1
|
Chance DL, Wang W, Waters JK, Mawhinney TP. Insights on Pseudomonas aeruginosa Carbohydrate Binding from Profiles of Cystic Fibrosis Isolates Using Multivalent Fluorescent Glycopolymers Bearing Pendant Monosaccharides. Microorganisms 2024; 12:801. [PMID: 38674745 PMCID: PMC11051836 DOI: 10.3390/microorganisms12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin glycoconjugates. Blocking carbohydrate-mediated host-pathogen and intra-biofilm interactions critical to the initiation and perpetuation of colonization offer promise as anti-infective treatment strategies. To inform anti-adhesion therapies, we profiled the monosaccharide binding of P. aeruginosa from CF and non-CF sources, and assessed whether specific bacterial phenotypic characteristics affected carbohydrate-binding patterns. Focusing at the cellular level, microscopic and spectrofluorometric tools permitted the solution-phase analysis of P. aeruginosa binding to a panel of fluorescent glycopolymers possessing distinct pendant monosaccharides. All P. aeruginosa demonstrated significant binding to glycopolymers specific for α-D-galactose, β-D-N-acetylgalactosamine, and β-D-galactose-3-sulfate. In each culture, a small subpopulation accounted for the binding. The carbohydrate anomeric configuration and sulfate ester presence markedly influenced binding. While this opportunistic pathogen from CF hosts presented with various colony morphologies and physiological activities, no phenotypic, physiological, or structural feature predicted enhanced or diminished monosaccharide binding. Important to anti-adhesive therapeutic strategies, these findings suggest that, regardless of phenotype or clinical source, P. aeruginosa maintain a small subpopulation that may readily associate with specific configurations of specific monosaccharides. This report provides insights into whole-cell P. aeruginosa carbohydrate-binding profiles and into the context within which successful anti-adhesive and/or anti-virulence anti-infective agents for CF must contend.
Collapse
Affiliation(s)
- Deborah L. Chance
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Wei Wang
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - James K. Waters
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| | - Thomas P. Mawhinney
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
2
|
de Matos AM, Calado P, Miranda M, Almeida R, Rauter AP, Oliveira MC, Manageiro V, Caniça M. Alkyl deoxyglycoside-polymyxin combinations against critical priority carbapenem-resistant gram-negative bacteria. Sci Rep 2024; 14:2219. [PMID: 38278870 PMCID: PMC10817917 DOI: 10.1038/s41598-024-51428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
The escalating antimicrobial resistance crisis urges the development of new antibacterial treatments with innovative mechanisms of action, particularly against the critical priority carbapenem-resistant Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA) and Enterobacteriaceae (CRE). Membrane-disrupting dodecyl deoxyglycosides have been reported for their interesting phosphatidylethanolamine-associated bactericidal activity against Gram-positive strains; however, their inability to penetrate the Gram-negative outer membrane (OM) renders them useless against the most challenging pathogens. Aiming to repurpose alkyl deoxyglycosides against Gram-negative bacteria, this study investigates the antimicrobial effects of five reference compounds with different deoxygenation patterns or anomeric configurations in combination with polymyxins as adjuvants for enhanced OM permeability. The generation of the lead 4,6-dideoxy scaffold was optimized through a simultaneous dideoxygenation step and applied to the synthesis of a novel alkyl 4,6-dideoxy C-glycoside 5, herein reported for the first time. When combined with subtherapeutic colistin concentrations, most glycosides demonstrated potent antimicrobial activity against several multidrug-resistant clinical isolates of CRAB, CRE and CRPA exhibiting distinct carbapenem resistance mechanisms, together with acceptable cytotoxicity against human HEK-293T and Caco-2 cells. The novel 4,6-dideoxy C-glycoside 5 emerged as the most promising prototype structure for further development (MIC 3.1 μg/mL when combined with colistin 0.5 μg/mL against CRPA or 0.25 μg/mL against several CRE and CRAB strains), highlighting the potential of C-glycosylation for an improved bioactive profile. This study is the first to show the potential of IM-targeting carbohydrate-based compounds for the treatment of infections caused by MDR Gram-negative pathogens of clinical importance.
