1
|
Schultz JD, Parker KA, Therien MJ, Beratan DN. Efficiency Limits of Energy Conversion by Light-Driven Redox Chains. J Am Chem Soc 2024. [PMID: 39530335 DOI: 10.1021/jacs.4c13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The conversion of absorbed sunlight to spatially separated electron-hole pairs is a crucial outcome of natural photosynthesis. Many organisms achieve near-unit quantum yields of charge separation (one electron-hole pair per incident photon) by dissipating as heat more than half of the light energy that is deposited in the primary donor. Might alternative choices have been made by Nature that would sacrifice quantum yield in favor of producing higher energy electron/hole pairs? Here, we use a multisite electron hopping model to address the kinetic and thermodynamic compromises that can be made in electron transfer chains, with the aim of understanding Nature's choices and opportunities in bioinspired energy-converting systems. We find that if the electron-transfer coordinates are even weakly coupled to a high-frequency vibrational mode, substantial energy dissipation is necessary to achieve the maximum possible energy storage in an electron-transfer chain. Since high-frequency vibronic coupling is common in physiological redox cofactors, we posit that biological reaction centers have recruited a strategy to convert light energy into redox potential with the near-optimum energy efficiency that is possible in an electron-transfer chain. Our simulations also find that charge separation in electron-transfer chains is subject to a minimum intercofactor separation distance, beneath which energy-dissipating charge recombination is unavoidable. We find that high quantum yield and low energy dissipation can thus be realized simultaneously for multistep electron transfer if recombination pathways are uncoupled from high-frequency vibrations and if the cofactors are held at small-to-intermediate distances apart (ca. 3 to 8 Å edge-to-edge). Our analysis informs the design of bioinspired light-harvesting structures that may exceed 60% energy efficiency, as opposed to the ∼30% efficiency achieved in natural photosynthesis.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kelsey A Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Tang X, Ding C, Yu S, Zhong C, Luo H, Chen S. Mechanism Study of Molecular Trap in All-Organic Polystyrene-Based Dielectric Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306034. [PMID: 38126675 DOI: 10.1002/smll.202306034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
It is a huge challenge to explore how charge traps affect the electric breakdown of polymer-based dielectric composites. In this paper, alkane and aromatic molecules with different substituents are investigated according to DFT theoretical method. The combination of strong electron-withdrawing groups and aromatic rings can establish high electron affinity molecules. 4'-Nitro-4-dimethylaminoazobenzene (NAABZ) with a vertical electron affinity of 1.39 eV and a dipole moment of 10.15 D is introduced into polystyrene (PSt) to analyze the influence of charge traps on electric properties. Marcus charge transfer theory is applied to calculate the charge transfer rate between PSt and NAABZ. The nature of charge traps is elaborated from a dynamic perspective. The enhanced breakdown mechanism of polymers-based composites stems from the constraint of carrier mobility caused by the change in transfer rate. But the electrophile nature of high electron affinity filler can decrease the potential barriers at the metal-polymer interface. Simultaneously, the relationship between the electron affinity of fillers and the breakdown strength of polymer-based composites is nonlinear because of the presence of the inversion region. Based on the deep understanding of the molecular trap, this work provides the theoretical calculation for the design and development of high-performance polymer dielectrics.
Collapse
Affiliation(s)
- Xinxuan Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Cuilian Ding
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Shiqi Yu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Cheng Zhong
- Huber Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Sheng Chen
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
3
|
Pal AK, Datta A. First-principles design of heavy-atom-free singlet oxygen photosensitizers for photodynamic therapy. J Chem Phys 2024; 160:164720. [PMID: 38682739 DOI: 10.1063/5.0196557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
In photodynamic therapy (PDT) treatment, heavy-atom-free photosensitizers (PSs) are a great source of singlet oxygen photosensitizer. Reactive oxygen species (ROS) are produced by an energy transfer from the lowest energy triplet excited state to the molecular oxygen of cancer cells. To clarify the photophysical characteristics in the excited states of a few experimentally identified thionated (>C=S) molecules and their oxygenated congeners (>C=O), a quantum chemical study is conducted. This study illustrates the properties of the excited states in oxygen congeners that render them unsuitable for PDT treatment. Concurrently, a hierarchy is presented based on the utility of the lowest-energy triplet excitons of thionated compounds. Their non-radiative decay rates are calculated for reverse-ISC and inter-system crossover (ISC) processes. In addition, the vibronic importance of C=O and C=S bonds is clarified by the computation of the Huang-Rhys factor, effective vibrational mode, and reorganization energy inside the Marcus-Levich-Jörtner system. ROS generation in thionated PSs exceeds their oxygen congeners as kf ≪ kISC, where radiative decay rate is designated as kf. As a result, the current work offers a calculated strategy for analyzing the effectiveness of thionated photosensitizers in PDT.
