1
|
Drosou M, Bhattacharjee S, Pantazis DA. Combined Multireference-Multiscale Approach to the Description of Photosynthetic Reaction Centers. J Chem Theory Comput 2024; 20. [PMID: 39116215 PMCID: PMC11360140 DOI: 10.1021/acs.jctc.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
A first-principles description of the primary photochemical processes that drive photosynthesis and sustain life on our planet remains one of the grand challenges of modern science. Recent research established that explicit incorporation of protein electrostatics in excited-state calculations of photosynthetic pigments, achieved for example with quantum-mechanics/molecular-mechanics (QM/MM) approaches, is essential for a meaningful description of the properties and function of pigment-protein complexes. Although time-dependent density functional theory has been used productively so far in QM/MM approaches for the study of such systems, this methodology has limitations. Here we pursue for the first time a QM/MM description of the reaction center in the principal enzyme of oxygenic photosynthesis, Photosystem II, using multireference wave function theory for the high-level QM region. We identify best practices and establish guidelines regarding the rational choice of active space and appropriate state-averaging for the efficient and reliable use of complete active space self-consistent field (CASSCF) and the N-electron valence state perturbation theory (NEVPT2) in the prediction of low-lying excited states of chlorophyll and pheophytin pigments. Given that the Gouterman orbitals are inadequate as a minimal active space, we define specific minimal and extended active spaces for the NEVPT2 description of electronic states that fall within the Q and B bands. Subsequently, we apply our multireference-QM/MM protocol to the description of all pigments in the reaction center of Photosystem II. The calculations reproduce the electrochromic shifts induced by the protein matrix and the ordering of site energies consistent with the identity of the primary donor (ChlD1) and the experimentally known asymmetric and directional electron transfer. The optimized protocol sets the stage for future multireference treatments of multiple pigments, and hence for multireference studies of charge separation, while it is transferable to the study of any photoactive embedded tetrapyrrole system.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Ugandi M, Roemelt M. A configuration-based heatbath-CI for spin-adapted multireference electronic structure calculations with large active spaces. J Comput Chem 2023; 44:2374-2390. [PMID: 37589287 DOI: 10.1002/jcc.27203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
This work reports on a spin-pure configuration-based implementation of the heatbath configuration interaction (HCI) algorithm for selective configuration interaction. Besides the obvious advantage of being spin-pure, the presented method combines the compactness of the configurational ansatz with the known efficiency of the HCI algorithm and a variety of algorithmic and conceptual ideas to achieve a high level of performance. In particular, through pruning of the selected configurational space after HCI selection by means of a more strict criterion, a more compact wavefunction representation is obtained. Moreover, the underlying logic of the method allows us to minimize the number of redundant matrix-matrix multiplications while making use of just-in-time compilation to achieve fast diagonalization of the Hamiltonian. The critical search for 2-electron connections within the configurational space is facilitated by a tree-based representation thereof as suggested previously by Gopal et al. Usage of a prefix-based parallelization and batching during the calculation of the PT2-correction leads to a good load balancing and significantly reduced memory requirements for these critical steps of the calculation. In this way, the need for a semistochastic approach to the PT2 correction is avoided even for large configurational spaces. Finally, several test-cases are discussed to demonstrate the strengths and weaknesses of the presented method.
Collapse
Affiliation(s)
- Mihkel Ugandi
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Roemelt
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
King DS, Truhlar DG, Gagliardi L. Variational Active Space Selection with Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2023; 19:8118-8128. [PMID: 37905518 DOI: 10.1021/acs.jctc.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The selection of an adequate set of active orbitals for modeling strongly correlated electronic states is difficult to automate because it is highly dependent on the states and molecule of interest. Although many approaches have shown some success, no single approach has worked well in all cases. In light of this, we present the "discrete variational selection" (DVS) approach to active space selection, in which one generates multiple trial wave functions from a diverse set of systematically constructed active spaces and then selects between these wave functions variationally. We apply this DVS approach to 207 vertical excitations of small-to-medium-sized organic and inorganic molecules (with 3 to 18 atoms) in the QUESTDB database by (i) constructing various sets of active space orbitals through diagonalization of parametrized operators and (ii) choosing the result with the lowest average energy among the states of interest. This approach proves ineffective when variationally selecting between wave functions using the density matrix renormalization group (DMRG) or complete active space self-consistent field (CASSCF) energy but is able to provide good results when variationally selecting between wave functions using the energy of the translated PBE (tPBE) functional from multiconfiguration pair-density functional theory (MC-PDFT). Applying this DVS-tPBE approach to selection among state-averaged DMRG wave functions, we obtain a mean unsigned error of only 0.17 eV using hybrid MC-PDFT. This result matches that of our previous benchmark without the need to filter out poor active spaces and with no further orbital optimization following active space selection of the SA-DMRG wave functions. Furthermore, we find that DVS-tPBE is able to robustly and effectively select between the new SA-DMRG wave functions and our previous SA-CASSCF results.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Group, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Hennefarth MR, King DS, Gagliardi L. Linearized Pair-Density Functional Theory for Vertical Excitation Energies. J Chem Theory Comput 2023; 19:7983-7988. [PMID: 37877741 DOI: 10.1021/acs.jctc.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multiconfiguration pair-density functional theory (MC-PDFT) is a computationally efficient method that computes the energies of electronic states in a state specific or state average framework via an on-top functional. However, MC-PDFT does not include state interaction among these states since the final energies do not come from the diagonalization of an effective model-space Hamiltonian. Recently, multistate extensions such as linearized PDFT (L-PDFT) have been developed to accurately model the potentials near conical intersections and avoided crossings. However, there has not been any systematic study evaluating their performance for predicting vertical excitations at the equilibrium geometry of a molecule, when the excited states are generally well separated. In this paper, we report the performance of L-PDFT on the extensive QUESTDB data set of vertical excitations using a database of automatically selected active spaces. We show that L-PDFT performs well on all these excitations and successfully reproduces the performance of MC-PDFT. These results further demonstrate the potential of L-PDFT, as its scaling is constant with the number of states included in the state-average manifold, whereas MC-PDFT scales linearly in this regard.
Collapse
Affiliation(s)
| | | | - Laura Gagliardi
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Phung QM, Nam HN, Ghosh A. Local Oxidation States in {FeNO} 6-8 Porphyrins: Insights from DMRG/CASSCF-CASPT2 Calculations. Inorg Chem 2023. [PMID: 38010736 DOI: 10.1021/acs.inorgchem.3c03689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A first DMRG/CASSCF-CASPT2 study of a series of paradigmatic {FeNO}6, {FeNO}7, and {FeNO}8 heme-nitrosyl complexes has led to substantial new insight as well as uncovered key shortcomings of the DFT approach. By virtue of its balanced treatment of static and dynamic correlation, the calculations have provided some of the most authoritative information available to date on the energetics of low- versus high-spin states of different classes of heme-nitrosyl complexes. Thus, the calculations indicate low doublet-quartet gaps of 1-4 kcal/mol for {FeNO}7 complexes and high singlet-triplet gaps of ≳20 kcal/mol for both {FeNO}6 and {FeNO}8 complexes. In contrast, DFT calculations yield widely divergent spin state gaps as a function of the exchange-correlation functional. DMRG-CASSCF calculations also help calibrate DFT spin densities for {FeNO}7 complexes, pointing to those obtained from classic pure functionals as the most accurate. The general picture appears to be that nearly all the spin density of Fe[P](NO) is localized on the Fe, while the axial ligand imidazole (ImH) in Fe[P](NO)(ImH) pushes a part of the spin density onto the NO moiety. An analysis of the DMRG-CASSCF wave function in terms of localized orbitals and of the resulting configuration state functions in terms of resonance forms with varying NO(π*) occupancies has allowed us to address the longstanding question of local oxidation states in heme-nitrosyl complexes. The analysis indicates NO(neutral) resonance forms [i.e., Fe(II)-NO0 and Fe(III)-NO0] as the major contributors to both {FeNO}6 and {FeNO}7 complexes. This finding is at variance with the common formulation of {FeNO}6 hemes as Fe(II)-NO+ species but is consonant with an Fe L-edge XAS analysis by Solomon and co-workers. For the {FeNO}8 complex {Fe[P](NO)}-, our analysis suggests a resonance hybrid description: Fe(I)-NO0 ↔ Fe(II)-NO-, in agreement with earlier DFT studies. Vibrational analyses of the compounds studied indicate an imperfect but fair correlation between the NO stretching frequency and NO(π*) occupancy, highlighting the usefulness of vibrational data as a preliminary indicator of the NO oxidation state.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ho Ngoc Nam
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Abhik Ghosh
- Department of Chemistry, UiT the Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
6
|
Li Manni G, Fdez. Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey M, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov(Gulak) M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, Voß TA, Weser O, Wu D, Yang X, Yarkony D, Zhou C, Zobel JP, Lindh R. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J Chem Theory Comput 2023; 19:6933-6991. [PMID: 37216210 PMCID: PMC10601490 DOI: 10.1021/acs.jctc.3c00182] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/24/2023]
Abstract
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ali Alavi
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flavia Aleotti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Francesco Aquilante
- Theory and
Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Davide Avagliano
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Alberto Baiardi
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jie J. Bao
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Stefano Battaglia
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Letitia Birnoschi
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Alejandro Blanco-González
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Sergey I. Bokarev
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry
Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ria Broer
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Roberto Cacciari
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Paul B. Calio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rebecca K. Carlson
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Rafael Carvalho Couto
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luis Cerdán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
- Instituto
de Óptica (IO−CSIC), Consejo
Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Liviu F. Chibotaru
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicholas F. Chilton
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | | | - Irene Conti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Sonia Coriani
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Razan E. Daoud
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Nike Dattani
- HPQC Labs, Waterloo, N2T 2K9 Ontario Canada
- HPQC College, Waterloo, N2T 2K9 Ontario Canada
| | - Piero Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, I-34121 Trieste, Italy
| | - Coen de Graaf
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Mickaël
G. Delcey
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luca De Vico
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Werner Dobrautz
- Chalmers
University of Technology, Department of Chemistry
and Chemical Engineering, 41296 Gothenburg, Sweden
| | - Sijia S. Dong
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Chemical Biology, Department of Physics, and Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rulin Feng
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Nicolas Ferré
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | | | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Yafu Guan
- State Key
Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Meiyuan Guo
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R. Hennefarth
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad E. Hoyer
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miquel Huix-Rotllant
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | - Vishal Kumar Jaiswal
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Andy Kaiser
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Danil S. Kaliakin
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Marjan Khamesian
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Daniel S. King
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vladislav Kochetov
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Marek Krośnicki
- Institute
of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics
and Informatics, University of Gdańsk, ul Wita Stwosza 57, 80-952, Gdańsk, Poland
| | | | - Ernst D. Larsson
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Susi Lehtola
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Marie-Bernadette Lepetit
- Condensed
Matter Theory Group, Institut Néel, CNRS UPR 2940, 38042 Grenoble, France
- Theory
Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Pablo López Ríos
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department
of Chemistry − Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Dongxia Ma
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | | | - Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Maximilian Mörchen
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Vu Ha Anh Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yoshio Nishimoto
- Graduate
School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Markus Oppel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riddhish Pandharkar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, Loughborough, LE11 3TU, U.K.