Collapse
Affiliation(s)
- Ana M de Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal.
| | - Patrícia Calado
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Mónica Miranda
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Rita Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Amélia P Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Shi X, Gu R, Guo Y, Xiao H, Xu K, Li Y, Li C. Capsular polysaccharide-amikacin nanoparticles for improved antibacterial and antibiofilm performance. Int J Biol Macromol 2023:125325. [PMID: 37302623 DOI: 10.1016/j.ijbiomac.2023.125325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Natural nanoscale polysaccharide and its application have attracted much attention in recent years. In this study, we report for the first time that a novel naturally occurring capsular polysaccharide (CPS-605) from Lactobacillus plantarum LCC-605, which can self-assemble into spherical nanoparticles with an average diameter of 65.7 nm. To endow CPS-605 with more functionalities, we develop amikacin-functionalized capsular polysaccharide (CPS) nanoparticles (termed CPS-AM NPs) with improved antibacterial and antibiofilm activities against both Escherichia coli and Pseudomonas aeruginosa. They also exhibit faster bactericidal activity than AM alone. The high local positive charge density of CPS-AM NPs facilitates the interaction between the NPs and bacteria, leading to extraordinary bactericidal efficiencies (99.9 % and 100 % for E. coli and P. aeruginosa, respectively, within 30 min) by damaging the cell wall. Very interestingly, CPS-AM NPs exhibit an unconventional antibacterial mechanism against P. aeruginosa, that is, they can induce plasmolysis, along with bacterial cell surface disruption, cell inclusion release and cell death. In addition, CPS-AM NPs exhibit low cytotoxicity and negligible hemolytic activity, showing excellent biocompatibility. The CPS-AM NPs provide a new strategy for the design of next-generation antimicrobial agents that can reduce the working concentration of antibiotics to fight against bacterial resistance.
Collapse
Affiliation(s)
- Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Kefei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuan Li
- College of Resource & Environment, Yunnan Agriculture University, Kunming 650201, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
5
|
LuTheryn G, Ho EML, Choi V, Carugo D. Cationic Microbubbles for Non-Selective Binding of Cavitation Nuclei to Bacterial Biofilms. Pharmaceutics 2023; 15:pharmaceutics15051495. [PMID: 37242736 DOI: 10.3390/pharmaceutics15051495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of multi-drug resistant biofilms in chronic, persistent infections is a major barrier to successful clinical outcomes of therapy. The production of an extracellular matrix is a characteristic of the biofilm phenotype, intrinsically linked to antimicrobial tolerance. The heterogeneity of the extracellular matrix makes it highly dynamic, with substantial differences in composition between biofilms, even in the same species. This variability poses a major challenge in targeting drug delivery systems to biofilms, as there are few elements both suitably conserved and widely expressed across multiple species. However, the presence of extracellular DNA within the extracellular matrix is ubiquitous across species, which alongside bacterial cell components, gives the biofilm its net negative charge. This research aims to develop a means of targeting biofilms to enhance drug delivery by developing a cationic gas-filled microbubble that non-selectively targets the negatively charged biofilm. Cationic and uncharged microbubbles loaded with different gases were formulated and tested to determine their stability, ability to bind to negatively charged artificial substrates, binding strength, and, subsequently, their ability to adhere to biofilms. It was shown that compared to their uncharged counterparts, cationic microbubbles facilitated a significant increase in the number of microbubbles that could both bind and sustain their interaction with biofilms. This work is the first to demonstrate the utility of charged microbubbles for the non-selective targeting of bacterial biofilms, which could be used to significantly enhance stimuli-mediated drug delivery to the bacterial biofilm.