Collapse
Affiliation(s)
- Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
4
|
Srivastava T, Chaudhuri S, Rich CC, Schatz GC, Frontiera RR, Bruggeman P. Probing time-resolved plasma-driven solution electrochemistry in a falling liquid film plasma reactor: Identification of HO2- as a plasma-derived reducing agent. J Chem Phys 2024; 160:094201. [PMID: 38436446 DOI: 10.1063/5.0190348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Many applications involving plasma-liquid interactions depend on the reactive processes occurring at the plasma-liquid interface. We report on a falling liquid film plasma reactor allowing for in situ optical absorption measurements of the time-dependence of the ferricyanide/ferrocyanide redox reactivity, complemented with ex situ measurement of the decomposition of formate. We found excellent agreement between the measured decomposition percentages and the diffusion-limited decomposition of formate by interfacial plasma-enabled reactions, except at high pH in thin liquid films, indicating the involvement of previously unexplored plasma-induced liquid phase chemistry enabled by long-lived reactive species. We also determined that high pH facilitates a reduction-favoring environment in ferricyanide/ferrocyanide redox solutions. In situ conversion measurements of a 1:1 ferricyanide/ferrocyanide redox mixture exceed the measured ex situ conversion and show that conversion of a 1:1 ferricyanide/ferrocyanide mixture is strongly dependent on film thickness. We identified three dominant processes: reduction faster than ms time scales for film thicknesses >100 µm, •OH-driven oxidation on time scales of <10 ms, and reduction on 15 ms time scales for film thickness <100 µm. We attribute the slow reduction and larger formate decomposition at high pH to HO2- formed from plasma-produced H2O2 enabled by the high pH at the plasma-liquid interface as confirmed experimentally and by computed reaction rates of HO2- with ferricyanide. Overall, this work demonstrates the utility of liquid film reactors in enabling the discovery of new plasma-interfacial chemistry and the utility of atmospheric plasmas for electrodeless electrochemistry.
Collapse
Affiliation(s)
- Tanubhav Srivastava
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, Minnesota 55455, USA
| | - Subhajyoti Chaudhuri
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Christopher C Rich
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA
| | - Peter Bruggeman
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
5
|
Lv Q, Hu Z, Zhang Y, Zhang Z, Lei H. Advancing Meta-Selective C-H Amination through Non-Covalent Interactions. J Am Chem Soc 2024; 146:1735-1741. [PMID: 38095630 DOI: 10.1021/jacs.3c09904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Regioselective C-H amination of simple arenes is highly desirable, but accessing meta-sites of ubiquitous arenes has proven challenging due to the lack of both electronic and spatial preference. This study demonstrates the successful use of various privileged nitrogen-containing functionalities found in pharmaceutical compounds to direct meta-C-H amination of arenes, overcoming the long-standing requirement for a redundant directing group. The remarkable advancements in functional group accommodation for precise regiochemical control were achieved through the discovery of an unprecedented organo-initiator and the strategic utilization of non-covalent interactions. This protocol has been successfully applied in the concise synthesis and late-stage derivatization of drug molecules, which would have been otherwise challenging to achieve.
