1
|
Nguyen KA, Pachter R, Loftus LM, Hong G, Day PN, Azoulay JD, Grusenmeyer TA. Electronic Structures and Spectra of Donor-Acceptor Conjugated Oligomers. J Phys Chem A 2024; 128:9146-9158. [PMID: 39392140 DOI: 10.1021/acs.jpca.4c04458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Narrow band gap donor-acceptor conjugated polymers present excellent paradigms in photonics and optoelectronics due to their chemical tunability, correlated electronic structures, and tunable open-shell electronic configurations. However, rational design for enhancing the properties of these molecular systems remains challenging. In this study, we employed density functional theory (DFT) calculations to investigate prototypical narrow band gap donor-acceptor conjugated oligomers, consisting of alternating cyclopentadithiophene (CPDT) donors paired with benzothiadiazole (BT), benzoselenadiazole (BSe), benzobisthiadiazole (BBT), and thiadiazoloquinoxaline (TQ) acceptors. Analyses of structures, singlet-triplet gaps, and absorption spectra of oligomers with up to ten repeat units have shown that when incorporating the BT, BSe, and TQ acceptors, the backbone curvature resulted in spiral structures that were energetically favored over their linear counterparts, causing differences in the calculated circular dichroism spectra. Oligomers with BBT-based acceptors preferred, however, a linear geometry, consistent with an open-shell electronic structure. Calculated singlet-triplet splittings demonstrated the importance of long chains and specific structures for consistency with the experiment, while effects of the solvent were also quantified. Based on the predicted low-energy conformations, one-photon absorption spectra for the considered oligomers have shown that using the Tamm-Dancoff approximation within time-dependent DFT for the large systems offers good agreement with the first absorption maxima in measured experimental spectra, thus validating the method for large donor-acceptor oligomers. Natural transition orbital analyses provided insights into the excited-state characteristics. Two-photon absorption maxima were accurately predicted, but the cross-sections were overestimated or underestimated, as dependent on the level of theory employed, to be addressed in future work.
Collapse
Affiliation(s)
- Kiet A Nguyen
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Ruth Pachter
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Lauren M Loftus
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- Azimuth Corporation, Dayton, Ohio 45432, United States
| | - Gongyi Hong
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Paul N Day
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Jason D Azoulay
- School of Chemistry and Biochemistry and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tod A Grusenmeyer
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
2
|
Naim C, Zaleśny R, Jacquemin D. Two-Photon Absorption Strengths of Small Molecules: Reference CC3 Values and Benchmarks. J Chem Theory Comput 2024; 20:9093-9106. [PMID: 39374489 DOI: 10.1021/acs.jctc.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We present a large dataset of highly accurate two-photon transition strengths (δTPA) determined for standard small molecules. Our reference values have been calculated using the quadratic response implementation of the third-order coupled cluster method including iterative triples (Q-CC3). The aug-cc-pVTZ atomic basis set is used for molecules with up to five non-hydrogen atoms, while larger molecules are assessed with aug-cc-pVDZ; the differences due to the basis sets are discussed. This dataset, encompassing 82 singlet transitions of various characters (Rydberg, valence, and double excitations), enables a comprehensive benchmark of smaller basis sets and alternative wavefunction methods when Q-CC3 calculations become beyond reach as well as time-dependent density functional theory (TD-DFT) approaches. The evaluated wavefunction methods include quadratic response and equation-of-motion CCSD approximations, Q-CC2, and second-order algebraic diagrammatic construction in its intermediate state representation (I-ADC2). In the TD-DFT framework, a set of five commonly used exchange-correlation functionals are evaluted. This extensive analysis provides a quantitative assessment of these methods, revealing how different system sizes, response intensities, and types of transitions affect their performances.
Collapse
Affiliation(s)
- Carmelo Naim
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
3
|
Dar DB, Baranova A, Maitra NT. Reformulation of Time-Dependent Density Functional Theory for Nonperturbative Dynamics: The Rabi Oscillation Problem Resolved. PHYSICAL REVIEW LETTERS 2024; 133:096401. [PMID: 39270163 DOI: 10.1103/physrevlett.133.096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024]
Abstract
Rabi oscillations have long been thought to be out of reach in simulations using time-dependent density functional theory (TDDFT), a prominent symptom of the failure of the adiabatic approximation for nonperturbative dynamics. We present a reformulation of TDDFT which requires response quantities only, thus enabling an adiabatic approximation to predict such dynamics accurately because the functional is evaluated on a density close to the ground state, instead of on the fully nonperturbative density. Our reformulation applies to any real-time dynamics, redeeming TDDFT far from equilibrium. Examples of a resonantly-driven local excitation in a model He atom, and charge-transfer in the LiCN molecule are given.
Collapse
|
4
|
Burke JH, Bae DY, Wallick RF, Dykstra CP, Rossi TC, Smith LE, Leahy CA, Schaller RD, Mirica LM, Vura-Weis J, van der Veen RM. High-Spin State of a Ferrocene Electron Donor Revealed by Optical and X-ray Transient Absorption Spectroscopy. J Am Chem Soc 2024; 146:21651-21663. [PMID: 39051542 PMCID: PMC11311227 DOI: 10.1021/jacs.4c05646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Ferrocene is one of the most common electron donors, and mapping its ligand-field excited states is critical to designing donor-acceptor (D-A) molecules with long-lived charge transfer states. Although 3(d-d) states are commonly invoked in the photophysics of ferrocene complexes, mention of the high-spin 5(d-d) state is scarce. Here, we provide clear evidence of 5(d-d) formation in a bimetallic D-A molecule, ferrocenyl cobaltocenium hexafluorophosphate ([FcCc]PF6). Femtosecond optical transient absorption (OTA) spectroscopy reveals two distinct electronic excited states with 30 and 500 ps lifetimes. Using a combination of ultraviolet, visible, near-infrared, and short-wave infrared probe pulses, we capture the spectral features of these states over an ultrabroadband range spanning 320 to 2200 nm. Time-dependent density functional theory (DFT) calculations of the lowest triplet and quintet states, both primarily Fe(II) (d-d) in character, qualitatively agree with the experimental OTA spectra, allowing us to assign the 30 ps state as the 3(d-d) state and the 500 ps state as the high-spin 5(d-d) state. To confirm the ferrocene-centered high-spin character of the 500 ps state, we performed X-ray transient absorption (XTA) spectroscopy at the Fe and Co K edges. The Fe K-edge XTA spectrum at 150 ps shows a red shift of the absorption edge that is consistent with an Fe(II) high-spin state, as supported by ab initio calculations. The transient signal detected at the Co K-edge is 50× weaker, confirming the ferrocene-centered character of the excited state. Fitting of the transient extended X-ray absorption fine structure region yields an Fe-C bond length increase of 0.25 ± 0.1 Å in the excited state, as expected for the high-spin state based on DFT. Altogether, these results demonstrate that the high-spin state of ferrocene should be considered when designing donor-acceptor assemblies for photocatalysis and photovoltaics.