Collapse
Affiliation(s)
- Gareth LuTheryn
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7HE, UK
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Elaine M L Ho
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
- Artificial Intelligence and Informatics, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QX, UK
| | - Victor Choi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7HE, UK
| |
Collapse
|
6
|
Wang YY, Zhang XY, Zhong XL, Huang YJ, Lin J, Chen WM. Design and Synthesis of 3-Hydroxy-pyridin-4(1 H)-ones-Ciprofloxacin Conjugates as Dual Antibacterial and Antibiofilm Agents against Pseudomonas aeruginosa. J Med Chem 2023; 66:2169-2193. [PMID: 36692083 DOI: 10.1021/acs.jmedchem.2c02044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pseudomonas aeruginosa infections are often complicated by the fact that it can easily form a biofilm that increases its resistance to antibiotics. Consequently, the development of novel antibacterial agents against biofilm-associated drug-resistant P. aeruginosa is urgently needed. Herein, we report a series of 3-hydroxy-pyridin-4(1H)-ones-ciprofloxacin conjugates that were designed and synthesized as dual antibacterial and antibiofilm agents against P. aeruginosa. A potential 2-substituted 3-hydroxy-1,6-dimethylpyridin-4(1H)-one-ciprofloxacin conjugate (5e) was identified and had the best minimum inhibitory concentrations of 0.86 and 0.43 μM against P. aeruginosa 27853 and PAO1 and reduced 78.3% of biofilm formation. In addition, 5e eradicates mature biofilms and kills living bacterial cells that are incorporated into the biofilm. Studies on the antibiofilm mechanism of conjugates showed that 5e interferes with iron uptake by bacteria, inhibits their motility, and reduces the production of virulence. These results demonstrate that 3-hydroxy-pyridin-4(1H)-ones-ciprofloxacin conjugates are potent in the treatment of biofilm-associated drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Yi Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Lin Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| |
Collapse
|
7
|
Bruneau A, Gillon E, Furiga A, Brachet E, Alami M, Roques C, Varrot A, Imberty A, Messaoudi S. Discovery of potent 1,1-diarylthiogalactoside glycomimetic inhibitors of Pseudomonas aeruginosa LecA with antibiofilm properties. Eur J Med Chem 2023; 247:115025. [PMID: 36549118 DOI: 10.1016/j.ejmech.2022.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In this work, β-thiogalactoside mimetics bearing 1,1-diarylmethylene or benzophenone aglycons have been prepared and assayed for their affinity towards LecA, a lectin and virulence factor from Pseudomonas aeruginosa involved in bacterial adhesion and biofilm formation. The hit compound presents higher efficiency than previously described monovalent inhibitors and the crystal structure confirmed the occurrence of additional contacts between the aglycone and the protein surface. The highest affinity (160 nM) was obtained for a divalent ligand containing two galactosides. The monovalent high affinity compound (Kd = 1 μM) obtained through structure-activity relationship (SAR) showed efficient antibiofilm activity with no associated bactericidal activity.
Collapse
Affiliation(s)
- Alexandre Bruneau
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Aurélie Furiga
- LCG, Laboratoire de Génie Chimique (UMR 5503), Département Bioprocédés et Systèmes Microbiens, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Etienne Brachet
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Christine Roques
- LCG, Laboratoire de Génie Chimique (UMR 5503), Département Bioprocédés et Systèmes Microbiens, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Annabelle Varrot
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
8
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
9
|
Meiers J, Rox K, Titz A. Lectin-Targeted Prodrugs Activated by Pseudomonas aeruginosa for Self-Destructive Antibiotic Release. J Med Chem 2022; 65:13988-14014. [PMID: 36201248 PMCID: PMC9619409 DOI: 10.1021/acs.jmedchem.2c01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chronic Pseudomonas aeruginosa infections
are characterized by biofilm formation, a major virulence factor of P. aeruginosa and cause of extensive drug resistance.
Fluoroquinolones are effective antibiotics but are linked to severe
side effects. The two extracellular P. aeruginosa-specific lectins LecA and LecB are key structural biofilm components
and can be exploited for targeted drug delivery. In this work, several
fluoroquinolones were conjugated to lectin probes by cleavable peptide
linkers to yield lectin-targeted prodrugs. Mechanistically, these
conjugates therefore remain non-toxic in the systemic distribution
and will be activated to kill only once they have accumulated at the
infection site. The synthesized prodrugs proved stable in the presence
of host blood plasma and liver metabolism but rapidly released the
antibiotic cargo in the presence of P. aeruginosa in a self-destructive manner in vitro. Furthermore, the prodrugs
showed good absorption, distribution, metabolism, and elimination
(ADME) properties and reduced toxicity in vitro, thus establishing
the first lectin-targeted antibiotic prodrugs against P. aeruginosa.