Collapse
Affiliation(s)
- Qianqian Lv
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zongxing Hu
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yousong Zhang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
| | - Honghui Lei
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
| |
Collapse
|
6
|
Liu Z, Hu H, Sun X. Multistate Reaction Coordinate Model for Charge and Energy Transfer Dynamics in the Condensed Phase. J Chem Theory Comput 2023; 19:7151-7170. [PMID: 37815937 PMCID: PMC10601487 DOI: 10.1021/acs.jctc.3c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 10/12/2023]
Abstract
Constructing multistate model Hamiltonians from all-atom electronic structure calculations and molecular dynamics simulations is crucial for understanding charge and energy transfer dynamics in complex condensed phases. The most popular two-level system model is the spin-boson Hamiltonian, where the nuclear degrees of freedom are represented as shifted normal modes. Recently, we proposed the general multistate nontrivial extension of the spin-boson model, i.e., the multistate harmonic (MSH) model, which is constructed by extending the spatial dimensions of each nuclear mode so as to satisfy the all-atom reorganization energy restrictions for all pairs of electronic states. In this work, we propose the multistate reaction coordinate (MRC) model with a primary reaction coordinate and secondary bath modes as in the Caldeira-Leggett form but in extended spatial dimensions. The MRC model is proven to be equivalent to the MSH model and offers an intuitive physical picture of the nuclear-electronic feedback in nonadiabatic processes such as the inherent trajectory of the reaction coordinate. The reaction coordinate is represented in extended dimensions, carrying the entire reorganization energies and bilinearly coupled to the secondary bath modes. We demonstrate the MRC model construction for photoinduced charge transfer in an organic photovoltaic caroteniod-porphyrin-C60 molecular triad dissolved in tetrahydrofuran as well as excitation energy transfer in a photosynthetic light-harvesting Fenna-Matthews-Olson complex. The MRC model provides an effective and robust platform for investigating quantum dissipative dynamics in complex condensed-phase systems since it allows a consistent description of realistic spectral density, state-dependent system-bath couplings, and heterogeneous environments due to static disorder in reorganization energies.
Collapse
Affiliation(s)
- Zengkui Liu
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
- Department
of Chemistry, New York University, New York, New York, 10003, United States
| | - Haorui Hu
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
| | - Xiang Sun
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
- Department
of Chemistry, New York University, New York, New York, 10003, United States
- Shanghai
Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
| |
Collapse
|
7
|
Bozzi AS, Rocha WR. Calculation of Excited State Internal Conversion Rate Constant Using the One-Effective Mode Marcus-Jortner-Levich Theory. J Chem Theory Comput 2023; 19:2316-2326. [PMID: 37023359 DOI: 10.1021/acs.jctc.2c01288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
In this article, the one-effective mode Marcus-Jortner-Levich (MJL) theory and the classical Marcus theory for electron transfer were applied to estimate the internal conversion rate constant, kIC, of organic molecules and a Ru-based complex, all belonging to the Marcus inverted region. For this, the reorganization energy was calculated using the minimum energy conical intersection point to account for more vibrational levels, correcting the density of states. The results showed good agreement with experimental and theoretically determined kIC, with a small overestimation by the Marcus theory. Also, molecules less dependent on the solvent effects, like benzophenone, presented better results than molecules with an expressive dependence, like 1-aminonaphthalene. Moreover, the results suggest that each molecule possesses unique normal modes leading to the excited state deactivation that does not necessarily match the X-H bond stretching, as previously suggested.
Collapse
Affiliation(s)
- Aline S Bozzi
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Pampulha, Belo Horizonte, MG Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Pampulha, Belo Horizonte, MG Brazil
| |
Collapse
|
8
|
Andermann AM, Rego LGC. Quantum Mechanical Assessment of Optimal Photovoltaic Conditions in Organic Solar Cells. J Phys Chem Lett 2022; 13:11001-11007. [PMID: 36404620 DOI: 10.1021/acs.jpclett.2c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recombination losses contribute to reducing JSC, VOC, and the fill factor of organic solar cells. Recent advances in non-fullerene organic photovoltaics have shown, nonetheless, that efficient charge generation can occur under small energetic driving forces (ΔEDA) and low recombination losses. To shed light on this issue, we set up a coarse-grained open quantum mechanical model for investigating the charge generation dynamics subject to various energy loss mechanisms. The influences of energetic driving force, Coulomb interaction, vibrational disorder, geminate recombination, temperature, and external bias are included in the analysis of the optimal photovoltaic conditions for charge carrier generation. The assessment reveals that the overall energy losses are not only minimized when ΔEDA approaches the effective reorganization energy at the interface but also become insensitive to temperature and electric field variations. It is also observed that a moderate reverse bias reduces geminate recombination losses significantly at vanishing driving forces, where the charge generation is strongly affected by temperature.