Collapse
Affiliation(s)
- John H. Burke
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Dae Young Bae
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Rachel F. Wallick
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Conner P. Dykstra
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thomas C. Rossi
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
| | - Laura E. Smith
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Clare A. Leahy
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Richard D. Schaller
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Liviu M. Mirica
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Renske M. van der Veen
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
- Institute
of Optics and Atomic Physics, Technical
University of Berlin, 10623 Berlin, Germany
| |
Collapse
|
5
|
von Buchwald TJ, Ziems KM, Kjellgren ER, Sauer SPA, Kongsted J, Coriani S. Reduced Density Matrix Formulation of Quantum Linear Response. J Chem Theory Comput 2024. [PMID: 39106406 DOI: 10.1021/acs.jctc.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The prediction of spectral properties via linear response (LR) theory is an important tool in quantum chemistry for understanding photoinduced processes in molecular systems. With the advances of quantum computing, we recently adapted this method for near-term quantum hardware using a truncated active space approximation with orbital rotation, named quantum linear response (qLR). In an effort to reduce the classic cost of this hybrid approach, we here derive and implement a reduced density matrix (RDM) driven approach of qLR. This allows for the calculation of spectral properties of moderately sized molecules with much larger basis sets than so far possible. We report qLR results for benzene and R-methyloxirane with a cc-pVTZ basis set and study the effect of shot noise on the valence and oxygen K-edge absorption spectra of H2O in the cc-pVTZ basis.
Collapse
Affiliation(s)
- Theo Juncker von Buchwald
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Karl Michael Ziems
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
de Wergifosse M, Grimme S. The eXact integral simplified time-dependent density functional theory (XsTD-DFT). J Chem Phys 2024; 160:204110. [PMID: 38805556 DOI: 10.1063/5.0206380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
In the framework of simplified quantum chemistry methods, we introduce the eXact integral simplified time-dependent density functional theory (XsTD-DFT). This method is based on the simplified time-dependent density functional theory (sTD-DFT), where all semi-empirical two-electron integrals are replaced by exact one- and two-center two-electron integrals, while other approximations from sTD-DFT are kept. The performance of this new parameter-free XsTD-DFT method was benchmarked on excited state and (non)linear response properties, including ultra-violet/visible absorption, first hyperpolarizability, and two-photon absorption (2PA). For a set of 77 molecules, the results from the XsTDA approach were compared to the TDA data. XsTDA/B3LYP excitation energies only deviate on average by 0.14 eV from TDA while drastically cutting computational costs by a factor of 20 or more depending on the energy threshold chosen. The absolute deviations of excitation energies with respect to the full scheme are decreasing with increasing system size, showing the suitability of XsTDA/XsTD-DFT to treat large systems. Comparing XsTDA and its predecessor sTDA, the new scheme generally improves excitation energies and oscillator strengths, in particular, for charge transfer states. TD-DFT first hyperpolarizability frequency dispersions for a set of push-pull π-conjugated molecules are faithfully reproduced by XsTD-DFT, while the previous sTD-DFT method provides redshifted resonance energy positions. Excellent performance with respect to the experiment is observed for the 2PA spectrum of the enhanced green fluorescent protein. The obtained robust accuracy similar to TD-DFT at a fraction of the computational cost opens the way for a plethora of applications for large systems and in high throughput screening studies.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Theoretical Chemistry Group, Molecular Chemistry, Materials and Catalysis Division (MOST), Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
7
|
Sereda M, Allen T, Bradbury NC, Ibrahim KZ, Neuhauser D. Sparse-Stochastic Fragmented Exchange for Large-Scale Hybrid Time-Dependent Density Functional Theory Calculations. J Chem Theory Comput 2024; 20:4196-4204. [PMID: 38713513 DOI: 10.1021/acs.jctc.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
We extend our recently developed sparse-stochastic fragmented exchange formalism for ground-state near-gap hybrid DFT to calculate absorption spectra within linear-response time-dependent generalized Kohn-Sham DFT (LR-GKS-TDDFT) for systems consisting of thousands of valence electrons within a grid-based/plane-wave representation. A mixed deterministic/fragmented-stochastic compression of the exchange kernel, here using long-range explicit exchange functionals, provides an efficient method for accurate optical spectra. Both real-time propagation as well as frequency-resolved Casida-equation-type approaches for spectra are presented, and the method is applied to large molecular dyes.
Collapse
Affiliation(s)
- Mykola Sereda
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, United States
| | - Tucker Allen
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, United States
| | - Nadine C Bradbury
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, United States
| | - Khaled Z Ibrahim
- Computer Science Department, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, United States
| |
Collapse
|
8
|
Rauwolf N, Klopper W, Holzer C. Non-linear light-matter interactions from the Bethe-Salpeter equation. J Chem Phys 2024; 160:061101. [PMID: 38341783 DOI: 10.1063/5.0191499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
A route to assess non-linear light-matter interactions from the increasingly popular GW-Bethe-Salpeter equation (GW-BSE) method is outlined. In the present work, the necessary analytic expressions within the static-screened exchange approximation of the BSE are derived. This enables a straightforward implementation of the computation of the first hyperpolarizability as well as two-photon absorption processes for molecular systems. Benchmark calculations on small molecular systems reveal that the GW-BSE method is intriguingly accurate for predicting both first hyperpolarizabilities and two-photon absorption strengths. Using state-of-the-art Kohn-Sham references as a starting point, the accuracy of the GW-BSE method rivals that of the coupled-cluster singles-and-doubles method, outperforming both second-order coupled-cluster and time-dependent density-functional theory.
Collapse
Affiliation(s)
- Nina Rauwolf
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
9
|
Ahmadzadeh K, Li X, Rinkevicius Z, Norman P, Zaleśny R. Toward Accurate Two-Photon Absorption Spectrum Simulations: Exploring the Landscape beyond the Generalized Gradient Approximation. J Phys Chem Lett 2024; 15:969-974. [PMID: 38252270 PMCID: PMC10839899 DOI: 10.1021/acs.jpclett.3c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
In this Letter, we present a pioneering analysis of the density functional approximations (DFAs) beyond the generalized gradient approximation (GGA) for predicting two-photon absorption (2PA) strengths of a set of push-pull π-conjugated molecules. In more detail, we have employed a variety of meta-generalized gradient approximation (meta-GGA) functionals, including SCAN, MN15, and M06-2X, to assess their accuracy in describing the 2PA properties of a chosen set of 48 organic molecules. Analytic quadratic response theory is employed for these functionals, and their performance is compared against the previously studied DFAs and reference data obtained at the coupled-cluster CC2 level combined with the resolution-of-identity approximation (RI-CC2). A detailed analysis of the meta-GGA functional performance is provided, demonstrating that they improve upon their predecessors in capturing the key electronic features of the π-conjugated two-photon absorbers. In particular, the Minnesota functional MN15 shows very promising results as it delivers pleasingly accurate chemical rankings for two-photon transition strengths and excited-state dipole moments.
Collapse
Affiliation(s)
- Karan Ahmadzadeh
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xin Li
- PDC
Center for High Performance Computing, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zilvinas Rinkevicius
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Kaunas LT-51368, Lithuania
| | - Patrick Norman
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Robert Zaleśny
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
10
|
Sitkiewicz SP, Matito E, Luis JM, Zaleśny R. Pitfall in simulations of vibronic TD-DFT spectra: diagnosis and assessment. Phys Chem Chem Phys 2023; 25:30193-30197. [PMID: 37905423 DOI: 10.1039/d3cp04276f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In this Communication, we study the effect of spurious oscillations in the profiles of energy derivatives with respect to nuclear coordinates calculated with density functional approximations (DFAs) for formaldehyde, pyridine, and furan in their ground and electronic excited states. These spurious oscillations, which can only be removed using extensive integration grids that increase enormously the CPU cost of DFA calculations, are significant in the case of third- and fourth-order energy derivatives of the ground and excited states computed by M06-2X and ωB97X functionals. The errors in question propagate to anharmonic vibronic spectra computed under the Franck-Condon approximation, i.e., positions and intensities of vibronic transitions are affected to a large extent (shifts as significant as hundreds of cm-1 were observed). On the other hand, the LC-BLYP and CAM-B3LYP functionals show a much less pronounced effect due to spurious oscillations. Based on the results presented herein, we recommend either LC-BLYP or CAM-B3LYP with integration grids (250, 974) (or larger) for numerically stable simulations of vibronic spectra including anharmonic effects.