| | - Gerardo Raggi
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Quantum
Materials and Software LTD, 128 City Road, London, EC1V 2NX, United Kingdom
| | - Elisa Rebolini
- Scientific
Computing Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Markus Reiher
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ivan Rivalta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Thies Romig
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Arta Anushirwan Safari
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Aitor Sánchez-Mansilla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
| | - Andrew M. Sand
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Igor Schapiro
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thais R. Scott
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Dumitru-Claudiu Sergentu
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Laboratory
RA-03, RECENT AIR, A. I. Cuza University of Iaşi, RA-03 Laboratory (RECENT AIR), Iaşi 700506, Romania
| | - Prachi Sharma
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, USA
| | - Yinan Shu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Jakob K. Staab
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Tjerk P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | - Bruno Nunes Cabral Tenorio
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Liviu Ungur
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Nantes
Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Valera Veryazov
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Torben Arne Voß
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oskar Weser
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Dihua Wu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Xuchun Yang
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - David Yarkony
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Zhou
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala
Center for Computational Chemistry (UC3), Uppsala University, PO Box 576, SE-751 23 Uppsala. Sweden
| |
Collapse
|
7
|
Ghassemi Tabrizi S. Systematic determination of coupling constants in spin clusters from broken-symmetry mean-field solutions. J Chem Phys 2023; 159:154106. [PMID: 37855312 DOI: 10.1063/5.0172314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Quantum-chemical calculations aimed at deriving magnetic coupling constants in exchange-coupled spin clusters commonly utilize a broken-symmetry (BS) approach. This involves calculating several distinct collinear spin configurations, predominantly by density-functional theory. The energies of these configurations are interpreted in terms of the Heisenberg model, H̃=∑i
Collapse
Affiliation(s)
- Shadan Ghassemi Tabrizi
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Abstract
Robust organic triradicals with high-spin quartet ground states provide promising applications in molecular magnets, spintronics, etc. In this context, a triradical based on Blatter's radical has been synthesized recently, having two low-lying non-degenerate doublet states with a quartet ground state. The traditional broken-symmetry (BS)-DFT computed doublet-quartet energy gaps are reported to be somewhat overestimated in comparison to the experimentally observed values. In this work, we have employed different ab initio methods on this prototypical system to obtain more accurate doublet-quartet energy gaps for this triradical. The spin-constraint broken-symmetry (CBS)-DFT method has been used to reduce the overestimation of energy gaps from BS-DFT. To address the issues of spin-contamination and the multireference nature of low-spin states affecting the DFT methods, we have computed the energy gaps using appropriately state-averaged CASSCF and NEVPT2 computations. Using a series of active spaces, our calculations are shown to provide quite accurate values in concordance with the experimentally observed results. Furthermore, we have proposed and modeled another two triradicals based on Blatter's radical, which are of interest for experimental synthesis and characterization. Our computations show that all these triradicals also have a quartet ground state with a similar energy difference between the excited doublet states.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - K R Shamasundar
- Indian Institute of Science Education and Research Mohali, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
9
|
Fitzhugh HC, Furness JW, Pederson MR, Peralta JE, Sun J. Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes. J Chem Theory Comput 2023; 19:5760-5772. [PMID: 37582098 PMCID: PMC10500985 DOI: 10.1021/acs.jctc.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 08/17/2023]
Abstract
Multicenter transition-metal complexes (MCTMs) with magnetically interacting ions have been proposed as components for information-processing devices and storage units. For any practical application of MCTMs as magnetic units, it is crucial to characterize their magnetic behavior, and in particular, the isotropic magnetic exchange coupling, J, between its magnetic centers. Due to the large size of typical MCTMs, density functional theory is the only practical electronic structure method for evaluating the J coupling. Here, we assess the accuracy of different density functional approximations for predicting the magnetic couplings of eight dinuclear transition-metal complexes, including five dimanganese, two dicopper, and one divanadium with known reliable experimental J couplings spanning from ferromagnetic to strong antiferromagnetic. The density functionals considered include global hybrid functionals which mix semilocal density functional approximations and exact exchange with a fixed admixing parameter, six local hybrid functionals where the admixing parameters are extended to be spatially dependent, the SCAN and r2SCAN meta-generalized gradient approximations (GGAs), and two widely used GGAs. We found that global hybrids tested in this work have a tendency to over-correct the error in magnetic coupling parameters from the Perdew-Burke-Ernzerhof (PBE) GGA as seen for manganese complexes. The performance of local hybrid density functionals shows no improvement in terms of bias and is scattered without a clear trend, suggesting that more efforts are needed for the extension from global to local hybrid density functionals for this particular property. The SCAN and r2SCAN meta-GGAs are found to perform as well as benchmark global hybrids on most tested complexes. We further analyze the charge density redistribution of meta-GGAs as well as global and local hybrid density functionals with respect to that of PBE, in connection to the self-interaction error or delocalization error.
Collapse
Affiliation(s)
- Henry C. Fitzhugh
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - James W. Furness
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Mark R. Pederson
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Juan E. Peralta
- Department
of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jianwei Sun
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
10
|
Han R, Luber S, Li Manni G. Magnetic Interactions in a [Co(II) 3Er(III)(OR) 4] Model Cubane through Forefront Multiconfigurational Methods. J Chem Theory Comput 2023; 19:2811-2826. [PMID: 37126736 DOI: 10.1021/acs.jctc.2c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strong electron correlation effects are one of the major challenges in modern quantum chemistry. Polynuclear transition metal clusters are peculiar examples of systems featuring such forms of electron correlation. Multireference strategies, often based on but not limited to the concept of complete active space, are adopted to accurately account for strong electron correlation and to resolve their complex electronic structures. However, transition metal clusters already containing four magnetic centers with multiple unpaired electrons make conventional active space based strategies prohibitively expensive, due to their unfavorable scaling with the size of the active space. In this work, forefront techniques, such as density matrix renormalization group (DMRG), full configuration interaction quantum Monte Carlo (FCIQMC), and multiconfiguration pair-density functional theory (MCPDFT), are employed to overcome the computational limitation of conventional multireference approaches and to accurately investigate the magnetic interactions taking place in a [Co(II)3Er(III)(OR)4] (chemical formula [Co(II)3Er(III)(hmp)4(μ2-OAc)2(OH)3(H2O)], hmp = 2-(hydroxymethyl)-pyridine) model cubane water oxidation catalyst. Complete active spaces with up to 56 electrons in 56 orbitals have been constructed for the seven energetically lowest different spin states. Relative energies, local spin, and spin-spin correlation values are reported and provide crucial insights on the spin interactions for this model system, pivotal in the rationalization of the catalytic activity of this system in the water-splitting reaction. A ferromagnetic ground state is found with a very small, ∼50 cm-1, highest-to-lowest spin gap. Moreover, for the energetically lowest states, S = 3-6, the three Co(II) sites exhibit parallel aligned spins, and for the lower states, S = 0-2, two Co(II) sites retain strong parallel spin alignment.