Collapse
Affiliation(s)
- Artur M Andermann
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Luis G C Rego
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
9
|
Cabanas AM, Flores Araya JC, Jessop IA, Humire F. Anomalous (Exergonic) Behavior in the Transfer of Electrons between Donors and Acceptors: Mobility, Energy, Caloric Capacity, and Entropy. ACS OMEGA 2022; 7:35153-35158. [PMID: 36211079 PMCID: PMC9535709 DOI: 10.1021/acsomega.2c04094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Understanding the kinetics of electron transfer reactions involves active research in physics, chemistry, biology, and nano-tech. Here, we propose a model to apply in a broader framework by establishing a connection between thermodynamics and kinetics. From a purely thermodynamic point of view, electronic transfer Marcus' theory is revisited; consequently, calculations of thermodynamic variables such as mobility, energy, and entropy are provided. More significantly, two different regimes are explicitly established. In the anomalous region, an exergonic process associated with negative heat capacity appears. Further, in the same region, mobility, energy, and entropy decrease when the temperature increases.
Collapse
Affiliation(s)
- Ana M. Cabanas
- Departamento
de Física, FACI, Universidad de Tarapacá, Arica 1000965, Chile
| | | | - Ignacio A. Jessop
- Departamento
de Química, FACI, Universidad de
Tarapacá, Arica 1000007, Chile
| | - Fernando Humire
- Departamento
de Física, FACI, Universidad de Tarapacá, Arica 1000965, Chile
| |
Collapse
|
10
|
Kong F, Zhang Y, Quinton C, McIntosh N, Yang S, Rault‐Berthelot J, Lucas F, Brouillac C, Jeannin O, Cornil J, Jiang Z, Liao L, Poriel C. Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Light-Emitting Diodes: A New Molecular Design Approach. Angew Chem Int Ed Engl 2022; 61:e202207204. [PMID: 35729063 PMCID: PMC9540750 DOI: 10.1002/anie.202207204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/05/2022]
Abstract
To date, all efficient host materials reported for phosphorescent OLEDs (PhOLEDs) are constructed with heteroatoms, which have a crucial role in the device performance. However, it has been shown in recent years that the heteroatoms not only increase the design complexity but can also be involved in the instability of the PhOLED, which is nowadays the most important obstacle to overcome. Herein, we design pure aromatic hydrocarbon materials (PHC) as very efficient hosts in high-performance white and blue PhOLEDs. With EQE of 27.7 %, the PHC-based white PhOLEDs display similar efficiency as the best reported with heteroatom-based hosts. Incorporated as a host in a blue PhOLED, which are still the weakest links of the technology, a very high EQE of 25.6 % is reached, surpassing, for the first time, the barrier of 25 % for a PHC and FIrpic blue emitter. This performance shows that the PHC strategy represents an effective alternative for the future development of the OLED industry.
Collapse
Affiliation(s)
- Fan‐Cheng Kong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Yuan‐Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123China
| | | | - Nemo McIntosh
- Laboratory for Chemistry of Novel MaterialsUniversity of Mons7000MonsBelgium
| | - Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123China
| | | | - Fabien Lucas
- Univ. Rennes, CNRS, ISCR-UMR 622635000RennesFrance
| | | | | | - Jérôme Cornil
- Laboratory for Chemistry of Novel MaterialsUniversity of Mons7000MonsBelgium
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123China
- Macau Institute of Materials Science and EngineeringMacau University of Science and TechnologyMacao999078China
| | - Cyril Poriel
- Univ. Rennes, CNRS, ISCR-UMR 622635000RennesFrance
| |
Collapse
|
11
|
Jouclas R, Liu J, Volpi M, Silva de Moraes L, Garbay G, McIntosh N, Bardini M, Lemaur V, Vercouter A, Gatsios C, Modesti F, Turetta N, Beljonne D, Cornil J, Kennedy AR, Koch N, Erk P, Samorì P, Schweicher G, Geerts YH. Dinaphthotetrathienoacenes: Synthesis, Characterization, and Applications in Organic Field-Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105674. [PMID: 35297223 PMCID: PMC9259716 DOI: 10.1002/advs.202105674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The charge transport of crystalline organic semiconductors is limited by dynamic disorder that tends to localize charges. It is the main hurdle to overcome in order to significantly increase charge carrier mobility. An innovative design that combines a chemical structure based on sulfur-rich thienoacene with a solid-state herringbone (HB) packing is proposed and the synthesis, physicochemical characterization, and charge transport properties of two new thienoacenes bearing a central tetrathienyl core fused with two external naphthyl rings: naphtho[2,3-b]thieno-[2''',3''':4'',5'']thieno[2″,3″:4',5']thieno[3',2'-b]naphtho[2,3-b]thiophene (DN4T) and naphtho[1,2-b]thieno-[2''',3''':4'',5'']thieno[2'',3'':4',5']thieno[3',2'-b]naphtho[1,2-b]thiophene are presented. Both compounds crystallize with a HB pattern structure and present transfer integrals ranging from 33 to 99 meV (for the former) within the HB plane of charge transport. Molecular dynamics simulations point toward an efficient resilience of the transfer integrals to the intermolecular sliding motion commonly responsible for strong variations of the electronic coupling in the crystal. Best device performances are reached with DN4T with hole mobility up to μ = 2.1 cm2 V-1 s-1 in polycrystalline organic field effect transistors, showing the effectiveness of the electronic coupling enabled by the new aromatic core. These promising results pave the way to the design of high-performing materials based on this new thienoacene, notably through the introduction of alkyl side-chains.