Collapse
Affiliation(s)
- Sebastian P Sitkiewicz
- Wrocław Centre for Networking and Supercomputing, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław PL-50370, Poland.
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, Donostia 20018, Euskadi, Spain
- Ikerbasque Foundation for Science, Bilbao 48011, Euskadi, Spain
| | - Josep M Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003, Girona, Catalonia, Spain.
| | - Robert Zaleśny
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| |
Collapse
|
11
|
Mejia-Rodriguez D, Aprà E, Autschbach J, Bauman NP, Bylaska EJ, Govind N, Hammond JR, Kowalski K, Kunitsa A, Panyala A, Peng B, Rehr JJ, Song H, Tretiak S, Valiev M, Vila FD. NWChem: Recent and Ongoing Developments. J Chem Theory Comput 2023; 19:7077-7096. [PMID: 37458314 DOI: 10.1021/acs.jctc.3c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.
Collapse
Affiliation(s)
- Daniel Mejia-Rodriguez
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeff R Hammond
- Accelerated Computing, NVIDIA Helsinki Oy, Porkkalankatu 1, 00180 Helsinki, Finland
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander Kunitsa
- Zapata Computing, Inc., 100 Federal Street, Boston, Massachusetts 02110, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marat Valiev
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Jelver L, Cox JD. Nonlinear Plasmonics in Nanostructured Phosphorene. ACS NANO 2023; 17:20043-20052. [PMID: 37791979 DOI: 10.1021/acsnano.3c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Phosphorene has emerged as an atomically thin platform for optoelectronics and nanophotonics due to its excellent optical properties and the possibility of actively tuning light-matter interactions through electrical doping. While phosphorene is a two-dimensional semiconductor, plasmon resonances characterized by pronounced anisotropy and strong optical confinement are anticipated to emerge in highly doped samples. Here we show that the localized plasmons supported by phosphorene nanoribbons (PNRs) exhibit high tunability in relation to both edge termination and doping charge polarity and can trigger an intense nonlinear optical response at moderate doping levels. Our explorations are based on a second-principles theoretical framework, employing maximally localized Wannier functions constructed from ab initio electronic structure calculations, which we introduce here to describe the linear and nonlinear optical response of PNRs on mesoscopic length scales. Atomistic simulations reveal the high tunability of plasmons in doped PNRs at near-infrared frequencies, which can facilitate the synergy between the electronic band structure and plasmonic field confinement to drive efficient high-harmonic generation. Our findings establish nanostructured phosphorene as a versatile atomically thin material candidate for nonlinear plasmonics.
Collapse
Affiliation(s)
- Line Jelver
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Joel D Cox
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
13
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
14
|
Grotjahn R, Furche F. Gauge-Invariant Excited-State Linear and Quadratic Response Properties within the Meta-Generalized Gradient Approximation. J Chem Theory Comput 2023. [PMID: 37399786 DOI: 10.1021/acs.jctc.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Gauge invariance is a fundamental symmetry connected to charge conservation and is widely accepted as indispensable for any electronic structure method. Hence, the gauge variance of the time-dependent kinetic energy density τ used in many meta-generalized gradient approximations (MGGAs) to the exchange-correlation (XC) functional presents a major obstacle for applying MGGAs within time-dependent density functional theory (TDDFT). Replacing τ by the gauge-invariant generalized kinetic energy density τ̂ significantly improves the accuracy of various functionals for vertical excitation energies [R. Grotjahn, F. Furche, and M. Kaupp. J. Chem. Phys. 2022, 157, 111102]. However, the dependence of the resulting current-MGGAs (cMGGAs) on the paramagnetic current density gives rise to new exchange-correlation kernels and hyper-kernels ignored in previous implementations of quadratic and higher-order response properties. Here we report the first implementation of cMGGAs and hybrid cMGGAs for excited-state gradients and dipole moments, as well as an extension to quadratic response properties including dynamic hyperpolarizabilities and two-photon absorption cross sections. In the first comprehensive benchmark study of MGGAs and cMGGAs for two-photon absorption cross sections, the M06-2X functional is found to be superior to the GGA hybrid PBE0. Additionally, two case studies from the literature for the practical prediction of nonlinear optical properties are revisited and potential advantages of hybrid (c)MGGAs compared to hybrid GGAs are discussed. The effect of restoring gauge invariance varies depending on the employed MGGA functional, the type of excitation, and the property under investigation: While some individual excited-state equilibrium structures are significantly affected, on average, these changes result in marginal improvements when compared against high-level reference data. Although the gauge-variant MGGA quadratic response properties are generally close to their gauge-invariant counterparts, the resulting errors are not bounded and significantly exceed typical method errors in some of the cases studied. Despite the limited effects seen in benchmark studies, gauge-invariant implementations of cMGGAs for excited-state properties are desirable from a fundamental perspective, entail little additional computational cost, and are necessary for response properties consistent with cMGGA linear response calculations such as excitation energies.
Collapse
Affiliation(s)
- Robin Grotjahn
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
15
|
Zhang BS, Zhang SH, Ren FD, Gou RJ, Feng SB. TDDFT calculations of the PETN's ultraviolet absorption spectrum under the electric field loading. J Mol Model 2023; 29:39. [PMID: 36640252 DOI: 10.1007/s00894-023-05446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
CONTEXT The UV(ultraviolet) absorption spectrum of PETN under different electric field loading directions(X, Y, and Z) with the value of strength range from 0.001 a.u. to 0.006 a.u. was calculated with the TDDFT(Time-dependent density functional) in this work. With the increase of electric field strength, the absorbance of PETN in the ultraviolet band decreases. To explain the action mechanism of the electric field on PETN UV(ultraviolet) absorption spectrum, we analyzed and counted the contribution rate, oscillator strength, and vertical excitation energy of the main excitation process whose contribution rate to the UV absorption spectrum is greater than 10%. The contribution of PETN to the UV spectrum in all directions without an electric field was also listed to investigate the anisotropy of PETN in the excitation process under an electric field. The hole-electron analysis showed that the electric field will enhance the charge transfer characteristics in the excitation process of PETN. To investigate the anisotropy of the response under different electric field application directions, the contribution of the UV absorption spectrum in different directions was studied. METHODS Optimization and TDDFT calculation were performed at the level of M06-2X/def2-TZVP and PBE0/def2-TZVP respectively, with Gaussian09 program. The hole-electron analysis and UV absorption spectrum plotting were performed with Multiwfn3.8.