Collapse
Affiliation(s)
- Ruocheng Han
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Giovanni Li Manni
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Rizo L, Janesko BG. Reimagining the Wave Function in Density Functional Theory: Exploring Strongly Correlated States in Pancake-Bonded Radical Dimers. J Phys Chem A 2023; 127:3684-3691. [PMID: 37053451 DOI: 10.1021/acs.jpca.2c08616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pancake bonding between π-conjugated radicals challenges conventional electronic structure approximations, due to the presence of both dispersion (van der Waals) interactions and "strong" electron correlation. Here we use a reimagined wave function-in-density functional theory (DFT) approach to model pancake bonds. Our generalized self-interaction correction extends DFT's reference system of noninteracting electrons, by introducing electron-electron interactions within an active space. We show that a small variation on our previous derivation recovers a DFT-corrected complete active space method proposed by Pijeau and Hohenstein. Comparison of the two approaches shows that the latter provides reasonable dissociation curves for single bonds and pancake bonds, including excited states inaccessible to conventional linear response time-dependent DFT. The results motivate broader adoption of wavefunction-in-DFT approaches for modeling pancake bonds.
Collapse
Affiliation(s)
- Luis Rizo
- Intense Laser Physics Theory Unit, Illinois State University, Normal, Illinois 61790, United States
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Drive, Fort Worth, Texas 75039, United States
| |
Collapse
|
12
|
Luo S, Shen X, Gao P, Tu T, Sun X. Magneto-structural maps and bridged-ligand effect for dichloro-bridged dinuclear copper(ii) complexes: a theoretical perspective. RSC Adv 2023; 13:12430-12437. [PMID: 37091610 PMCID: PMC10116190 DOI: 10.1039/d3ra00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Theoretical understanding of magneto-structural correlations in dichloro-bridged dicopper(ii) complexes can guide the design of magnetic materials having broad-scale applications. However, previous reports suggest these correlations are complicated and unclear. To clarify possible correlations, magnetic coupling constants (J calc) of variants of a representative {Cu-(μ-Cl)2-Cu} complex A were calculated through BS-DFT. The variation of the Cu-(μ-Cl)-Cu angle (α), Cu⋯Cu distance (R 0), and Cu-Cl-Cu-Cl dihedral angle (τ) followed by structural optimization and calculation of the magnetic coupling constant (J calc) revealed several trends. J calc increased linearly with R 0 and τ, and initially increased and then decreased with α. Further, bridging ligand effects on J calc for dicopper(ii) complexes were evaluated through BS-DFT; the results revealed that J calc increased with increasing ligand field strength (I- < Br- < Cl- < N3 - < F-). Furthermore, a linear relationship was found between the spin density of the bridging ligand and J calc.
Collapse
Affiliation(s)
- Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands Bijie 551700 People's Republic of China
| | - Xianwei Shen
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
| | - Peng Gao
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
| | - Ting Tu
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
| | - Xiaoyuan Sun
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
| |
Collapse
|
13
|
Ziółkowska A, Witwicki M. Understanding the Exchange Interaction between Paramagnetic Metal Ions and Radical Ligands: DFT and Ab Initio Study on Semiquinonato Cu(II) Complexes. Int J Mol Sci 2023; 24:ijms24044001. [PMID: 36835412 PMCID: PMC9959031 DOI: 10.3390/ijms24044001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The exchange coupling, represented by the J parameter, is of tremendous importance in understanding the reactivity and magnetic behavior of open-shell molecular systems. In the past, it was the subject of theoretical investigations, but these studies are mostly limited to the interaction between metallic centers. The exchange coupling between paramagnetic metal ions and radical ligands has hitherto received scant attention in theoretical studies, and thus the understanding of the factors governing this interaction is lacking. In this paper, we use DFT, CASSCF, CASSCF/NEVPT2, and DDCI3 methods to provide insight into exchange interaction in semiquinonato copper(II) complexes. Our primary objective is to identify structural features that affect this magnetic interaction. We demonstrate that the magnetic character of Cu(II)-semiquinone complexes are mainly determined by the relative position of the semiquinone ligand to the Cu(II) ion. The results can support the experimental interpretation of magnetic data for similar systems and can be used for the in-silico design of magnetic complexes with radical ligands.
Collapse
Affiliation(s)
- Aleksandra Ziółkowska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-283 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
14
|
David G, Ferré N, Le Guennic B. Consistent Evaluation of Magnetic Exchange Couplings in Multicenter Compounds in KS-DFT: The Recomposition Method. J Chem Theory Comput 2023; 19:157-173. [PMID: 36475691 DOI: 10.1021/acs.jctc.2c01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of broken-symmetry calculations in Kohn-Sham density functional theory has offered an affordable route to study magnetic exchange couplings in transition-metal-based compounds. However, computing this property in compounds exhibiting several couplings is still challenging and especially due to the difficulties to overcome the well-known problem of spin contamination. Here, we present a new and general method to compute magnetic exchange couplings in systems featuring several spin sites. To provide a consistent spin decontamination of J values, our strategy exploits the decomposition method of the magnetic exchange coupling proposed by Coulaud et al. and generalizes our previous work on diradical compounds where the overall magnetic exchange coupling is defined as the sum of its three main and properly extracted physical contributions (direct exchange, kinetic exchange, and spin polarization). In this aim, the generalized extraction of all contributions is presented to systems with multiple spin sites bearing one unpaired electron. This is done by proposing a new paradigm to treat the kinetic exchange contribution, which proceeds through monorelaxations of the magnetic orbitals. This method, so-called the recomposition method, is applied to a compound featuring three Cu(II) ions with a linear arrangement and to a recently synthesized complex containing a Cu4O4 cubane unit presenting an unusual magnetic behavior.
Collapse
Affiliation(s)
- Grégoire David
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000Rennes, France
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, 13013Marseille, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000Rennes, France
| |
Collapse
|
15
|
Roy S, Paul S, Misra A. A Theoretical Account of the Coupling between Metal- and Ligand-centred Spins. Chemphyschem 2023; 24:e202200889. [PMID: 36622254 DOI: 10.1002/cphc.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
This study addresses the magnetic interaction between paramagnetic metal ions and the radical ligands taking the [CuII (hfac)2 (imVDZ)] and [MII (hfac)2 (pyDTDA)] (imVDZ=1,5-dimethyl-3-(1-methyl-2-imidazolyl)-6-oxoverdazyl; hfac=(1,1,1,5,5,5)hexafluroacetylacetonate; pyDTDA=4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl), (M=Cu, Ni, Co, Fe, Mn) compounds as reference systems. The coupling between the metal and ligand spins is quantified in terms of the exchange coupling constant (J) in the platform of density functional theory (DFT) and the wave function-based complete active space self-consistent field (CASSCF) method. Application of DFT and broken symmetry (BS) formalism results ferromagnetic coupling for all the transition metal complexes except the Mn(II) complex. This DFT-BS prediction of magnetic nature matches with the experimental finding for all the complexes other than the Fe(II)-pyDTDA complex, for which an antiferromagnetic coupling between high spin iron and the thiazyl ligand has been reported. However, evaluation of spin state energetics through the multiconfigurational wave function-based method produces the S=3/2 ground spin state for the iron-thiazyl in parity with experiment. Electronic structure analyses find the overlap between the metal- and ligand-based singly occupied molecular orbitals (SOMOs) to be one of the major reasons attributing to different extent of exchange coupling in the systems under investigation.