Collapse
Affiliation(s)
- Rémy Jouclas
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Jie Liu
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Martina Volpi
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Lygia Silva de Moraes
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Guillaume Garbay
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Nemo McIntosh
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Marco Bardini
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Alexandre Vercouter
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Christos Gatsios
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH12489BerlinGermany
- Institut für Physik and IRIS AdlershofHumboldt‐Universitat zu Berlin12489BerlinGermany
| | | | - Nicholas Turetta
- University of StrasbourgCNRSISIS UMR 70068 Alleé Gaspard MongeStrasbourgF‐67000France
| | - David Beljonne
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Alan R. Kennedy
- Dept. of Pure and Applied ChemistryUniversity of StrathclydeCathedral Street 295GlasgowG1 1XLUK
| | - Norbert Koch
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH12489BerlinGermany
- Institut für Physik and IRIS AdlershofHumboldt‐Universitat zu Berlin12489BerlinGermany
| | - Peter Erk
- BASF SERCS – J542S67056Ludwigshafen am RheinGermany
| | - Paolo Samorì
- University of StrasbourgCNRSISIS UMR 70068 Alleé Gaspard MongeStrasbourgF‐67000France
| | - Guillaume Schweicher
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Yves H. Geerts
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
- International Solvay Institutes for Physics and ChemistryUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 231Bruxelles1050Belgium
| |
Collapse
|
12
|
Chen Y, Bhati M, Walls BW, Wang B, Wong MS, Senftle TP. Mechanistic Insight into the Photo-Oxidation of Perfluorocarboxylic Acid over Boron Nitride. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8942-8952. [PMID: 35617117 DOI: 10.1021/acs.est.2c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hexagonal boron nitride (hBN) can photocatalytically oxidize and degrade perfluorocarboxylic acids (PFCA), a common member of the per/polyfluoroalkyl substance (PFAS) family of water contaminants. However, the reaction mechanism governing PFCA activation on hBN is not yet understood. Here, we apply electronic grand canonical density functional theory (GC-DFT) to assess the thermodynamic and kinetic favorability of PFCA photo-oxidative activation on hBN: CnF2n+1COO- + h+ → CnF2n+1· + CO2. The oxidation of all PFCA chains is exothermic under illumination with a moderate barrier. However, the longer-chain PFCAs are degraded more effectively because they adsorb on the surface more strongly as a result of increased van der Waals interactions with the hBN surface. The ability of hBN to act as a photocatalyst is unexpected because of its wide band gap. Therefore, we apply both theoretical and experimental analyses to examine possible defects on hBN that could account for its activity. We find that a nitrogen-boron substitutional defect (NB), which generates a mid-gap state, can enhance UVC (ultraviolet C) absorption and PFCA oxidation. This work provides insight into the PFCA oxidation mechanism and reveals engineering strategies to design better photocatalysts for PFCA degradation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Manav Bhati
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Benjamin W Walls
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Bo Wang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Kong FC, Zhang YL, Quinton C, Mcintosh N, Yang SY, Rault-Berthelot J, lucas F, Brouillac C, jeannin O, cornil J, Jiang Z, liao LS, Poriel C. Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Light‐Emitting Diodes: A New Molecular Design Approach. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Nemo Mcintosh
- Universite de Mons - Hainaut: Universite de Mons - BELGIUM
| | | | | | - fabien lucas
- École Polytechnique: Ecole Polytechnique - FRANCE
| | | | | | - jerome cornil
- Universite de Mons - Hainaut: Universite de Mons chem BELGIUM
| | | | | | - Cyril Poriel
- UMR CNRS 6226 Dpt. de Chimie campus de Beaulieu 35042 Rennes cedex Rennes FRANCE
| |
Collapse
|
14
|
Spin Orbit Coupling in Orthogonal Charge Transfer States: (TD-)DFT of Pyrene-Dimethylaniline. Molecules 2022; 27:molecules27030891. [PMID: 35164162 PMCID: PMC8839636 DOI: 10.3390/molecules27030891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