Collapse
Affiliation(s)
- Bao-Sen Zhang
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.,National Key Laboratory of Applied Physics and Chemistry, Xi'an, 710061, Shaanxi, China
| | - Shu-Hai Zhang
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Fu-de Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Rui-Jun Gou
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Shang-Biao Feng
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
16
|
Li Q, Kulikowski J, Doan D, Tertuliano OA, Zeman CJ, Wang MM, Schatz GC, Gu XW. Mechanical nanolattices printed using nanocluster-based photoresists. Science 2022; 378:768-773. [DOI: 10.1126/science.abo6997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural materials exhibit emergent mechanical properties as a result of their nanoarchitected, nanocomposite structures with optimized hierarchy, anisotropy, and nanoporosity. Fabrication of such complex systems is currently challenging because high-quality three-dimensional (3D) nanoprinting is mostly limited to simple, homogeneous materials. We report a strategy for the rapid nanoprinting of complex structural nanocomposites using metal nanoclusters. These ultrasmall, quantum-confined nanoclusters function as highly sensitive two-photon activators and simultaneously serve as precursors for mechanical reinforcements and nanoscale porogens. Nanocomposites with complex 3D architectures are printed, as well as structures with tunable, hierarchical, and anisotropic nanoporosity. Nanocluster-polymer nanolattices exhibit high specific strength, energy absorption, deformability, and recoverability. This framework provides a generalizable, versatile approach for the use of photoactive nanomaterials in additive manufacturing of complex systems with emergent mechanical properties.
Collapse
Affiliation(s)
- Qi Li
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - John Kulikowski
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - David Doan
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ottman A. Tertuliano
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Charles J. Zeman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Melody M. Wang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - X. Wendy Gu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Nguyen KA, Pachter R, Day PN. Theoretical Investigation of the Electronic Spectra of Cadmium Chalcogenide 2D Nanoplatelets. J Phys Chem A 2022; 126:8818-8825. [DOI: 10.1021/acs.jpca.2c05253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kiet A. Nguyen
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio45433, United States
- UES, Inc., Dayton, Ohio45432, United States
| | - Ruth Pachter
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio45433, United States
| | - Paul N. Day
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio45433, United States
- UES, Inc., Dayton, Ohio45432, United States
| |
Collapse
|
18
|
Pei Z, Mao Y, Shao Y, Liang W. Analytic high-order energy derivatives for metal nanoparticle-mediated infrared and Raman scattering spectra within the framework of quantum mechanics/molecular mechanics model with induced charges and dipoles. J Chem Phys 2022; 157:164110. [PMID: 36319412 PMCID: PMC9616608 DOI: 10.1063/5.0118205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
This work is devoted to deriving and implementing analytic second- and third-order energy derivatives with respect to the nuclear coordinates and external electric field within the framework of the hybrid quantum mechanics/molecular mechanics method with induced charges and dipoles (QM/DIM). Using these analytic energy derivatives, one can efficiently compute the harmonic vibrational frequencies, infrared (IR) and Raman scattering (RS) spectra of the molecule in the proximity of noble metal clusters/nanoparticles. The validity and accuracy of these analytic implementations are demonstrated by the comparison of results obtained by the finite-difference method and the analytic approaches and by the full QM and QM/DIM calculations. The complexes formed by pyridine and two sizes of gold clusters (Au18 and Au32) at varying intersystem distances of 3, 4, and 5 Å are used as the test systems, and Raman spectra of 4,4'-bipyridine in the proximity of Au2057 and Ag2057 metal nanoparticles (MNP) are calculated by the QM/DIM method and compared with experimental results as well. We find that the QM/DIM model can well reproduce the IR spectra obtained from full QM calculations for all the configurations, while although it properly enhances some of the vibrational modes, it artificially overestimates RS spectral intensities of several modes for the systems with very short intersystem distance. We show that this could be improved, however, by incorporating the hyperpolarizability of the gold metal cluster in the evaluation of RS intensities. Additionally, we address the potential impact of charge migration between the adsorbate and MNPs.
Collapse
Affiliation(s)
- Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
19
|
de Wergifosse M, Beaujean P, Grimme S. Ultrafast Evaluation of Two-Photon Absorption with Simplified Time-Dependent Density Functional Theory. J Phys Chem A 2022; 126:7534-7547. [PMID: 36201255 DOI: 10.1021/acs.jpca.2c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work presents the theoretical background to evaluate two-photon absorption (2PA) cross-sections in the framework of simplified time-dependent density functional theory (sTD-DFT). Our new implementation allows the ultrafast evaluation of 2PA cross-sections for large molecules based on a regular DFT ground-state determinant as well as a variant employing our tight-binding sTD-DFT-xTX flavor for very large systems. The method is benchmarked against higher-level calculations for trans-stilbene and typical fluorescent protein chromophores. For eGFP, a quadrupolar chromophore and its branched version, the flavine mono-nucleotide, and the iLOV protein, we compare sTD-DFT 2PA spectra to experimental ones. This includes extension and testing of our all-atom quantum chemistry methodology for the evaluation of 2PA for a system of ∼2000 atoms, providing striking agreement with the experimental spectrum.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115Bonn, Germany
| | - Pierre Beaujean
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000Namur, Belgium
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115Bonn, Germany
| |
Collapse
|
20
|
Zeman CJ, Kang G, Kohlstedt KL. Controlling Aggregation-Induced Two-Photon Absorption Enhancement via Intermolecular Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45644-45657. [PMID: 36191092 DOI: 10.1021/acsami.2c12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Historically, two-photon absorption (2PA) cross sections reported in the literature have been derived from solution-phase measurements. However, such techniques fail to grasp the implications of how these cross sections can be impacted by varying degrees of aggregation or in the condensed phase as bulk solids or thin films. For a precise determination of how aggregation impacts 2PA at a molecular level, computational methods present themselves as ideal. Herein, a series of quadrupolar π-conjugated dyes were simulated by molecular dynamics (MD) in the gas phase and condensed phase. In the condensed phase, their intermolecular interactions and electronic coupling behavior were fully characterized, both quantitatively and qualitatively. Using quadratic-response time-dependent density functional theory, 2PA cross sections of structures derived from MD trajectories were calculated. Comparisons are made between gas-phase and condensed-phase results, and enhancement factors are defined to show how certain dyes may experience changes in their respective 2PA cross sections as a function of aggregation. It was found that these cross sections depend heavily on conformational locking in the condensed phase and relative stacking arrangements. J-aggregates were associated with enhanced 2PA and H-aggregates with quenched 2PA activity. However, in a highly disordered aggregate, the effects of these stacking arrangements are averaged out of the bulk result, and the effects of conformational locking dominate.