Collapse
Affiliation(s)
- Sriparna Roy
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 R.C Sarani, Kolkata, 700009, India
| | - Anirban Misra
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| |
Collapse
|
16
|
Lubitz W, Pantazis DA, Cox N. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett 2023; 597:6-29. [PMID: 36409002 DOI: 10.1002/1873-3468.14543] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The understanding of light-induced biological water oxidation in oxygenic photosynthesis is of great importance both for biology and (bio)technological applications. The chemically difficult multistep reaction takes place at a unique protein-bound tetra-manganese/calcium cluster in photosystem II whose structure has been elucidated by X-ray crystallography (Umena et al. Nature 2011, 473, 55). The cluster moves through several intermediate states in the catalytic cycle. A detailed understanding of these intermediates requires information about the spatial and electronic structure of the Mn4 Ca complex; the latter is only available from spectroscopic techniques. Here, the important role of Electron Paramagnetic Resonance (EPR) and related double resonance techniques (ENDOR, EDNMR), complemented by quantum chemical calculations, is described. This has led to the elucidation of the cluster's redox and protonation states, the valence and spin states of the manganese ions and the interactions between them, and contributed substantially to the understanding of the role of the protein surrounding, as well as the binding and processing of the substrate water molecules, the O-O bond formation and dioxygen release. Based on these data, models for the water oxidation cycle are developed.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | | | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
17
|
Pandharkar R, Hermes MR, Cramer CJ, Gagliardi L. Localized Active Space-State Interaction: a Multireference Method for Chemical Insight. J Chem Theory Comput 2022; 18:6557-6566. [PMID: 36257065 DOI: 10.1021/acs.jctc.2c00536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multireference electronic structure methods, like the complete active space (CAS) self-consistent field model, have long been used to characterize chemically interesting processes. Important work has been done in recent years to develop modifications having a lower computational cost than CAS, but typically these methods offer no more chemical insight than that from the CAS solution being approximated. In this paper, we present the localized active space-state interaction (LASSI) method that can be used not only to lower the intrinsic cost of the multireference calculation but also to improve interpretability. The localized active space (LAS) approach utilizes the local nature of the electron-electron correlation to express a composite wave function as an antisymmetrized product of unentangled wave functions in local active subspaces. LASSI then uses these LAS states as a basis from which to express complete molecular wave functions. This not only makes the molecular wave function more compact but also permits flexibility in choosing those states to be included in the basis. Such selective inclusion of states translates to the selective inclusion of specific types of interactions, thereby allowing a quantitative analysis of these interactions. We demonstrate the use of LASSI to study charge migration and spin-flip excitations in multireference organic molecules. We also compute the J coupling parameter for a bimetallic compound using various LAS bases to construct the Hamiltonian to provide insights into the coupling mechanism.
Collapse
Affiliation(s)
- Riddhish Pandharkar
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois60637, United States.,Argonne National Laboratory, Lemont, Illinois60439, USA
| | - Matthew R Hermes
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois60637, United States
| | - Christopher J Cramer
- Underwriters Laboratories Inc., 333 Pfingsten Road., Northbrook, Illinois60062, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois60637, United States.,Argonne National Laboratory, Lemont, Illinois60439, USA
| |
Collapse
|
18
|
Lunghi A, Sanvito S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat Rev Chem 2022; 6:761-781. [PMID: 37118096 DOI: 10.1038/s41570-022-00424-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Having served as a playground for fundamental studies on the physics of d and f electrons for almost a century, magnetic molecules are now becoming increasingly important for technological applications, such as magnetic resonance, data storage, spintronics and quantum information. All of these applications require the preservation and control of spins in time, an ability hampered by the interaction with the environment, namely with other spins, conduction electrons, molecular vibrations and electromagnetic fields. Thus, the design of a novel magnetic molecule with tailored properties is a formidable task, which does not only concern its electronic structures but also calls for a deep understanding of the interaction among all the degrees of freedom at play. This Review describes how state-of-the-art ab initio computational methods, combined with data-driven approaches to materials modelling, can be integrated into a fully multiscale strategy capable of defining design rules for magnetic molecules.
Collapse
|
19
|
Walia R, Yang J. Exploring optimal multimode vibronic pathways in singlet fission of azaborine analogues of perylene. Photochem Photobiol Sci 2022; 21:1689-1700. [PMID: 35716333 DOI: 10.1007/s43630-022-00251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The development of new singlet fission chromophores is a vibrant area of research to explore the possibility of efficient photovoltaic devices. Using high-level ab-initio density matrix renormalization group calculations, we present a systematic analysis of BN-doped perylenes for their potential application as singlet fission candidates. Four singlet fission chromophores are identified considering the monomer-based properties and their excitonic characters are further analyzed in a dimer configuration optimized in a six-dimensional space for local maxima of fission rates. Furthermore, a multistate multimode vibronic Hamiltonian is employed to identify intra- and interstate vibrational pathways for excitation energy modulation. Several photophysical properties such as Davydov splitting, activation energy and vibronic admixture of multiexcitonic and charge-transfer states are calculated for physically accessible dimers. The optimal dimer packing results in appropriate vibrational relaxation of singlet fission states and promotes significant population transfer which would be more attenuated without such couplings. This work not only identifies potential singlet fission systems with favorable electronic properties but also highlights the sensitivity of dimer packings with respect to the substitution patterns in singlet fission chromophores.
Collapse
Affiliation(s)
- Rajat Walia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.
| |
Collapse
|
20
|
Nain S, Khurana R, Ali ME. Harnessing Colossal Magnetic Anisotropy in Sandwiched 3d 2-Metallocenes. J Phys Chem A 2022; 126:2811-2817. [PMID: 35507013 DOI: 10.1021/acs.jpca.2c01605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single-molecule magnets are gaining attention in recent years with the growing focus on achieving higher barriers of magnetization reversal. Metallocenes, owing to their unique sandwiched structure, assure themselves as plausible molecular systems for the development of novel single-molecule magnets (SMMs). Here in this work, we have explicitly investigated metallocenes of first-row transition elements, along with their one-electron-oxidized (cationic) and -reduced (anionic) analogues, for their magnetic anisotropies by adopting multireference ab initio calculations. Herein, we report a high magnetic anisotropy for 3d2 systems among all 3d-metallocenes.
Collapse
Affiliation(s)
- Sakshi Nain
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| |
Collapse
|
21
|
Li W, Ren J, Yang H, Shuai Z. On the fly swapping algorithm for ordering of degrees of freedom in density matrix renormalization group. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:254003. [PMID: 35378514 DOI: 10.1088/1361-648x/ac640e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Density matrix renormalization group (DMRG) and its time-dependent variants have found widespread applications in quantum chemistry, includingab initioelectronic structure of complex bio-molecules, spectroscopy for molecular aggregates, and charge transport in bulk organic semiconductors. The underlying wavefunction ansatz for DMRG, matrix product state (MPS), requires mapping degrees of freedom (DOF) into a one-dimensional topology. DOF ordering becomes a crucial factor for DMRG accuracy. In this work, we propose swapping neighboring DOFs during the DMRG sweeps for DOF ordering, which we term 'on the fly swapping' (OFS) algorithm. We show that OFS is universal for both static and time-dependent DMRG with minimum computational overhead. Examples are given for one dimensional antiferromagnetic Heisenberg model,ab initioelectronic structure of N2molecule, and the S1/S2internal conversion dynamics of pyrazine molecule. It is found that OFS can indeed improve accuracy by finding better DOF ordering in all cases.
Collapse
Affiliation(s)
- Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, People's Republic of China
| | - Hengrui Yang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
22
|
Cheng Y, Xie Z, Ma H. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. J Phys Chem Lett 2022; 13:904-915. [PMID: 35049302 DOI: 10.1021/acs.jpclett.1c04078] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ab initio density matrix renormalization group (DMRG) method has been well-established and has become one of the most accurate numerical methods for the precise electronic structure solution of large active spaces. In the past few years, to capture the missing dynamic correlation, various post-DMRG approaches have been proposed through the combination of DMRG and multireference quantum chemical methods or density functional theory. With this in mind, this work provides a brief overview of ab initio DMRG principles and the new developments within post-DMRG methods. For clarity, post-DMRG methods are classified into two main categories depending on whether high-order n-electron reduced density matrices are used, and their merits and disadvantages are properly discussed. Finally, we conclude by discussing unsolved bottlenecks and giving development perspectives of post-DMRG approaches, which are expected to yield quantitative descriptions of complex electronic structures in large strongly correlated molecules and materials.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhaoxuan Xie
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Sandoval-Olivares Z, Solis-Céspedes E, Páez-Hernández D. Antiferromagnetic Coupling Supported by Metallophilic Interactions: Theoretical View. Inorg Chem 2022; 61:1401-1417. [PMID: 35007080 DOI: 10.1021/acs.inorgchem.1c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antiferromagnetic coupling supported by metallophilic interactions has been studied in the framework of the broken symmetry approach (BS) and multiconfigurational calculations (CASSCF). A series of heterobimetallic complexes of the form [PtCo(X)4(Y)]2 (X = tba thiobenzoate, SAc thioacetate, and Y = H2O, NO2py, py), previously reported, have been used as model systems. Magnetic coupling constants were found in good agreement with the experimental reports, and it could be concluded that axial ligands with a pure σ-donor character have a marked effect on the J value strengthening the antiferromagnetic coupling, as shown for [PtCo(SAc)4(H2O)]2 and [PtNi(SAc)4(H2O)]2. The latter complex, included for comparative purposes, also made it possible to evidence that the interaction between magnetic orbitals and low-level excitation in the Pt···Pt region is also relevant favoring the stronger antiferromagnetic coupling found in this case. A careful analysis of the energetic components involved in Pt···Pt interaction suggests that the stabilization arises from a combination of favorable orbital contributions, which allows a weak covalent Pt···Pt σ(dz2...dz2) bond. Theoretical tools evidence that the weak σ-bond found between monomeric units is responsible for a spin polarization mechanism resulting in the observed antiferromagnetic interaction. Multiconfigurational calculations finally allowed us to establish that the spin polarization mechanism involves not only the dz2 orbitals in the M-Pt···Pt-M bond direction but also the empty 6pz orbitals of Pt atoms. The inclusion of these orbitals favors a correlation-induced delocalization of magnetic orbitals and therefore a better balance among direct and kinetic exchange. The results shown in this work are relevant in the molecular design of systems supported by metallophilic interactions not only between platinum atoms but also could be extended to other cases with similar interactions.
