 18:349. [PMID: 28732462 PMCID: PMC5521120 DOI: 10.1186/s12859-017-1758-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/13/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yasser B Ruiz-Blanco
- Facultad de Química y Farmacia, Universidad Central "Marta Abreu" de Las Villas, 54830, Santa Clara, Cuba.,Theoretical Chemistry, Max Planck Institute für Kohlenforschung, 45470, Mulheim an der Ruhr, Germany
| | - Guillermin Agüero-Chapin
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal. .,Centro de Bioactivos Químicos (CBQ), Universidad Central ¨Marta Abreu¨ de Las Villas (UCLV), 54830, Santa Clara, Cuba. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), 04360, D.F, México, Mexico
| | - Orlando Álvarez
- Centro de Bioactivos Químicos (CBQ), Universidad Central ¨Marta Abreu¨ de Las Villas (UCLV), 54830, Santa Clara, Cuba
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - James Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
42
|
Speck-Planche A, Cordeiro MNDS. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1936-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins. Mol Divers 2017; 21:511-523. [PMID: 28194627 DOI: 10.1007/s11030-017-9731-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Breast cancer is the most frequent cancer reported in women, being responsible for hundreds of thousands of deaths. Chemotherapy has proven to be effective against this malignant neoplasm depending on different biological factors such as the histopathology, grade, and stage, among others. However, breast cancer cells have become resistant to current chemotherapeutic regimens, urging the discovery of new anti-breast cancer drugs. Computational approaches have the potential to offer promising alternatives to accelerate the search for potent and versatile anti-breast cancer agents. In the present work, we introduce the first multitasking (mtk) computational model devoted to the in silico fragment-based design of new molecules with high inhibitory activity against 19 different proteins involved in breast cancer. The mtk-computational model was created from a dataset formed by 24,285 cases, and it exhibited accuracy around 93% in both training and prediction (test) sets. Several molecular fragments were extracted from the molecules present in the dataset, and their quantitative contributions to the inhibitory activities against all the proteins under study were calculated. The combined use of the fragment contributions and the physicochemical interpretations of the different molecular descriptors in the mtk-computational model allowed the design of eight new molecular entities not reported in our dataset. These molecules were predicted as potent multi-target inhibitors against all the proteins, and they exhibited a desirable druglikeness according to the Lipinski's rule of five and its variants.
Collapse
|
44
|
Kleandrova VV, Ruso JM, Speck-Planche A, Dias Soeiro Cordeiro MN. Enabling the Discovery and Virtual Screening of Potent and Safe Antimicrobial Peptides. Simultaneous Prediction of Antibacterial Activity and Cytotoxicity. ACS COMBINATORIAL SCIENCE 2016; 18:490-8. [PMID: 27280735 DOI: 10.1021/acscombsci.6b00063] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) represent promising alternatives to fight against bacterial pathogens. However, cellular toxicity remains one of the main concerns in the early development of peptide-based drugs. This work introduces the first multitasking (mtk) computational model focused on performing simultaneous predictions of antibacterial activities, and cytotoxicities of peptides. The model was created from a data set containing 3592 cases, and it displayed accuracy higher than 96% for classifying/predicting peptides in both training and prediction (test) sets. The technique known as alanine scanning was computationally applied to illustrate the calculation of the quantitative contributions of the amino acids (in their respective positions of the sequence) to the biological effects of a defined peptide. A small library formed by 10 peptides was generated, where peptides were designed by considering the interpretations of the different descriptors in the mtk-computational model. All the peptides were predicted to exhibit high antibacterial activities against multiple bacterial strains, and low cytotoxicity against various cell types. The present mtk-computational model can be considered a very useful tool to support high throughput research for the discovery of potent and safe AMPs.
Collapse
Affiliation(s)
- Valeria V. Kleandrova
- Faculty
of Technology and Production Management, Moscow State University of Food Production, Volokolamskoe shosse 11, Moscow, Russia
| | - Juan M. Ruso
- Department
of Applied Physics, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Alejandro Speck-Planche
- Department
of Applied Physics, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, University of Porto, 4169-007 Porto, Portugal
| | | |
Collapse
|