The conformational dependence of the matrix element for spin-orbit coupling and of the electronic coupling for charge separation are determined for an electron donor-acceptor system containing a pyrene acceptor and a dimethylaniline donor. Different kinetic and energetic aspects that play a role in the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism are discussed. This includes parameters related to initial charge separation and the charge recombination pathways using the Classical Marcus Theory of electron transfer. The spin-orbit coupling, which plays a significant role in charge recombination to the triplet state, can be probed by (TD)-DFT, using the latter as a tool to understand and predict the SOCT-ISC mechanism. The matrix elements for spin-orbit coupling for acetone and 4-thio-thymine are used for benchmarking. (Time Dependent-) Density Functional Theory (DFT and TD-DFT) calculations are applied using the quantum chemical program Amsterdam Density Functional (ADF).
Collapse
|
15
|
Andermann AM, Rego LGC. Energetics of the charge generation in organic donor-acceptor interfaces. J Chem Phys 2022; 156:024104. [PMID: 35032994 DOI: 10.1063/5.0076611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-fullerene acceptor materials have posed new paradigms for the design of organic solar cells , whereby efficient carrier generation is obtained with small driving forces, in order to maximize the open-circuit voltage (VOC). In this paper, we use a coarse-grained mixed quantum-classical method, which combines Ehrenfest and Redfield theories, to shed light on the charge generation process in small energy offset interfaces. We have investigated the influence of the energetic driving force as well as the vibronic effects on the charge generation and photovoltaic energy conversion. By analyzing the effects of the Holstein and Peierls vibrational couplings, we find that vibrational couplings produce an overall effect of improving the charge generation. However, the two vibronic mechanisms play different roles: the Holstein relaxation mechanism decreases the charge generation, whereas the Peierls mechanism always assists the charge generation. Moreover, by examining the electron-hole binding energy as a function of time, we evince two distinct regimes for the charge separation: the temperature independent excitonic spread on a sub-100 fs timescale and the complete dissociation of the charge-transfer state that occurs on the timescale of tens to hundreds of picoseconds, depending on the temperature. The quantum dynamics of the system exhibits the three regimes of the Marcus electron transfer kinetics as the energy offset of the interface is varied.
Collapse
Affiliation(s)
- Artur M Andermann
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Luis G C Rego
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
16
|
Kwon HY, Ashley DC, Jakubikova E. Halogenation affects driving forces, reorganization energies and "rocking" motions in strained [Fe(tpy) 2] 2+ complexes. Dalton Trans 2021; 50:14566-14575. [PMID: 34586133 DOI: 10.1039/d1dt02314d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling the energetics of spin crossover (SCO) in Fe(II)-polypyridine complexes is critical for designing new multifunctional materials or tuning the excited-state lifetimes of iron-based photosensitizers. It is well established that the Fe-N "breathing" mode is important for intersystem crossing from the singlet to the quintet state, but this does not preclude other, less obvious, structural distortions from affecting SCO. Previous work has shown that halogenation at the 6 and 6'' positions of tpy (tpy = 2,2';6',2''-terpyridine) in [Fe(tpy)2]2+ dramatically increased the lifetime of the excited MLCT state and also had a large impact on the ground state spin-state energetics. To gain insight into the origins of these effects, we used density functional theory calculations to explore how halogenation impacts spin-state energetics and molecular structure in this system. Based on previous work we focused on the ligand "rocking" motion associated with SCO in [Fe(tpy)2]2+ by constructing one-dimensional potential energy surfaces (PESs) along the tpy rocking angle for various spin states. It was found that halogenation has a clear and predictable impact on ligand rocking and spin-state energetics. The rocking is correlated to numerous other geometrical distortions, all of which likely affect the reorganization energies for spin-state changes. We have quantified trends in reorganization energy and also driving force for various spin-state changes and used them to interpret the experimentally measured excited-state lifetimes.