Collapse
Affiliation(s)
- Charles J Zeman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Gyeongwon Kang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
21
|
Roldao JC, Oliveira EF, Milián-Medina B, Gierschner J, Roca-Sanjuán D. Accurate Calculation of Excited-State Absorption for Small-to-Medium-Sized Conjugated Oligomers: Multiconfigurational Treatment vs Quadratic Response TD-DFT. J Chem Theory Comput 2022; 18:5449-5458. [PMID: 35939053 DOI: 10.1021/acs.jctc.2c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Excited-state absorption (ESA) spectra of π-conjugated compounds are frequently calculated by (quadratic response) time-dependent density functional theory, (QR) TD-DFT, often giving a reasonable representation of the experimental results despite the (known) incomplete electronic description. To investigate whether this is inherent to the method, we calculate here the ESA spectra of small-to-medium-sized oligophenylenevinylenes (nPV) and oligothiophenes (nT) using QR TD-DFT as well as CASPT2 based on CASSCF geometries. CASPT2 gives indeed a reliable, theoretically correct description of the ESA features for all compounds; the computational effort can be reduced without significant loss of accuracy using TD-DFT geometries. QR TD-DFT, based on BHandHLYP and CAM-/B3LYP functionals, fails on short nTs but provides a reasonable description for spectral positions of nPVs and long nTs. The failure on short nTs is, however, only partly due to the incomplete configuration description but, in particular, related to an improper MO description, resulting in an asymmetric energy spacing of the occupied vs unoccupied MOs in the DFT scheme. Longer nTs, on the other side, adapt approximately the MO scheme for alternant hydrocarbons just like in nPVs, while contributions by two triplet excitations combined to a singlet (which inhibits an accurate treatment of polyenes with standard TD-DFT) do not play a relevant role in the current case. For such "well-behaved" systems, a reasonable representation of ESA spectra is found at the QR TD-DFT level due to the rather small energy shifts when including higher-order excitations.
Collapse
Affiliation(s)
- Juan Carlos Roldao
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | | | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Av. Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | - Daniel Roca-Sanjuán
- Institute of Molecular Science, University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
22
|
Wu X, Wen S, Song H, Frauenheim T, Tretiak S, Yam C, Zhang Y. Nonadiabatic Molecular Dynamics Simulations Based on Time-Dependent Density Functional Tight-Binding Method. J Chem Phys 2022; 157:084114. [DOI: 10.1063/5.0100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonadiabatic excited-state molecular dynamics underpin many photophysical and photochemical phenomena, such as exciton dynamics, charge separation and transport. In this work, we present an efficient nonadiabatic molecular dynamic (NAMD) simulation method based on time-dependent density functional tight-binding (TDDFTB) theory. Specifically, the adiabatic electronic structure, an essential NAMD input, is described at the TDDFTB level. The nonadiabatic effects originating from the coupled motions of electrons and nuclei are treated by the trajectory surface hopping algorithm. To improve the computational efficiency, nonadiabatic couplings between excited states within the TDDFTB method are derived and implemented using an analytical approach. Further, the time-dependent nonadiabatic coupling scalars are calculated based on the overlap between molecular orbitals rather than the Slater determinants to speed up the simulations. In addition, the electronic decoherence scheme and a state reassigned unavoided crossings algorithm, which has been implemented in the NEXMD software, are used to improve the accuracy of the simulated dynamics and handle trivial unavoided crossings. Finally, the photoinduced nonadiabatic dynamics of a benzene molecule are simulated to demonstrate our implementation. The results for excited state NAMD simulations of benzene molecule based on TDDFTB method compare well that obtained with numerically expensive time-dependent density functional theory. The proposed methodology provides an attractive theoretical simulation tool for predicting the photophysical and photochemical properties of complex materials.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen JL Computational Science and Applied Research Institute, China
| | | | - Huajing Song
- Los Alamos National Laboratory, United States of America
| | | | - Sergei Tretiak
- Theoretical Division, T-1, Los Alamos National Laboratory, United States of America
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing Computational Science Research Center, China
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, United States of America
| |
Collapse
|
23
|
Knysh I, Jassar MB, Osmialowsk B, Zalesny R, Jacquemin D. IN SILICO SCREENING OF TWO‐PHOTON ABSORPTION PROPERTIES OF A LARGE SET OF BIS‐DIFLUOROBORATE‐DYES. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Iryna Knysh
- Nantes University: Universite de Nantes CEISAM Lab FRANCE
| | | | | | - Robert Zalesny
- Wroclaw University of Technology: Politechnika Wroclawska Department of Chemistr FRANCE
| | - Denis Jacquemin
- Université de Nantes CEISAM 2, rue de la Houssinière 44322 Nantes FRANCE
| |
Collapse
|
24
|
Nascimento DR, Govind N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys Chem Chem Phys 2022; 24:14680-14691. [PMID: 35699090 DOI: 10.1039/d2cp01132h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
25
|
Roldao JC, Oliveira EF, Milián-Medina B, Gierschner J, Roca-Sanjuán D. Quantum-chemistry study of the ground and excited state absorption of distyrylbenzene: Multi vs single reference methods. J Chem Phys 2022; 156:044102. [DOI: 10.1063/5.0073189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Juan Carlos Roldao
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | - Eliezer Fernando Oliveira
- Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Av. Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | - Daniel Roca-Sanjuán
- Institute of Molecular Science, University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
26
|
Yang M, Sissay A, Chen M, Lopata K. Intruder Peak-Free Transient Inner-Shell Spectra Using Real-Time Simulations. J Chem Theory Comput 2022; 18:992-1002. [PMID: 35025498 DOI: 10.1021/acs.jctc.1c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Real-time methods are convenient for simulating core-level absorption spectra but suffer from nonphysical intruder peaks when using atom-centered basis sets. In transient absorption spectra, these peaks exhibit highly nonphysical time-dependent modulations in their energies and oscillator strengths. In this paper, we address the origins of these intruder peaks and propose a straightforward and effective solution based on a filtered dipole operator. In combination with real-time time-dependent density functional theory (RT-TDDFT), we demonstrate how to compute intruder-free attosecond transient X-ray absorption spectra for the aminophenol (C6H7NO) oxygen and nitrogen K-edges and the α-quartz (SiO2) silicon L-edge. Without filtering, the computed spectra are qualitatively wrong. This procedure is suitable for both static and transient inner-shell spectroscopy studies and can easily be implemented in a range of real-time methodologies.
Collapse
Affiliation(s)
- Mengqi Yang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adonay Sissay
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Min Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
27
|
Franzke YJ, Holzer C, Mack F. NMR Coupling Constants Based on the Bethe-Salpeter Equation in the GW Approximation. J Chem Theory Comput 2022; 18:1030-1045. [PMID: 34981925 DOI: 10.1021/acs.jctc.1c00999] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first steps to extend the Green's function GW method and the Bethe-Salpeter equation (BSE) to molecular response properties such as nuclear magnetic resonance (NMR) indirect spin-spin coupling constants. We discuss both a nonrelativistic one-component and a quasi-relativistic two-component formalism. The latter describes scalar-relativistic and spin-orbit effects and allows us to study heavy-element systems with reasonable accuracy. Efficiency is maintained by the application of the resolution of the identity approximation throughout. The performance is demonstrated using conventional central processing units (CPUs) and modern graphics processing units (GPUs) for molecules involving several thousand basis functions. Our results show that a large amount of Hartree-Fock exchange is vital to provide a sufficient Kohn-Sham starting point to compute the GW quasi-particle energies. As the GW-BSE approach is generally less accurate for triplet excitations or related properties such as the Fermi-contact interaction, the admixture of the Kohn-Sham correlation kernel through the contracted BSE (cBSE) method improves the results for NMR coupling constants. This leads to remarkable results when combined with the eigenvalue-only self-consistent variant (evGW) and Becke's half and half functional (BH&HLYP) or the CAM-QTP family. The developed methodology is used to calculate the Karplus curve of tin molecules, illustrating its applicability to extended chemically relevant molecules. Here, the GW-cBSE method improves upon the chosen BH&HLYP Kohn-Sham starting points.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Day PN, Pachter R, Nguyen KA. Calculated linear and nonlinear optical absorption spectra of phosphine-ligated gold clusters. Phys Chem Chem Phys 2022; 24:11234-11248. [DOI: 10.1039/d2cp01232d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although prediction of optical excitations of ligated gold clusters by time-dependent density functional theory (TDDFT) is relatively well-established, limitations still exist, for example in the choice of the exchange-correlation functional....