Collapse
Affiliation(s)
- Zoraida Sandoval-Olivares
- Doctorado en Fisicoquímica Molecular, Universidad Andrés Bello, República 275, Santiago 8370146, Chile
| | - Eduardo Solis-Céspedes
- Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Maule 3460000, Chile.,Laboratorio de Bioinformática y Química Computacional, Facultad de Medicina, Universidad Católica del Maule, Maule 3460000, Chile
| | - Dayán Páez-Hernández
- Center of Applied Nanoscience (CANS), Universidad Andres Bello, República 330, Santiago 8370146, Chile.,Departamento de Ciencias Químicas, Universidad Andres Bello, República 275, Santiago 8370146, Chile
| |
Collapse
|
24
|
Phung QM, Muchammad Y, Yanai T, Ghosh A. A DMRG/CASPT2 Investigation of Metallocorroles: Quantifying Ligand Noninnocence in Archetypal 3d and 4d Element Derivatives. JACS AU 2021; 1:2303-2314. [PMID: 34984418 PMCID: PMC8717376 DOI: 10.1021/jacsau.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 05/03/2023]
Abstract
Hybrid density functional theory (B3LYP) and density matrix renormalization group (DMRG) theory have been used to quantitatively compare the degree of ligand noninnocence (corrole radical character) in seven archetypal metallocorroles. The seven complexes, in decreasing order of corrole noninnocent character, are Mn[Cor]Cl > Fe[Cor]Cl > Fe[Cor](NO) > Mo[Cor]Cl2 > Ru[Cor](NO) ≈ Mn[Cor]Ph ≈ Fe[Cor]Ph ≈ 0, where [Cor] refers to the unsubstituted corrolato ligand. DMRG-based second-order perturbation theory calculations have also yielded detailed excited-state energetics data on the compounds, shedding light on periodic trends involving middle transition elements. Thus, whereas the ground state of Fe[Cor](NO) (S = 0) is best described as a locally S = 1/2 {FeNO}7 unit antiferromagnetically coupled to a corrole A' radical, the calculations confirm that Ru[Cor](NO) may be described as simply {RuNO}6-Cor3-, that is, having an innocent corrole macrocycle. Furthermore, whereas the ferromagnetically coupled S = 1{FeNO}7-Cor•2- state of Fe[Cor](NO) is only ∼17.5 kcal/mol higher than the S = 0 ground state, the analogous triplet state of Ru[Cor](NO) is higher by a far larger margin (37.4 kcal/mol) relative to the ground state. In the same vein, Mo[Cor]Cl2 exhibits an adiabatic doublet-quartet gap of 36.1 kcal/mol. The large energy gaps associated with metal-ligand spin coupling in Ru[Cor](NO) and Mo[Cor]Cl2 reflect the much greater covalent character of 4d-π interactions relative to analogous interactions involving 3d orbitals. As far as excited-state energetics is concerned, DMRG-CASPT2 calculations provide moderate validation for hybrid density functional theory (B3LYP) for qualitative purposes, but underscore the possibility of large errors (>10 kcal/mol) in interstate energy differences.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasin Muchammad
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Abhik Ghosh
- Department
of Chemistry, UiT-The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
25
|
Singh G, Gamboa S, Orio M, Pantazis DA, Roemelt M. Magnetic exchange coupling in Cu dimers studied with modern multireference methods and broken-symmetry coupled cluster theory. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02830-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractSpin-state energetics of exchange-coupled copper complexes pose a persistent challenge for applied quantum chemistry. Here, we provide a comprehensive comparison of all available theoretical approaches to the problem of exchange coupling in two antiferromagnetically coupled bis-μ-hydroxo Cu(II) dimers. The evaluated methods include multireference methods based on the density matrix renormalization group (DMRG), multireference methods that incorporate dynamic electron correlation either perturbatively, such as the N-electron valence state perturbation theory, or variationally, such as the difference-dedicated configuration interaction. In addition, we contrast the multireference results with those obtained using broken-symmetry approaches that utilize either density functional theory or, as demonstrated here for the first time in such systems, a local implementation of coupled cluster theory. The results show that the spin-state energetics of these copper dimers are dominated by dynamic electron correlation and represent an impossible challenge for multireference methods that rely on brute-force expansion of the active space to recover correlation energy. Therefore, DMRG-based methods even at the limit of their applicability cannot describe quantitatively the antiferromagnetic exchange coupling in these dimers, in contrast to dinuclear complexes of earlier transition metal ions. The convergence of the broken-symmetry coupled cluster approach is studied and shown to be a limiting factor for the practical application of the method. The advantages and disadvantages of all approaches are discussed, and recommendations are made for future developments.
Collapse
|
26
|
Luo S, Xiao W, Sun X, Zheng P. Regulation mechanism of the solvent coligands on the magnetic properties of azido-Cu(II) complexes by mixed carboxylate/alkanols ligands: A theoretical exploration. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Khedkar A, Roemelt M. Modern multireference methods and their application in transition metal chemistry. Phys Chem Chem Phys 2021; 23:17097-17112. [PMID: 34355719 DOI: 10.1039/d1cp02640b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal chemistry is a challenging playground for quantum chemical methods owing to the simultaneous presence of static and dynamic electron correlation effects in many systems. Wavefunction based multireference (MR) methods constitute a physically sound and systematically improvable Ansatz to deal with this complexity but suffer from some conceptual difficulties and high computational costs. The latter problem partially arises from the unfavorable scaling of the Full Configuration Interaction (Full-CI) problem which in the majority of MR methods is solved for a subset of the molecular orbital space, the so-called active space. In the last years multiple methods such as modern variants of selected CI, Full-CI Quantum Monte Carlo (FCIQMC) and the density matrix renormalization group (DMRG) have been developed that solve the Full-CI problem approximately for a fraction of the computational cost required by conventional techniques thereby significantly extending the range of applicability of modern MR methods. This perspective review outlines recent advancements in the field of MR electronic structure methods together with the resulting chances and challenges for theoretical studies in the field of transition metal chemistry. In light of its emerging importance a special focus is put on the selection of adequate active spaces and the concomitant development of numerous selection aides in recent years.
Collapse
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
28
|
Tsuchimochi T, Yoshimura K, Shimomoto Y, Ten-No SL. Improved Description and Efficient Implementation of Spin-Projected Perturbation Theory for Practical Applications. J Chem Theory Comput 2021; 17:3471-3482. [PMID: 33971717 DOI: 10.1021/acs.jctc.1c00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we continue to develop the recently proposed second-order perturbation theory for the spin-projected Hartree-Fock method [Tsuchimochi, T.; Ten-no, S. L. J. Chem. Theory Comput. 2019, 15, 6688] in various aspects. A new, stable imaginary level-shift scheme is derived to obtain a well-conditioned equation, enabling a significantly faster convergence. To achieve a further speed-up, we propose a preconditioning scheme considering the pair character on a spin-projected basis. We also eliminate the computational memory bottleneck in solving the linear equation for large systems using a distributed memory parallel implementation. Finally, for the description of open-shell molecules, several modified zeroth-order Hamiltonians are introduced and tested using the Mn2O2(NHCHCO2)4 complex. These developments enable practical calculations of a second-order perturbation theory with improved accuracy at a reduced computational cost.
Collapse
Affiliation(s)
- Takashi Tsuchimochi
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kosuke Yoshimura
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuma Shimomoto
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Seiichiro L Ten-No
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
29
|
Abstract
Magnetic anisotropy, in the absence of an external magnetic field, relates to the degeneracy lift of energy levels. In the standard case of transition metal complexes, this property is usually modeled by an anisotropic spin Hamiltonian and one speaks of "zero-field splitting" (ZFS) of spin states. While the case of mononuclear complexes has been extensively described by means of ab initio quantum mechanical calculations, the literature on polynuclear complexes studied with these methodologies is rather scarce. In this work, advanced multiconfigurational wave function theory methods are applied to compute the ZFS of the ground S = 4 state of an actual tetranickel(II) complex, displaying a magnet behavior below 0.5 K. First, the isotropic couplings are computed in the absence of the spin-orbit coupling operator, in the full complex and also in clusters with only two active nickel(II) centers, confirming the occurrence of weak ferromagnetic couplings in this system. Second, the single-site magnetic anisotropies are computed on a cluster bearing only one active nickel(II) site, showing that the single-site anisotropy axes are not oriented in an optimal fashion for generating a large uniaxial molecular anisotropy. Furthermore, the possibility for involving only a few local orbital excited states in the calculation is assessed, actually opening the way for a consistent and manageable treatment of the ZFS of the ground S = 4 state. Third, multiconfigurational calculations are performed on the full complex, confirming the weak uniaxial anisotropy occurring for this state and also, interestingly, revealing a significant contribution of the lowest-lying orbitally excited S = 3 states. Overall, by comparison with the experiment, the reported results question the common habit of using only one structure, in particular derived from a crystallography experiment, to compute magnetic anisotropy parameters.