Collapse
Affiliation(s)
- Hyuk-Yong Kwon
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| | - Daniel C Ashley
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| |
Collapse
|
17
|
de Sousa LE, de Silva P. Unified Framework for Photophysical Rate Calculations in TADF Molecules. J Chem Theory Comput 2021; 17:5816-5824. [PMID: 34383498 DOI: 10.1021/acs.jctc.1c00476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the challenges in organic light-emitting diodes research is finding ways to increase device efficiency by making use of the triplet excitons that are inevitably generated in the process of electroluminescence. One way to do so is by thermally activated delayed fluorescence (TADF), a process in which triplet excitons undergo upconversion to singlet states, allowing them to relax radiatively. The discovery of this phenomenon has ensued a quest for new materials that are able to effectively take advantage of this mechanism. From a theoretical standpoint, this requires the capacity to estimate the rates of the various processes involved in the photophysics of candidate molecules, such as intersystem crossing, reverse intersystem crossing, fluorescence, and phosphorescence. Here, we present a method that is able to, within a single framework, compute all of these rates and predict the photophysics of new molecules. We apply the method to two TADF molecules and show that results compare favorably with other theoretical approaches and experimental results. Finally, we use a kinetic model to show how the calculated rates act in concert to produce different photophysical behavior.
Collapse
Affiliation(s)
- Leonardo Evaristo de Sousa
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kongens Lyngby, Denmark
| | - Piotr de Silva
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Parson WW. Reorganization Energies, Entropies, and Free Energy Surfaces for Electron Transfer. J Phys Chem B 2021; 125:7940-7945. [PMID: 34275278 DOI: 10.1021/acs.jpcb.1c01932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reorganization energies for an intramolecular self-exchange electron-transfer reaction are calculated by quantum-classical molecular dynamics simulations in four solvents with varying polarity and at temperatures ranging from 250 to 350 K. The reorganization free energies for polar solvents decrease systematically with increasing temperature, indicating that they include substantial contributions from entropy changes. The variances of the energy gap between the reactant and product states have a major component that is relatively insensitive to temperature. Explanations are suggested for these observations, which appear to necessitate rethinking the free energy functions of a distributed coordinate that frequently are used in discussions of reaction dynamics.
Collapse
Affiliation(s)
- William W Parson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
de Melo Neto CA, Pereira ML, Ribeiro LA, Roncaratti LF, da Silva Filho DA. Theoretical prediction of electron mobility in birhodanine crystals and their sulfur analogs. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Heller ER, Richardson JO. Semiclassical instanton formulation of Marcus–Levich–Jortner theory. J Chem Phys 2020; 152:244117. [DOI: 10.1063/5.0013521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eric R. Heller
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
22
|
Affiliation(s)
- William W. Parson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
23
|
Vurgaftman I, Simpkins BS, Dunkelberger AD, Owrutsky JC. Negligible Effect of Vibrational Polaritons on Chemical Reaction Rates via the Density of States Pathway. J Phys Chem Lett 2020; 11:3557-3562. [PMID: 32298585 DOI: 10.1021/acs.jpclett.0c00841] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We show that the polariton density of states in planar optical cavities strongly coupled to vibrational excitations remains much lower than the density of vibrational states even at the frequency of the lower and upper polaritons under most practical circumstances. The polariton density of states is higher within a narrow window only when the inhomogeneous line width is at least an order of magnitude smaller than the Rabi splitting. Therefore, modification of reaction rates via the density-of-states pathway appears small or negligible for the scenarios reported in the literature. While the polariton density of states is bounded from above by the free-space optical density of states in dielectric cavities, it can be much higher for localized phonon polariton modes of nanoscale particles. We conclude that other potential explanations of the reported reactivity changes under vibrational strong coupling should be examined.