Collapse
|
29
|
Zhou Z, Parker SM. Accelerating molecular property calculations with semiempirical preconditioning. J Chem Phys 2021; 155:204111. [PMID: 34852479 DOI: 10.1063/5.0071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Computing ab initio molecular linear response properties, e.g., electronic excitation energies and transition dipole moments, requires the solution of large eigenvalue problems or large systems of equations. These large eigenvalue problems or large systems of equations are commonly solved iteratively using Krylov space algorithms, such as the Davidson algorithm for eigenvalue problems. A critical ingredient in Krylov space algorithms is the preconditioner, which is used to generate optimal update vectors in each iteration. We propose to use semiempirical approximations as preconditioners to accelerate the calculation of ab initio properties. The crucial advantage to improving the preconditioner is that the converged result is unchanged, so there is no trade-off between accuracy and speedup. We demonstrate our approach by accelerating the calculation of electronic excitation energies and electric polarizabilities from linear response time-dependent density functional theory using the simplified time-dependent density functional theory semiempirical model. For excitation energies, the semiempirical preconditioner reduces the number of iterations on average by 37% and up to 70%. The semiempirical preconditioner reduces the number of iterations for computing the polarizability by 15% on average and up to 33%. Moreover, we show that the preconditioner can be further improved by tuning the empirical parameters that define the semiempirical model, leading to an additional reduction in the number of iterations by about 20%. Our approach bridges the gap between semiempirical models and ab initio methods and charts a path toward combining the speed of semiempirical models with the accuracy of ab initio methods.
Collapse
Affiliation(s)
- Zehao Zhou
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| |
Collapse
|
30
|
Conradie J, Wamser CC, Ghosh A. Understanding Hyperporphyrin Spectra: TDDFT Calculations on Diprotonated Tetrakis( p-aminophenyl)porphyrin. J Phys Chem A 2021; 125:9953-9961. [PMID: 34714662 PMCID: PMC8630795 DOI: 10.1021/acs.jpca.1c06621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/08/2021] [Indexed: 11/29/2022]
Abstract
A detailed TDDFT study (with all-electron STO-TZ2P basis sets and the COSMO solvation model) has been carried out on the effect of diprotonation on the UV-vis-NIR spectra of free-base tetraphenylporphyrin and tetrakis(p-aminophenyl)porphyrin. The diprotonated forms have been modeled as their bis-formate complexes, i.e., as so-called porphyrin diacids. The dramatic redshift of the Q-band of the TAPP diacid has been explained in terms of an elevated "a2u" HOMO and lowered LUMOs, both reflecting infusion of aminophenyl character into the otherwise classic Gouterman-type frontier MOs. The exercise has also yielded valuable information on the performance of different exchange-correlation functionals. Thus, the hybrid B3LYP functional was found to yield a substantially better description of key spectral features, especially the diprotonation-induced redshifts, than the pure OLYP functional. Use of the range-separated CAMY-B3LYP functional, on the other hand, did not result in improvements relative to B3LYP.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Carl C. Wamser
- Department
of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
31
|
Segatta F, Russo M, Nascimento DR, Presti D, Rigodanza F, Nenov A, Bonvicini A, Arcioni A, Mukamel S, Maiuri M, Muccioli L, Govind N, Cerullo G, Garavelli M. In Silico Ultrafast Nonlinear Spectroscopy Meets Experiments: The Case of Perylene Bisimide Dye. J Chem Theory Comput 2021; 17:7134-7145. [PMID: 34676761 PMCID: PMC8582250 DOI: 10.1021/acs.jctc.1c00570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Spectroscopy simulations are of paramount importance for the interpretation of experimental electronic spectra, the disentangling of overlapping spectral features, and the tracing of the microscopic origin of the observed signals. Linear and nonlinear simulations are based on the results drawn from electronic structure calculations that provide the necessary parameterization of the molecular systems probed by light. Here, we investigate the applicability of excited-state properties obtained from linear-response time-dependent density functional theory (TDDFT) in the description of nonlinear spectra by employing the pseudowavefunction approach and compare them with benchmarks from highly accurate RASSCF/RASPT2 calculations and with high temporal resolution experimental results. As a test case, we consider the prediction of femtosecond transient absorption and two-dimensional electronic spectroscopy of a perylene bisimide dye in solution. We find that experimental signals are well reproduced by both theoretical approaches, showing that the computationally cheaper TDDFT can be a suitable option for the simulation of nonlinear spectroscopy of molecular systems that are too large to be treated with higher-level RASSCF/RASPT2 methods.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Mattia Russo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Daniel R. Nascimento
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Davide Presti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Francesco Rigodanza
- Dipartimento
di Scienze Chimiche, Università degli
studi di Padova, Via
F. Marzolo, Padova I-35131, Italy
| | - Artur Nenov
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Andrea Bonvicini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Alberto Arcioni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Margherita Maiuri
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Luca Muccioli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Giulio Cerullo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| |
Collapse
|
32
|
Zhang X, Herbert JM. Nonadiabatic dynamics with spin-flip vs linear-response time-dependent density functional theory: A case study for the protonated Schiff base C 5H 6NH 2. J Chem Phys 2021; 155:124111. [PMID: 34598550 DOI: 10.1063/5.0062757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nonadiabatic trajectory surface hopping simulations are reported for trans-C5H6NH2 +, a model of the rhodopsin chromophore, using the augmented fewest-switches algorithm. Electronic structure calculations were performed using time-dependent density functional theory (TDDFT) in both its conventional linear-response (LR) and its spin-flip (SF) formulations. In the SF-TDDFT case, spin contamination in the low-lying singlet states is removed by projecting out the lowest triplet component during iterative solution of the TDDFT eigenvalue problem. The results show that SF-TDDFT qualitatively describes the photoisomerization of trans-C5H6NH2 +, with favorable comparison to previous studies using multireference electronic structure methods. In contrast, conventional LR-TDDFT affords qualitatively different photodynamics due to an incorrect excited-state potential surface near the Franck-Condon region. In addition, the photochemistry (involving pre-twisting of the central double bond) appears to be different for SF- and LR-TDDFT, which may be a consequence of different conical intersection topographies afforded by these two methods. The present results contrast with previous surface-hopping studies suggesting that the LR-TDDFT method's incorrect topology around S1/S0 conical intersections is immaterial to the photodynamics.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
33
|
Lacombe L, Maitra NT. Minimizing the Time-Dependent Density Functional Error in Ehrenfest Dynamics. J Phys Chem Lett 2021; 12:8554-8559. [PMID: 34464148 DOI: 10.1021/acs.jpclett.1c02020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Simulating electron-ion dynamics using time-dependent density functional theory within an Ehrenfest dynamics scheme can be done in two ways that are in principle exact and identical: propagating time-dependent electronic Kohn-Sham equations or propagating electronic coefficients on surfaces obtained from linear-response. We show here that using an approximate functional leads to qualitatively different dynamics in the two approaches. We argue that the latter is more accurate because the functionals are evaluated on domains close to the ground state where currently used approximations perform better. We demonstrate this on an exactly solvable model of charge transfer and discuss implications for time-resolved spectroscopy.