Collapse
Affiliation(s)
- Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Venkatesh R, Tiwari V, Kandasamy J. Copper(I)-Catalyzed Sandmeyer-Type S-Arylation of 1-Thiosugars with Aryldiazonium Salts under Mild Conditions. J Org Chem 2022; 87:11414-11432. [PMID: 35994736 DOI: 10.1021/acs.joc.2c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preparation of S-aryl thioglycosides from 1-thiosugars via S-arylation was demonstrated under mild reaction conditions. A wide range of protected and unprotected 1-thiosugars derived from glucose, glucosamine, galactose, mannose, ribose, maltose, and lactose underwent cross-coupling reactions with functionalized aryldiazonium salts in the presence of copper(I) chloride and DBU. The desired products were obtained in 55-88% yields within 5 min. Various functional groups, including halogens, were tolerated under standard reaction conditions. Synthesis of the biologically relevant antidiabetic dapagliflozin S-analogue and arbutin S-analogues (tyrosinase inhibitors) was demonstrated.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Varsha Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
11
|
Wang Y, Pan L, Li L, Cao R, Zheng Q, Xu Z, Wu CJ, Zhu H. Glycosylation increases the anti-QS as well as anti-biofilm and anti-adhesion ability of the cyclo (L-Trp-L-Ser) against Pseudomonas aeruginosa. Eur J Med Chem 2022; 238:114457. [DOI: 10.1016/j.ejmech.2022.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
12
|
Singh K, Kulkarni SS. Small Carbohydrate Derivatives as Potent Antibiofilm Agents. J Med Chem 2022; 65:8525-8549. [PMID: 35777073 DOI: 10.1021/acs.jmedchem.1c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofilm formation by most pathogenic bacteria is considered as one of the key mechanisms associated with virulence and antibiotic resistance. Biofilm-forming bacteria adhere to the surfaces of biological or implant medical devices and create communities within their self-produced extracellular matrix that are difficult to treat by existing antibiotics. There is an urgent need to synthesize and screen structurally diverse molecules for their antibiofilm activity that can remove or minimize the bacterial biofilm. The development of carbohydrate-based small molecules as antibiofilm agents holds a great promise in addressing the problem of the eradication of biofilm-related infections. Owing to their structural diversity and specificity, the sugar scaffolds are valuable entities for developing antibiofilm agents. In this perspective, we discuss the literature pertaining to carbohydrate-based natural antibiofilm agents and provide an overview of the design, activity, and mode of action of potent synthetic carbohydrate-based molecules.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
13
|
Wojtczak K, Byrne JP. Structural Considerations for Building Synthetic Glycoconjugates as Inhibitors for Pseudomonas aeruginosa Lectins. ChemMedChem 2022; 17:e202200081. [PMID: 35426976 PMCID: PMC9321714 DOI: 10.1002/cmdc.202200081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium, responsible for a large portion of nosocomial infections globally and designated as critical priority by the World Health Organisation. Its characteristic carbohydrate-binding proteins LecA and LecB, which play a role in biofilm-formation and lung-infection, can be targeted by glycoconjugates. Here we review the wide range of inhibitors for these proteins (136 references), highlighting structural features and which impact binding affinity and/or therapeutic effects, including carbohydrate selection; linker length and rigidity; and scaffold topology, particularly for multivalent candidates. We also discuss emerging therapeutic strategies, which build on targeting of LecA and LecB, such as anti-biofilm activity, anti-adhesion and drug-delivery, with promising prospects for medicinal chemistry.
Collapse
Affiliation(s)
- Karolina Wojtczak
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| | - Joseph P. Byrne
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| |
Collapse
|
14
|