Collapse
Affiliation(s)
- Igor Vurgaftman
- Naval Research Laboratory, Washington, DC 20375, United States
| | | | | | | |
Collapse
|
24
|
Slow charge transfer from pentacene triplet states at the Marcus optimum. Nat Chem 2019; 12:63-70. [PMID: 31767991 DOI: 10.1038/s41557-019-0367-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/04/2019] [Indexed: 11/08/2022]
Abstract
Singlet fission promises to surpass the Shockley-Queisser limit for single-junction solar cell efficiency through the production of two electron-hole pairs per incident photon. However, this promise has not been fulfilled because singlet fission produces two low-energy triplet excitons that have been unexpectedly difficult to dissociate into free charges. To understand this phenomenon, we study charge separation from triplet excitons in polycrystalline pentacene using an electrochemical series of 12 different guest electron-acceptor molecules with varied reduction potentials. We observe separate optima in the charge yield as a function of driving force for singlet and triplet excitons, including inverted regimes for the dissociation of both states. Molecular acceptors can thus provide a strategic advantage to singlet fission solar cells by suppressing singlet dissociation at optimal driving forces for triplet dissociation. However, even at the optimal driving force, the rate constant for charge transfer from the triplet state is surprisingly small, ~107 s-1, presenting a previously unidentified obstacle to the design of efficient singlet fission solar cells.
Collapse
|
25
|
Campos-Gonzalez-Angulo JA, Ribeiro RF, Yuen-Zhou J. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat Commun 2019; 10:4685. [PMID: 31615990 PMCID: PMC6794294 DOI: 10.1038/s41467-019-12636-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/17/2019] [Indexed: 11/09/2022] Open
Abstract
Interaction between light and matter results in new quantum states whose energetics can modify chemical kinetics. In the regime of ensemble vibrational strong coupling (VSC), a macroscopic number [Formula: see text] of molecular transitions couple to each resonant cavity mode, yielding two hybrid light-matter (polariton) modes and a reservoir of [Formula: see text] dark states whose chemical dynamics are essentially those of the bare molecules. This fact is seemingly in opposition to the recently reported modification of thermally activated ground electronic state reactions under VSC. Here we provide a VSC Marcus-Levich-Jortner electron transfer model that potentially addresses this paradox: although entropy favors the transit through dark-state channels, the chemical kinetics can be dictated by a few polaritonic channels with smaller activation energies. The effects of catalytic VSC are maximal at light-matter resonance, in agreement with experimental observations.
Collapse
Affiliation(s)
| | - Raphael F Ribeiro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92093, USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92093, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, Arizona 85287, United States
| | - Marshall D. Newton
- Chemistry Department, Brookhaven National Laboratory, Box 5000, Upton, New York 11973-5000, United States
| |
Collapse
|
27
|
Chaudhuri S, Acharya A, Nibbering ETJ, Batista VS. Regioselective Ultrafast Photoinduced Electron Transfer from Naphthols to Halocarbon Solvents. J Phys Chem Lett 2019; 10:2657-2662. [PMID: 31051077 DOI: 10.1021/acs.jpclett.9b00410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excited state decay of 2-naphthol (2N) in halocarbon solvents has been observed to be significantly slower when compared to that of 1-naphthol (1N). In this study, we provide new physical insights behind this observation by exploring the regioselective electron transfer (ET) mechanism from photoexcited 1N and 2N to halocarbon solvents at a detailed molecular level. Using state-of-the-art electronic structure calculations, we explore several configurations of naphthol-chloroform complexes and find that the proximity of the electron-accepting chloroform molecule to the electron-rich -OH group of the naphthol is the dominant factor affecting electron transfer rates. The origin of significantly slower electron transfer rates for 2N is traced back to the notably smaller electronic coupling when the electron-accepting chloroform molecule is on top of the aromatic ring distal to the -OH group. Our findings suggest that regioselective photoinduced electron transfer could thus be exploited to control electron transfer in substituted acenes tailored for specific applications.
Collapse
Affiliation(s)
- Subhajyoti Chaudhuri
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Atanu Acharya
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Erik T J Nibbering
- Max Born Institut für Nichtlineare Optik and Kurzzeitspektroskopie , Max Born Strasse 2A , 12489 Berlin , Germany
| | - Victor S Batista
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| |
Collapse
|
28
|
Matyushov DV. Nonequilibrium vibrational population and donor-acceptor vibrations affecting rates of radiationless transitions. J Chem Phys 2019; 150:074504. [DOI: 10.1063/1.5082970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287, USA
| |
Collapse
|
29
|
Parson WW. Temperature Dependence of the Rate of Intramolecular Electron Transfer. J Phys Chem B 2018; 122:8824-8833. [DOI: 10.1021/acs.jpcb.8b06497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William W. Parson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
30
|
|