Collapse
Affiliation(s)
- Lionel Lacombe
- Department of Physics, Rutgers University, Newark 07102, New Jersey United States
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark 07102, New Jersey United States
| |
Collapse
|
34
|
Song H, Nam Y, Keefer D, Garavelli M, Mukamel S, Tretiak S. Nonadiabatic Molecular Dynamics Study of the Relaxation Pathways of Photoexcited Cyclooctatetraene. J Phys Chem Lett 2021; 12:5716-5722. [PMID: 34128675 DOI: 10.1021/acs.jpclett.1c01397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the current study, we present nonadiabatic (NAMD) and adiabatic molecular dynamics simulations of the transition-state dynamics of photoexcited cyclooctatetraene (COT). The equilibrium-state structure and absorption spectra are analyzed using the semiempirical Austin Model 1 potential. The NAMD simulations are obtained by a surface-hopping algorithm. We analyzed in detail an active excited to ground state relaxation pathway accompanied by an S2/S3(D2d) → S1(D8h) → S0(D4h) → S0(D2d) double-bond shifting mechanism. The simulated excitation lifetime is in good agreement with experiment. The first excited singlet state S1 plays a crucial role in the photochemistry. The obtained critical molecular conformations, energy barrier, and transition-state lifetime results will provide a basis for further investigations of the bond-order inversion and photoswitching process of COT.
Collapse
Affiliation(s)
- Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos 87545, New Mexico, United States
| | - Yeonsig Nam
- Department of Chemistry, University of California, Irvine 92697, California, United States
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine 92697, California, United States
| | - Marco Garavelli
- Department of Industrial Chemistry, "T. Montanari", Università degli Studi di Bologna, Viale del Risorgimento, 4, Bologna 40136, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine 92697, California, United States
- Department of Physics and Astronomy, University of California, Irvine 92697, California, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos 87545, New Mexico, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos 87545, New Mexico, United States
| |
Collapse
|
35
|
Song H, Freixas VM, Fernandez-Alberti S, White AJ, Zhang Y, Mukamel S, Govind N, Tretiak S. An Ab Initio Multiple Cloning Method for Non-Adiabatic Excited-State Molecular Dynamics in NWChem. J Chem Theory Comput 2021; 17:3629-3643. [PMID: 34014085 DOI: 10.1021/acs.jctc.1c00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently developed ab initio multiple cloning (AIMC) approach based on the multiconfigurational Ehrenfest (MCE) method provides a powerful and accurate way of describing the excited-state dynamics of molecular systems. The AIMC method is a controlled approximation to nonadiabatic dynamics with a particular strength in the proper description of decoherence effects because of the branching of vibrational wavepackets at a level crossing. Here, we report a new implementation of the AIMC algorithm in the open source NWChem computational chemistry program. The framework combines linear-response time-dependent density functional theory with Ehrenfest mean-field theory to determine the equations of motion for classical trajectories. The multidimensional wave function is decomposed into a superposition of Gaussian coherent states guided by Ehrenfest trajectories (i.e., MCE approach), which can clone with fully quantum mechanical amplitudes and phases. By using an efficient time-derivative based nonadiabatic coupling approach within the AIMC method, all observables are calculated on-the-fly in the nonadiabatic molecular dynamics process. As a representative example, we apply our implementation to study the ultrafast photoinduced electronic and vibrational energy transfer in a pyridine molecule. The effects of the cloning procedure on electronic and vibrational coherence, relaxation and unidirectional energy transfer are discussed. This new AIMC implementation provides a high-level nonadiabatic molecular dynamics framework for simulating photoexcited dynamics in complex molecular systems and experimentally relevant ultrafast spectroscopic probes, such as nonlinear coherent optical and X-ray signals.
Collapse
Affiliation(s)
- Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD, Bernal, Argentina
| | | | - Alexander J White
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shaul Mukamel
- Departments of Chemistry, Physics, and Astronomy, University of California, Irvine, California 92697, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
36
|
Nascimento DR, Biasin E, Poulter BI, Khalil M, Sokaras D, Govind N. Resonant Inelastic X-ray Scattering Calculations of Transition Metal Complexes Within a Simplified Time-Dependent Density Functional Theory Framework. J Chem Theory Comput 2021; 17:3031-3038. [PMID: 33909424 DOI: 10.1021/acs.jctc.1c00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present a time-dependent density functional theory (TDDFT) approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state in the context of 4d transition metal systems. These quantities are the necessary ingredients to solve the Kramers-Heisenberg (KH) equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where the solutions of a TDDFT calculation can be used to construct excited-state wavefunctions, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. Thus, the present approach bypasses the need to solve the costly TDDFT quadratic-response equations. We illustrate the applicability of the method to 4d transition metal molecular complexes by calculating the 2p4d RIXS maps of three representative ruthenium complexes and comparing them to experimental results. The method can capture all the experimental features in all three complexes to allow the assignment of the experimental peaks, with relative energies correct to within ∼0.6 eV at the cost of two independent TDDFT calculations.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dimosthenis Sokaras
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
37
|
Guandalini A, Cocchi C, Pittalis S, Ruini A, Rozzi CA. Nonlinear light absorption in many-electron systems excited by an instantaneous electric field: a non-perturbative approach. Phys Chem Chem Phys 2021; 23:10059-10069. [PMID: 33870971 DOI: 10.1039/d0cp04958a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Applications of low-cost non-perturbative approaches in real time, such as time-dependent density functional theory, for the study of nonlinear optical properties of large and complex systems are gaining increasing popularity. However, their assessment still requires the analysis and understanding of elementary dynamical processes in simple model systems. Motivated by the aim of simulating optical nonlinearities in molecules, here exemplified by the case of the quaterthiophene oligomer, we investigate light absorption in many-electron interacting systems beyond the linear regime by using a single broadband impulse of an electric field; i.e. an electrical impulse in the instantaneous limit. We determine non-pertubatively the absorption cross section from the Fourier transform of the time-dependent induced dipole moment, which can be obtained from the time evolution of the wavefunction. We discuss the dependence of the resulting cross section on the magnitude of the impulse and we highlight the advantages of this method in comparison with perturbation theory by working on a one-dimensional model system for which numerically exact solutions are accessible. Thus, we demonstrate that the considered non-pertubative approach provides us with an effective tool for investigating fluence-dependent nonlinear optical excitations.
Collapse
Affiliation(s)
- Alberto Guandalini
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy. .,Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213A, I-41125 Modena, Italy
| | - Caterina Cocchi
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, D-12489 Berlin, Germany.,Physics Department, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9, 26129 Oldenburg, Germany
| | - Stefano Pittalis
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy.
| | - Alice Ruini
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213A, I-41125 Modena, Italy
| | | |
Collapse
|
38
|
Petrusevich EF, Ośmiałowski B, Zaleśny R, Alam MM. Two-Photon Absorption Activity of BOPHY Derivatives: Insights from Theory. J Phys Chem A 2021; 125:2581-2587. [PMID: 33755484 PMCID: PMC8154621 DOI: 10.1021/acs.jpca.1c00756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present a theoretical study of a two-photon absorption (2PA)
process in dipolar and quadrupolar systems containing two BF2 units. For this purpose, we considered 13 systems studied by Ponce-Vargas
et al. [2017, 121, 10850−1085829136383] and performed linear and quadratic response
theory calculations based on the RI-CC2 method to obtain the 2PA parameters.