Collapse
Affiliation(s)
- Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue A. Kastler, 44307 Nantes Cedex 3, France
| |
Collapse
|
30
|
Khurana R, Gupta S, Ali ME. First-Principles Investigations of Magnetic Anisotropy and Spin-Crossover Behavior of Fe(III)-TBP Complexes. J Phys Chem A 2021; 125:2197-2207. [PMID: 33617261 DOI: 10.1021/acs.jpca.1c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the ongoing effort to obtain mononuclear 3d-transition-metal complexes that manifest slow relaxation of magnetization and, hence, can behave as single-molecule magnets (SMMs), we have modeled 14 Fe(III) complexes based on an experimentally synthesized (PMe3)2FeCl3 complex [J. Am. Chem. Soc. 2017, 139 (46), 16474-16477], by varying the axial ligands with group XV elements (N, P, and As) and equatorial halide ligands from F, Cl, Br, and I. Out of these, nine complexes possess large zero field splitting (ZFS) parameter D in the range of -40 to -60 cm-1. The first-principles investigation of the ground-spin state applying density functional theory (DFT) and wave function-based multiconfigurations methods, e.g., SA-CASSCF/NEVPT2, are found to be quite consistent except for few delicate cases with near-degenerate spin states. In such cases, the hybrid B3LYP functional is found to be biased toward high-spin (HS) state. Altering the percentage of exact exchange admixed in the B3LYP functional leads to intermediate-spin (IS) ground state consistent with the multireference calculations. The origin of large zero field splitting (ZFS) in the Fe(III)-based trigonal bipyramidal (TBP) complexes is investigated. Furthermore, a number of complexes are identified with very small ΔGHS-ISadia. values indicating the possible spin-crossover phenomenon between the bistable spin states.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Sameer Gupta
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
31
|
Chalupský J, Srnec M. Beyond the Classical Contributions to Exchange Coupling in Binuclear Transition Metal Complexes. J Phys Chem A 2021; 125:2276-2283. [PMID: 33724818 DOI: 10.1021/acs.jpca.0c11237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complexes with two or more magnetically coupled metal ions have attracted considerable attention as catalysts of many vital processes, single-molecule magnets, or spin-crossover compounds. Elucidation of their electronic structures is essential for understanding their catalytic and magnetic properties. Here, we provide an unprecedented insight into exchange-coupling mechanisms between the magnetic centers in six prototypical bis-μ-oxo bimetallic M2O2 complexes, including two biologically relevant models of non-heme iron enzymes. Employing multiconfigurational/multireference methods and related orbital entanglement analysis, we revealed the essential and counterintuitive role of predominantly unoccupied valence metal d orbitals in their strong antiferromagnetic coupling. We found that the participation of these orbitals is twofold. First, they enhance the superexchange between the singly occupied d orbitals. Second, they become substantially occupied and thus directly magnetically active, which we perceive as a new mechanism of the exchange interaction between the magnetic transition metal centers.
Collapse
Affiliation(s)
- Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6 16610, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| |
Collapse
|
32
|
Chalupský J, Srnec M, Yanai T. Interpretation of Exchange Interaction through Orbital Entanglement. J Phys Chem Lett 2021; 12:1268-1274. [PMID: 33497240 DOI: 10.1021/acs.jpclett.0c03652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the analysis of single-orbital entropy and mutual information has been introduced as a tool for the investigation of contributions to the exchange (J) coupling between open-shell metal ions [Stein et al. J. Phys. Chem. Lett. 2019, 10, 6762-6770]. Here, we show that this analysis may lead to an incorrect interpretation of the J-coupling mechanism. Instead, we propose an orbital-entanglement analysis that is based on the two-electron density and that provides a coherent picture of the contributing exchange pathways, which seems fully consistent with the available J values. For this purpose, we used a prototypical bis-μ-oxo binuclear manganese complex ([Mn2O2(NH3)8]4+) and demonstrated that its antiferromagnetism (J < 0), calculated by using the active space composed of all valence pO and dMn orbitals, correlates well with the largest elements in the differential low-spin vs high-spin entanglement map. These elements correspond to interactions between the pairs of dMn orbitals mediated by the oxo-bridging out-of-plane p orbitals, representing the π superexchange pathway. We also show that the reduction of active space to manifold of the singly occupied magnetic orbitals does not lead to discrepancy between the calculated J values and entanglement maps. This contrasts to analysis of mutual information, which suggests the "direct" dMn-dMn interactions to play a dominant role for the J coupling, irrespective of the size of active space as well as of the antiferromagnetism expected. The failure is attributed to the large contribution of spin entanglement contained in the mutual information of the low-spin state, which may be regarded as the origin of the different complexity of its wave function and electron density.
Collapse
Affiliation(s)
- Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
33
|
Pylaeva S, Marx P, Singh G, Kühne TD, Roemelt M, Elgabarty H. Organic Mixed-Valence Compounds and the Overhauser Effect in Insulating Solids. J Phys Chem A 2021; 125:867-874. [PMID: 33464904 DOI: 10.1021/acs.jpca.0c11296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent experiments have shown that the organic free radical 1,3-bisdiphenylene-2-phenylallyl (BDPA) can induce an Overhauser effect dynamic nuclear polarization in insulating solids, a feat previously considered not to be possible. Here, we establish that this peculiar ability of the BDPA radical stems from its mixed-valence nature and the ensuing intramolecular charge transfer. Using state-of-the-art DMRGSCF calculations, we confirm the class II mixed-valence nature of BDPA with the characteristic double-well potential energy surface, and we investigate the mechanism of the consequent electron hopping. A two-component vibronic Hamiltonian is then employed to compute the rate of electron hopping from a quantum dynamical time-propagation of the density matrix. The predicted hyperfine coupling oscillations indeed fall within the frequency range required for an Overhauser effect. The paradigm of mixed-valence compounds as a mining source opens many possibilities for the development and fine tuning of novel polarizing agents.
Collapse
Affiliation(s)
- Svetlana Pylaeva
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, Paderborn 33098, Germany
| | - Patrick Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Gurjot Singh
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, Paderborn 33098, Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Hossam Elgabarty
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, Paderborn 33098, Germany
| |
Collapse
|
34
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
35
|
Sharma P, Truhlar DG, Gagliardi L. Magnetic Coupling in a Tris-hydroxo-Bridged Chromium Dimer Occurs through Ligand Mediated Superexchange in Conjunction with Through-Space Coupling. J Am Chem Soc 2020; 142:16644-16650. [DOI: 10.1021/jacs.0c06399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
36
|
Khedkar A, Roemelt M. Extending the ASS1ST Active Space Selection Scheme to Large Molecules and Excited States. J Chem Theory Comput 2020; 16:4993-5005. [PMID: 32644789 DOI: 10.1021/acs.jctc.0c00332] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multireference electronic structure methods based on the CAS (complete active space) ansatz are well-established as a means to provide reliable predictions of physical properties of strongly correlated systems. A critical aspect of every CAS calculation is the selection of an adequate active space, in particular as the boundaries for tractable active spaces have been shifted significantly with the emergence of efficient approximations to the Full-CI problem like the density matrix renormalization group and full-CI quantum Monte Carlo. Recently, we proposed an active space selection based on first-order perturbation theory (ASS1ST) that yields satisfactory results for the electronic ground state of a variety of strongly correlated systems. In this work, we present a state-averaged extension of ASS1ST (SA-ASS1ST) that determines suitable active spaces when electronically excited states are targeted. Furthermore, the computational costs of the single state and state-averaged variants are significantly reduced by a simple approximation that avoids the most expensive step of the original method, the evaluation of active space four-electron reduced density matrices, altogether. After the applicability of the approximation is established, test calculations on a biomimetic Mn4O4 cluster demonstrate the enhanced range of ASS1ST in terms of system size and complexity. Furthermore, calculations on [VOCl4]2-, MeMn(CO)3-α-diimine, and anthracene show that SA-ASS1ST suggests well-suited active spaces to describe d → d and charge-transfer excitations in transition-metal complexes as well as π → π* excitations in aryl compounds. Finally, the application of ASS1ST on multiple points of the potential energy surface of Cr2 illustrates the applicability of the method even when extremely complicated bonding patterns are met. More importantly, however, it highlights the necessity to use special strategies when different points of a potential energy surface are investigated, e.g., during chemical reactions.