Metelkina O, Huck B, O'Connor JS, Koch M, Manz A, Lehr CM, Titz A. Targeting extracellular lectins of Pseudomonas aeruginosa with glycomimetic liposomes. J Mater Chem B 2022; 10:537-548. [PMID: 34985094 DOI: 10.1039/d1tb02086b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The antimicrobial resistance crisis requires novel approaches for the therapy of infections especially with Gram-negative pathogens. Pseudomonas aeruginosa is defined as priority 1 pathogen by the WHO and thus of particular interest. Its drug resistance is primarily associated with biofilm formation and essential constituents of its extracellular biofilm matrix are the two lectins, LecA and LecB. Here, we report microbial lectin-specific targeted nanovehicles based on liposomes. LecA- and LecB-targeted phospholipids were synthesized and used for the preparation of liposomes. These liposomes with varying surface ligand density were then analyzed for their competitive and direct lectin binding activity. We have further developed a microfluidic device that allowed the optical detection of the targeting process to the bacterial lectins. Our data showed that the targeted liposomes are specifically binding to their respective lectin and remain firmly attached to surfaces containing these lectins. This synthetic and biophysical study provides the basis for future application in targeted antibiotic delivery to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olga Metelkina
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany. .,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Benedikt Huck
- Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Jonathan S O'Connor
- KIST Europe, 66123 Saarbrücken, Germany.,Department of Systems Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Andreas Manz
- KIST Europe, 66123 Saarbrücken, Germany.,Department of Systems Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany. .,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
15
|
Etayash H, Alford M, Akhoundsadegh N, Drayton M, Straus SK, Hancock REW. Multifunctional Antibiotic-Host Defense Peptide Conjugate Kills Bacteria, Eradicates Biofilms, and Modulates the Innate Immune Response. J Med Chem 2021; 64:16854-16863. [PMID: 34784220 DOI: 10.1021/acs.jmedchem.1c01712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective anti-infective therapies are required to offset the rise in antibiotic resistance. A novel vancomycin-innate defense regulator conjugate (V-IDR1018) was constructed with multimodal functionality, including bacterial killing, biofilm eradication, and immune modulation. The conjugate killed bacteria within 30 min, exhibited potent activity against persister cells, and showed no susceptibility to antimicrobial resistance in tissue culture assays. Additionally, it stimulated the release of chemokine MCP-1 and anti-inflammatory cytokine IL-10 and suppressed pro-inflammatory IL-1β from lipopolysaccharide-stimulated white blood cells. The conjugate demonstrated ∼90% eradication efficacy when assessed against the MRSA biofilm formed on an organoid human skin equivalent. Similarly, when evaluated in a murine, high-density skin abscess infection model using MRSA or Staphylococcus epidermidis, the conjugate decreased dermonecrosis and reduced bacterial load. The exceptional in vitro and in vivo efficacy of the conjugate, in addition to its safety profile, makes it a valuable candidate to treat complex infectious diseases.
Collapse
Affiliation(s)
- Hashem Etayash
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| | - Morgan Alford
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| | - Noushin Akhoundsadegh
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| | - Matthew Drayton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
16
|
Wang F, Tan J, Zhang S, Zhou Y, He D, Deng L. Efficient Eradication of Bacterial Biofilms with Highly Specific Graphene-Based Nanocomposite Sheets. ACS Biomater Sci Eng 2021; 7:5118-5128. [PMID: 34664941 DOI: 10.1021/acsbiomaterials.1c00575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms are usually resistant to antibiotics, thus powerful methods are required for removal. Nanomaterial involving a combination of treatment modalities recently has been recognized as an effective alternative to combat biofilm. However, its targeted and controlled release in bacterial infection is still a major challenge. Here, we present an intelligent phototherapeutic nanoplatform consisting of an aptamer (Apt), indocyanine green (ICG), and carboxyl-functionalized graphene oxide (GO-COOH), namely, ICG@GO-Apt, for targeted treatment of the biofilm formed by Salmonella Typhimurium. Since Apt-conjugated nanosheets (NSs) can specifically accumulate near abscess caused by the pathogens, they enhance greatly the local drug molecule concentration and promote their precise delivery. They can simultaneously generate heat and reactive oxygen species under near-infrared irradiation for photothermal/photodynamic therapy, thereby significantly enhancing biofilm elimination. The phototherapeutic ICG@GO-Apt also displays a good biocompatibility. More importantly, the multifunction phototherapeutic platform shows an efficient biofilm elimination with an efficiency of greater than 99.99% in an abscess formation model. Therefore, ICG@GO-Apt NSs with bacteria-targeting capability provide a reliable tool for clinical bacterial infection that circumvents antibiotic resistance.