Furthermore, using the recently developed generalized few-state model,
we provided an in-depth view of the changes in 2PA properties in the
molecules considered. Our results clearly indicate that suitable electron-donating
group substitution to the core BF2 units results in a large
red-shift of the two-photon absorption wavelength, thereby entering
into the desired biological window. Furthermore, the corresponding
2PA strength also increases significantly (up to 30-fold). This makes
the substituted systems a potential candidate for biological imaging.
Collapse
Affiliation(s)
- Elizaveta F Petrusevich
- Theoretical Photochemistry and Photophysics Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław PL-50370, Poland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, Toruń PL-87100, Poland
| | - Robert Zaleśny
- Theoretical Photochemistry and Photophysics Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław PL-50370, Poland
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India
| |
Collapse
|
39
|
Ahmadzadeh K, Scott M, Brand M, Vahtras O, Li X, Rinkevicius Z, Norman P. Efficient implementation of isotropic cubic response functions for two-photon absorption cross sections within the self-consistent field approximation. J Chem Phys 2021; 154:024111. [PMID: 33445884 DOI: 10.1063/5.0031851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Within the self-consistent field approximation, computationally tractable expressions for the isotropic second-order hyperpolarizability have been derived and implemented for the calculation of two-photon absorption cross sections. The novel tensor average formulation presented in this work allows for the evaluation of isotropic damped cubic response functions using only ∼3.3% (one-photon off-resonance regions) and ∼10% (one-photon resonance regions) of the number of auxiliary Fock matrices required when explicitly calculating all the needed individual tensor components. Numerical examples of the two-photon absorption cross section in the one-photon off-resonance and resonance regions are provided for alanine-tryptophan and 2,5-dibromo-1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene. Furthermore, a benchmark set of 22 additional small- and medium-sized organic molecules is considered. In all these calculations, a quantitative assessment is made of the reduced and approximate forms of the cubic response function in the one-photon off-resonance regions and results demonstrate a relative error of less than ∼5% when using the reduced expression as compared to the full form of the isotropic cubic response function.
Collapse
Affiliation(s)
- Karan Ahmadzadeh
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mikael Scott
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Manuel Brand
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Olav Vahtras
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Xin Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
40
|
Hu Y, Xu C, Ye L, Gu FL, Zhu C. Nonadiabatic molecular dynamics simulation for the ultrafast photoisomerization of dMe-OMe-NAIP based on TDDFT on-the-fly potential energy surfaces. Phys Chem Chem Phys 2021; 23:5236-5243. [PMID: 33629668 DOI: 10.1039/d0cp06104b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Global switching on-the-fly trajectory surface hopping molecular dynamics simulation was performed on the accurate TD-B3LYP/6-31G* potential energy surfaces for E-to-Z and Z-to-E photoisomerization of dMe-OMe-NAIP up to S1(ππ*) excitation. The present TD(DFT) simulation provides accurate calculation for conical intersections between the first-excited and ground states. Thus, simulated quantum yield and lifetime of 0.23 and 620 fs (0.15 and 600 fs) for E-to-Z (Z-to-E) isomerization are in good (relatively good) agreement with experimental observation of 0.25 and 480 fs (0.24 and 430 fs), respectively. Simulated results reveal that photoisomerization pathways are initially uphill to conical intersection zones on the S1 potential energy surface and then downhill to product zones. Three types of representative conical intersections are found for determining photoisomerization mechanisms: one is the rotation type responsible for reactive isomerization and the other two are close to E and Z configurations, respectively, only for nonreactive isomerization. The present conclusions can be held in general for similar large NAIP systems of photoinduced isomerization based on E and Z configurations.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China.
| | - Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China.
| | - Linfeng Ye
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China. and Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, P. R. China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China.
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China. and Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Hsinchu 30010, Taiwan. and Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
41
|
A Unified Strategy for the Chemically Intuitive Interpretation of Molecular Optical Response Properties. J Chem Theory Comput 2020; 16:7709-7720. [DOI: 10.1021/acs.jctc.0c00990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Han J, Rehn DR, Buckup T, Dreuw A. Evaluation of Single-Reference DFT-Based Approaches for the Calculation of Spectroscopic Signatures of Excited States Involved in Singlet Fission. J Phys Chem A 2020; 124:8446-8460. [DOI: 10.1021/acs.jpca.0c07236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jie Han
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Dirk Robert Rehn
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
43
|
de Wergifosse M, Seibert J, Grimme S. Simplified time-dependent density functional theory (sTD-DFT) for molecular optical rotation. J Chem Phys 2020; 153:084116. [DOI: 10.1063/5.0020543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
44
|
Song H, Fischer SA, Zhang Y, Cramer CJ, Mukamel S, Govind N, Tretiak S. First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem. J Chem Theory Comput 2020; 16:6418-6427. [DOI: 10.1021/acs.jctc.0c00295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Sean A. Fischer
- Chemistry Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Christopher J. Cramer
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shaul Mukamel
- Departments of Chemistry, and physics and astronomy, University of California, Irvine, California 92697, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
45
|
Veys K, Escudero D. Computational Protocol To Predict Anti-Kasha Emissions: The Case of Azulene Derivatives. J Phys Chem A 2020; 124:7228-7237. [DOI: 10.1021/acs.jpca.0c05205] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Koen Veys
- Quantum Chemistry and Physical Chemistry Section, Department of Chemistry, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Daniel Escudero
- Quantum Chemistry and Physical Chemistry Section, Department of Chemistry, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| |
Collapse
|
46
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
47
|
Michail E, Schreck MH, Holzapfel M, Lambert C. Exciton coupling effects on the two-photon absorption of squaraine homodimers with varying bridge units. Phys Chem Chem Phys 2020; 22:18340-18350. [DOI: 10.1039/d0cp03410j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitonically coupled squaraine dimers show high two-photon absorption cross sections.
Collapse
Affiliation(s)
- Evripidis Michail
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - Maximilian H. Schreck
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - Marco Holzapfel
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - Christoph Lambert
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| |
Collapse
|
48
|
de Wergifosse M, Seibert J, Champagne B, Grimme S. Are Fully Conjugated Expanded Indenofluorenes Analogues and Diindeno[n]thiophene Derivatives Diradicals? A Simplified (Spin-Flip) Time-Dependent Density Functional Theory [(SF-)sTD-DFT] Study. J Phys Chem A 2019; 123:9828-9839. [DOI: 10.1021/acs.jpca.9b08474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstrasse 4, 53115 Bonn, Germany
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstrasse 4, 53115 Bonn, Germany
| | - Benoît Champagne
- Laboratoire de Chimie Théorique, Département de Chimie, Namur Institute of Structured Matter, 5000 Namur, Belgium
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
49
|
de Wergifosse M, Bannwarth C, Grimme S. A Simplified Spin-Flip Time-Dependent Density Functional Theory Approach for the Electronic Excitation Spectra of Very Large Diradicals. J Phys Chem A 2019; 123:5815-5825. [DOI: 10.1021/acs.jpca.9b03176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Christoph Bannwarth
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
- Department of Chemistry, Stanford University Stanford, California 94305, United States
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
50
|
de Wergifosse M, Grimme S. Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra. J Chem Phys 2019; 150:094112. [DOI: 10.1063/1.5080199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|