Collapse
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
37
|
Khedkar A, Roemelt M. An ab initio multireference study of reductive eliminations from organoferrates( iii) in the gas-phase: it is all about the spin state. Phys Chem Chem Phys 2020; 22:17677-17686. [DOI: 10.1039/d0cp02834g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reductive elimination reaction from organoferrates(iii) of the composition [FeR3R′]− is studied by state-of-the-art multireference electronic structure calculations.
Collapse
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| |
Collapse
|
38
|
Herrmann C. Electronic Communication as a Transferable Property of Molecular Bridges? J Phys Chem A 2019; 123:10205-10223. [PMID: 31380640 DOI: 10.1021/acs.jpca.9b05618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electronic communication through molecular bridges is important for different types of experiments, such as single-molecule conductance, electron transfer, superexchange spin coupling, and intramolecular singlet fission. In many instances, the chemical structure of the bridge determines how the two parts it is connecting communicate, and does so in ways that are transferable between these different manifestations (for example, high conductance often correlates with strong antiferromagnetic spin coupling, and low conductance due to destructive quantum interference correlates with ferromagnetic coupling). Defining electronic communication as a transferable property of the bridge can help transfer knowledge between these different areas of research. Examples and limits of such transferability are discussed here, along with some possible directions for future research, such as employing spin-coupled and mixed-valence systems as structurally well-controlled proxies for understanding molecular conductance and for validating first-principles theoretical methodologies, building conceptual understanding for the growing experimental work on intramolecular singlet fission, and developing measures for the transferability of electronic communication as a bridge property.
Collapse
Affiliation(s)
- Carmen Herrmann
- Department of Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , Hamburg 20146 , Germany
| |
Collapse
|
39
|
Stein CJ, Pantazis DA, Krewald V. Orbital Entanglement Analysis of Exchange-Coupled Systems. J Phys Chem Lett 2019; 10:6762-6770. [PMID: 31613637 DOI: 10.1021/acs.jpclett.9b02417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new tool for the interpretation of multiconfigurational wave functions representing the spin states of exchange-coupled transition metal complexes is introduced. Based on orbital entanglement measures, herein derived from multiconfigurational density matrix renormalization group calculations, the complexity of the wave function is reduced, thus facilitating a connection with established concepts for the interpretation of magnetically coupled systems. We show that the entanglement of localized orbitals with a small basis set is a good representation of the magnetic coupling topology and that it is sensitive to chemical changes in homologous complexes. Furthermore, we introduce a measure for the magnetic relevance of orbitals in the active subspace and a concept for the quantitative comparison of different chemical species. The approach presented here will be easily applicable to higher nuclearity clusters, providing a direct insight into all states of the Heisenberg spin ladder for systems previously accessible only by single-configurational methods.
Collapse
Affiliation(s)
- Christopher J Stein
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Vera Krewald
- Technische Universität Darmstadt , Fachbereich Chemie, Theoretische Chemie , Alarich-Weiss-Str. 4 , 64287 Darmstadt , Germany
| |
Collapse
|
40
|
Taffet EJ, Lee BG, Toa ZSD, Pace N, Rumbles G, Southall J, Cogdell RJ, Scholes GD. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J Phys Chem B 2019; 123:8628-8643. [PMID: 31553605 DOI: 10.1021/acs.jpcb.9b04027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report quantum chemical calculations using multireference perturbation theory (MRPT) with the density matrix renormalization group (DMRG) plus photothermal deflection spectroscopy measurements to investigate the manifold of carotenoid excited states and establish their energies relative to the bright state (S2) as a function of nuclear reorganization. We conclude that the primary photophysics and function of carotenoids are determined by interplay of only the bright (S2) and lowest-energy dark (S1) states. The lowest-lying dark state, far from being energetically distinguishable from the lowest-lying bright state along the entire excited-state nuclear reorganization pathway, is instead computed to be either the second or first excited state depending on what equilibrium geometry is considered. This result suggests that, rather than there being a dark intermediate excited state bridging a non-negligible energy gap from the lowest-lying dark state to the lowest-lying bright state, there is in fact no appreciable energy gap to bridge following photoexcitation. Instead, excited-state nuclear reorganization constitutes the bridge from S2 to S1, in the sense that these two states attain energetic degeneracy along this pathway.
Collapse
Affiliation(s)
- Elliot J Taffet
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Benjamin G Lee
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Zi S D Toa
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Natalie Pace
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Garry Rumbles
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
41
|
Krewald V, Neese F, Pantazis DA. Implications of structural heterogeneity for the electronic structure of the final oxygen-evolving intermediate in photosystem II. J Inorg Biochem 2019; 199:110797. [PMID: 31404888 DOI: 10.1016/j.jinorgbio.2019.110797] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
Heterogeneity in intermediate catalytic states of the oxygen-evolving complex (OEC) of Photosystem II is known from a wide range of experimental and theoretical data, but its potential implications for the mechanism of water oxidation remain unexplored. We delineate the consequences of structural heterogeneity for the final step of the catalytic cycle by tracing the evolution of three spectroscopically relevant and structurally distinct components of the last metastable S3 state to the transient O2-evolving S4 state of the OEC. Using quantum chemical calculations, we show that each S3 isomer leads to a different electronic structure formulation for the active S4 state. Crucially, in addition to previously hypothesized Mn(IV)-oxyl species, we establish for the first time, how a genuine Mn(V)-oxo can be obtained in the catalytically active S4 state: this takes the form of a five-coordinate and locally high-spin (SMn = 1) Mn(V) site. This formulation for the S4 state evolves naturally from a preceding S3-state structural intermediate that contains a quasi-trigonal-bipyramidal Mn(IV) ion. The results strongly suggest that water binding in the S3 state is not prerequisite for reaching the oxygen-evolving S4 state of the complex, supporting the notion that both substrates are preloaded at the beginning of the catalytic cycle. This scenario allows true four-electron metal-centered hole accumulation to precede OO bond formation and hence the latter can proceed via a genuine even-electron mechanism. This can occur as intramolecular nucleophilic coupling of two oxo units synchronously with the binding of a water substrate for the next catalytic cycle.
Collapse
Affiliation(s)
- Vera Krewald
- Theoretische Chemie, Fachbereich Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
42
|
Khedkar A, Roemelt M. Active Space Selection Based on Natural Orbital Occupation Numbers from n-Electron Valence Perturbation Theory. J Chem Theory Comput 2019; 15:3522-3536. [DOI: 10.1021/acs.jctc.8b01293] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes. INORGANICS 2019. [DOI: 10.3390/inorganics7050057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular systems containing magnetically interacting (exchange-coupled) manganese ions are important in catalysis, biomimetic chemistry, and molecular magnetism. The reliable prediction of exchange coupling constants with quantum chemical methods is key for tracing the relationships between structure and magnetic properties in these systems. Density functional theory (DFT) in the broken-symmetry approach has been employed extensively for this purpose and hybrid functionals with moderate levels of Hartree–Fock exchange admixture have often been shown to perform adequately. Double-hybrid density functionals that introduce a second-order perturbational contribution to the Kohn–Sham energy are generally regarded as a superior approach for most molecular properties, but their performance remains unexplored for exchange-coupled manganese systems. An assessment of various double-hybrid functionals for the prediction of exchange coupling constants is presented here using a set of experimentally characterized dinuclear manganese complexes that cover a wide range of exchange coupling situations. Double-hybrid functionals perform more uniformly compared to conventional DFT methods, but they fail to deliver improved accuracy or reliability in the prediction of exchange coupling constants. Reparametrized double-hybrid density functionals (DHDFs) perform no better, and most often worse, than the original B2-PLYP double-hybrid method. All DHDFs are surpassed by the hybrid-meta-generalized gradient approximation (GGA) TPSSh functional. Possible directions for future methodological developments are discussed.
Collapse
|
44
|
The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. INORGANICS 2019. [DOI: 10.3390/inorganics7040055] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The catalytic cycle of the oxygen-evolving complex (OEC) of photosystem II (PSII) comprises five intermediate states Si (i = 0–4), from the most reduced S0 state to the most oxidized S4, which spontaneously evolves dioxygen. The precise geometric and electronic structure of the Si states, and hence the mechanism of O–O bond formation in the OEC, remain under investigation, particularly for the final steps of the catalytic cycle. Recent advances in protein crystallography based on X-ray free-electron lasers (XFELs) have produced new structural models for the S3 state, which indicate that two of the oxygen atoms of the inorganic Mn4CaO6 core of the OEC are in very close proximity. This has been interpreted as possible evidence for “early-onset” O–O bond formation in the S3 state, as opposed to the more widely accepted view that the O–O bond is formed in the final state of the cycle, S4. Peroxo or superoxo formation in S3 has received partial support from computational studies. Here, a brief overview is provided of spectroscopic information, recent crystallographic results, and computational models for the S3 state. Emphasis is placed on computational S3 models that involve O–O formation, which are discussed with respect to their agreement with structural information, experimental evidence from various spectroscopic studies, and substrate exchange kinetics. Despite seemingly better agreement with some of the available crystallographic interpretations for the S3 state, models that implicate early-onset O–O bond formation are hard to reconcile with the complete line of experimental evidence, especially with X-ray absorption, X-ray emission, and magnetic resonance spectroscopic observations. Specifically with respect to quantum chemical studies, the inconclusive energetics for the possible isoforms of S3 is an acute problem that is probably beyond the capabilities of standard density functional theory.