Collapse
Affiliation(s)
- Feiying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.,Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Jianxi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.,Changsha Customs Technology Center, Xiangfu middle Road 188, Changsha, Hunan 410004, People's Republic of China
| | - Shengnan Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| |
Collapse
|
17
|
Predicting drug targets by homology modelling of Pseudomonas aeruginosa proteins of unknown function. PLoS One 2021; 16:e0258385. [PMID: 34648550 PMCID: PMC8516228 DOI: 10.1371/journal.pone.0258385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The efficacy of antibiotics to treat bacterial infections declines rapidly due to antibiotic resistance. This problem has stimulated the development of novel antibiotics, but most attempts have failed. Consequently, the idea of mining uncharacterized genes of pathogens to identify potential targets for entirely new classes of antibiotics was proposed. Without knowing the biochemical function of a protein, it is difficult to validate its potential for drug targeting; therefore, the functional characterization of bacterial proteins of unknown function must be accelerated. Here, we present a paradigm for comprehensively predicting the biochemical functions of a large set of proteins encoded by hypothetical genes in human pathogens to identify candidate drug targets. A high-throughput approach based on homology modelling with ten templates per target protein was applied to the set of 2103 P. aeruginosa proteins encoded by hypothetical genes. The >21000 homology modelling results obtained and available biological and biochemical information about several thousand templates were scrutinized to predict the function of reliably modelled proteins of unknown function. This approach resulted in assigning one or often multiple putative functions to hundreds of enzymes, ligand-binding proteins and transporters. New biochemical functions were predicted for 41 proteins whose essential or virulence-related roles in P. aeruginosa were already experimentally demonstrated. Eleven of them were shortlisted as promising drug targets that participate in essential pathways (maintaining genome and cell wall integrity), virulence-related processes (adhesion, cell motility, host recognition) or antibiotic resistance, which are general drug targets. These proteins are conserved in other WHO priority pathogens but not in humans; therefore, they represent high-potential targets for preclinical studies. These and many more biochemical functions assigned to uncharacterized proteins of P. aeruginosa, made available as PaPUF database, may guide the design of experimental screening of inhibitors, which is a crucial step towards the validation of the highest-potential targets for the development of novel drugs against P. aeruginosa and other high-priority pathogens.
Collapse
|
18
|
Mohy El Dine T, Jimmidi R, Diaconu A, Fransolet M, Michiels C, De Winter J, Gillon E, Imberty A, Coenye T, Vincent SP. Pillar[5]arene-Based Polycationic Glyco[2]rotaxanes Designed as Pseudomonas aeruginosa Antibiofilm Agents. J Med Chem 2021; 64:14728-14744. [PMID: 34542288 DOI: 10.1021/acs.jmedchem.1c01241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa (P.A.) is a human pathogen belonging to the top priorities for the discovery of new therapeutic solutions. Its propensity to generate biofilms strongly complicates the treatments required to cure P.A. infections. Herein, we describe the synthesis of a series of novel rotaxanes composed of a central galactosylated pillar[5]arene, a tetrafucosylated dendron, and a tetraguanidinium subunit. Besides the high affinity of the final glycorotaxanes for the two P.A. lectins LecA and LecB, potent inhibition levels of biofilm growth were evidenced, showing that their three subunits work synergistically. An antibiofilm assay using a double ΔlecAΔlecB mutant compared to the wild type demonstrated that the antibiofilm activity of the best glycorotaxane is lectin-mediated. Such antibiofilm potency had rarely been reached in the literature. Importantly, none of the final rotaxanes was bactericidal, showing that their antibiofilm activity does not depend on bacteria killing, which is a rare feature for antibiofilm agents.
Collapse
Affiliation(s)
- Tharwat Mohy El Dine
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Ravikumar Jimmidi
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Andrei Diaconu
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium.,Center of Advanced Research in Bionanoconjugates and Biopolymers "Petru Poni", Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Maude Fransolet
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Carine Michiels
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Julien De Winter
- Department of Chemistry, Laboratory of Organic Synthesis and Mass Spectrometry, University of Mons (Umons), 20 place du parc, 7000 Mons, Belgium
| | - Emilie Gillon
- Centre de recherches sur les macromolécules végétales (CERMAV), University of Genoble Alpes, CNRS, 601 rue de la chimie, 38000 Grenoble, France
| | - Anne Imberty
- Centre de recherches sur les macromolécules végétales (CERMAV), University of Genoble Alpes, CNRS, 601 rue de la chimie, 38000 Grenoble, France
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, University of Ghent (UGent), Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
19
|
Mattox DE, Bailey-Kellogg C. Comprehensive analysis of lectin-glycan interactions reveals determinants of lectin specificity. PLoS Comput Biol 2021; 17:e1009470. [PMID: 34613971 PMCID: PMC8523061 DOI: 10.1371/journal.pcbi.1009470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/18/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Lectin-glycan interactions facilitate inter- and intracellular communication in many processes including protein trafficking, host-pathogen recognition, and tumorigenesis promotion. Specific recognition of glycans by lectins is also the basis for a wide range of applications in areas including glycobiology research, cancer screening, and antiviral therapeutics. To provide a better understanding of the determinants of lectin-glycan interaction specificity and support such applications, this study comprehensively investigates specificity-conferring features of all available lectin-glycan complex structures. Systematic characterization, comparison, and predictive modeling of a set of 221 complementary physicochemical and geometric features representing these interactions highlighted specificity-conferring features with potential mechanistic insight. Univariable comparative analyses with weighted Wilcoxon-Mann-Whitney tests revealed strong statistical associations between binding site features and specificity that are conserved across unrelated lectin binding sites. Multivariable modeling with random forests demonstrated the utility of these features for predicting the identity of bound glycans based on generalized patterns learned from non-homologous lectins. These analyses revealed global determinants of lectin specificity, such as sialic acid glycan recognition in deep, concave binding sites enriched for positively charged residues, in contrast to high mannose glycan recognition in fairly shallow but well-defined pockets enriched for non-polar residues. Focused fine specificity analysis of hemagglutinin interactions with human-like and avian-like glycans uncovered features representing both known and novel mutations related to shifts in influenza tropism from avian to human tissues. As the approach presented here relies on co-crystallized lectin-glycan pairs for studying specificity, it is limited in its inferences by the quantity, quality, and diversity of the structural data available. Regardless, the systematic characterization of lectin binding sites presented here provides a novel approach to studying lectin specificity and is a step towards confidently predicting new lectin-glycan interactions.