Collapse
|
45
|
Ghassemi Tabrizi S, Arbuznikov AV, Kaupp M. Hubbard Trimer with Spin-Orbit Coupling: Hartree-Fock Solutions, (Non)Collinearity, and Anisotropic Spin Hamiltonian. J Phys Chem A 2019; 123:2361-2378. [PMID: 30726085 DOI: 10.1021/acs.jpca.8b11959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present unrestricted and generalized Hartree-Fock solutions (UHF and GHF, respectively) for the single-band Hubbard model of an equilateral triangle. Spin-orbit coupling (SOC) is treated self-consistently, and HF stability and properties of different spin structures are studied in detail. The GHF solution switches from noncollinear to collinear when crossing a high-symmetry point in parameter space (spanned by the amplitudes of spin-conserving and spin-dependent hopping, i.e., kinetic energy and SOC, respectively). The collinear GHF solution represents a simple example to disprove the notion that a collinear vector spin density in a Slater determinant necessarily entails a defined spin projection. Spin Hamiltonian parameters for the anisotropic interaction between three spin-1/2 centers are extracted from HF energies and subsequently compared to exact results from effective Hamiltonian theory. This provides an unambiguous benchmark for interpreting broken-symmetry mean-field solutions in terms of spin configurations and puts this semiclassical approach (frequently applied in broken-symmetry density functional theory) on a firmer basis.
Collapse
Affiliation(s)
- Shadan Ghassemi Tabrizi
- Technische Universität Berlin , Institut für Chemie, Theoretische Chemie , Sekr. C7, Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Alexei V Arbuznikov
- Technische Universität Berlin , Institut für Chemie, Theoretische Chemie , Sekr. C7, Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Martin Kaupp
- Technische Universität Berlin , Institut für Chemie, Theoretische Chemie , Sekr. C7, Strasse des 17. Juni 135 , 10623 Berlin , Germany
| |
Collapse
|
46
|
Isobe H, Shoji M, Suzuki T, Shen JR, Yamaguchi K. Spin, Valence, and Structural Isomerism in the S 3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity. J Chem Theory Comput 2019; 15:2375-2391. [PMID: 30855953 DOI: 10.1021/acs.jctc.8b01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photosynthetic water oxidation is catalyzed by a Mn4CaO5-cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state ( Stotal = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 Å) and long MnA···O5 distances (>2.0 Å). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique "distorted chair" topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.
Collapse
Affiliation(s)
- Hiroshi Isobe
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Mitsuo Shoji
- Center for Computational Science , University of Tsukuba , Tsukuba , Ibaraki 305-8577 , Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
47
|
Radoń M. Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Phys Chem Chem Phys 2019; 21:4854-4870. [PMID: 30778468 DOI: 10.1039/c9cp00105k] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accuracy of relative spin-state energetics predicted by selected quantum chemistry methods: coupled cluster theory at the CCSD(T) level, multiconfigurational perturbation theory (CASPT2, NEVPT2), multireference configuration interaction at the MRCISD+Q level, and a number of DFT methods, is quantitatively evaluated by comparison with the experimental data of four octahedral iron complexes. The available experimental data, either spin-forbidden transition energies or spin crossover enthalpies, are corrected for relevant environmental effects in order to derive the quantitative benchmark set of iron spin-state energetics. Comparison of theory predictions with the resulting reference data: (1) validates the high accuracy of the CCSD(T) method, particularly when based on Kohn-Sham orbitals, giving the maximum error below 2 kcal mol-1 and the mean absolute error (MAE) below 1 kcal mol-1; (2) corroborates the tendency of CASPT2 to systematically overstabilize higher-spin states by up to 5.5 kcal mol-1; (3) confirms that the latter problem is partly remedied by the recently proposed CASPT2/CC approach [Phung et al., J. Chem. Theory Comput., 2018, 14, 2446-2455]; (4) demonstrates that NEVPT2 performs worse than CASPT2, by giving errors up to 7 kcal mol-1; (5) shows that the accuracy of MRCISD+Q spin-state energetics strongly depends on the size-consistency correction: the Davidson-Silver and Pople corrections perform best (MAE < 3 kcal mol-1), whereas the standard Davidson correction is not recommended (MAE of 7 kcal mol-1). Only a few DFT methods (including the best performing ones identified in this study: B2PLYP-D3 and OPBE) are able to provide a balanced description of the spin-state energetics for all four studied iron complexes simultaneously, corroborating the non-universality problem of approximate density functionals.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University in Krakow, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
48
|
Roemelt M, Pantazis DA. Multireference Approaches to Spin‐State Energetics of Transition Metal Complexes Utilizing the Density Matrix Renormalization Group. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800201] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Roemelt
- Lehrstuhl für Theoretische ChemieRuhr‐Universität Bochum 44780 Bochum Germany
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A. Pantazis
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
49
|
Pantazis DA. Meeting the Challenge of Magnetic Coupling in a Triply-Bridged Chromium Dimer: Complementary Broken-Symmetry Density Functional Theory and Multireference Density Matrix Renormalization Group Perspectives. J Chem Theory Comput 2019; 15:938-948. [PMID: 30645093 PMCID: PMC6728064 DOI: 10.1021/acs.jctc.8b00969] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Face-sharing
octahedral dinuclear Cr(III) compounds with d3–d3 electronic configurations represent nontrivial examples of
electronic complexity, posing particular challenges for theoretical
and computational studies. A tris-hydroxy-bridged Cr(III)–Cr(III)
system has proven to be a richly rewarding target for studies of magnetism
and electron paramagnetic resonance spectroscopy. It was also reported
to be a peculiarly difficult system to treat with density functional
theory (DFT). In this work the magnetic coupling problem for this
dimer is approached with broken-symmetry (BS)-DFT and multireference
calculations that utilize the density matrix renormalization group
(DMRG) to handle full-valence active spaces. BS-DFT is shown to recover
the correct ordering and energy spacing of Heisenberg spin states
if used in conjunction with appropriate spin projection procedures,
albeit with pronounced functional sensitivity. The contrasting conclusions
of previous studies are traced to incorrect inclusion of electronically
excited configurations. Analysis of the direct and differential overlap
of corresponding orbital pairs from the BS-DFT solution indicates
that metal–metal through-space interaction is the dominant
contributor to antiferromagnetic coupling. At the DFT level a procedure
that utilizes pseudopotential substitution is demonstrated that allows
evaluation of the direct exchange vs superexchange contributions.
A complementary description is obtained with DMRG-SCF calculations
that enable state-averaged CASSCF calculations with both metal and
bridge orbitals in the active space. A localized orbital subspace
analysis supports the DFT conclusions that in contrast to doubly bridged
isoelectronic analogues, antiferromagnetic coupling in the chromium
dimer arises primarily from direct metal–metal interaction
but is significantly enhanced by ligand-mediated superexchange.
Collapse
Affiliation(s)
- Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
50
|
Kawakami T, Miyagawa K, Sharma S, Saito T, Shoji M, Yamada S, Yamanaka S, Okumura M, Nakajima T, Yamaguchi K. UNO DMRG CAS CI calculations of binuclear manganese complex Mn(IV) 2 O 2 (NHCHCO 2 ) 4 : Scope and applicability of Heisenberg model. J Comput Chem 2018; 40:333-341. [PMID: 30341945 DOI: 10.1002/jcc.25602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/12/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022]
Abstract
Both direct exchange and super-exchange interactions cooperate to realize inter-spin magnetic interaction in binuclear manganese complex Mn(IV)2 O2 (NHCHCO2 )4 with a di-μ-oxo path. We revisited this spin system using DMRG CAS methods and CAS selection procedures. Our results indicate that our previous "dynamically extended spin polarization" (DE-SP) procedure for organic polyradicals and so forth does not work well. Thus, we have examined another selection procedure, the "dynamically extended super-exchange" (DE-SE) procedure. DMRG CASCI [18,18] by UB3LYP(HS)-UNO(DE-SE) can realize antiferromagnetic J values similar to experimental ones (-87 cm-1 ). In addition, all J values between all spin states (HS[septet],IS[quintet],IS[triplet],LS[singlet])were also shown to be correct under sufficiently large M values. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takashi Kawakami
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.,Riken Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Koichi Miyagawa
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, 567-0047, Japan
| | - Sandeep Sharma
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309
| | - Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, 731-3194, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Satoru Yamada
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, 567-0047, Japan
| | - Shusuke Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Mitsutaka Okumura
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takahito Nakajima
- Riken Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Kizashi Yamaguchi
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.,Riken Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, 567-0047, Japan.,NanoScience Design Center, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|