Collapse
Affiliation(s)
- Daniel E. Mattox
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
20
|
Trebino MA, Shingare RD, MacMillan JB, Yildiz FH. Strategies and Approaches for Discovery of Small Molecule Disruptors of Biofilm Physiology. Molecules 2021; 26:molecules26154582. [PMID: 34361735 PMCID: PMC8348372 DOI: 10.3390/molecules26154582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
Biofilms, the predominant growth mode of microorganisms, pose a significant risk to human health. The protective biofilm matrix, typically composed of exopolysaccharides, proteins, nucleic acids, and lipids, combined with biofilm-grown bacteria’s heterogenous physiology, leads to enhanced fitness and tolerance to traditional methods for treatment. There is a need to identify biofilm inhibitors using diverse approaches and targeting different stages of biofilm formation. This review discusses discovery strategies that successfully identified a wide range of inhibitors and the processes used to characterize their inhibition mechanism and further improvement. Additionally, we examine the structure–activity relationship (SAR) for some of these inhibitors to optimize inhibitor activity.
Collapse
Affiliation(s)
- Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Rahul D. Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA;
| | - John B. MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA;
- Correspondence: (J.B.M.); (F.H.Y.)
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
- Correspondence: (J.B.M.); (F.H.Y.)
| |
Collapse
|
21
|
Kuhaudomlarp S, Siebs E, Shanina E, Topin J, Joachim I, da Silva Figueiredo Celestino Gomes P, Varrot A, Rognan D, Rademacher C, Imberty A, Titz A. Non-Carbohydrate Glycomimetics as Inhibitors of Calcium(II)-Binding Lectins. Angew Chem Int Ed Engl 2021; 60:8104-8114. [PMID: 33314528 PMCID: PMC8048816 DOI: 10.1002/anie.202013217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Because of the antimicrobial resistance crisis, lectins are considered novel drug targets. Pseudomonas aeruginosa utilizes LecA and LecB in the infection process. Inhibition of both lectins with carbohydrate-derived molecules can reduce biofilm formation to restore antimicrobial susceptibility. Here, we focused on non-carbohydrate inhibitors for LecA to explore new avenues for lectin inhibition. From a screening cascade we obtained one experimentally confirmed hit, a catechol, belonging to the well-known PAINS compounds. Rigorous analyses validated electron-deficient catechols as millimolar LecA inhibitors. The first co-crystal structure of a non-carbohydrate inhibitor in complex with a bacterial lectin clearly demonstrates the catechol mimicking the binding of natural glycosides with LecA. Importantly, catechol 3 is the first non-carbohydrate lectin ligand that binds bacterial and mammalian calcium(II)-binding lectins, giving rise to this fundamentally new class of glycomimetics.
Collapse
Affiliation(s)
| | - Eike Siebs
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
- Department of ChemistrySaarland University66123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover-BraunschweigGermany
| | - Elena Shanina
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryDepartment of Biology, Chemistry and PharmacyFreie Universität Berlin14195BerlinGermany
| | - Jérémie Topin
- Université Grenoble AlpesCNRSCERMAV38000GrenobleFrance
- Institute of Chemistry-NiceUMR 7272 CNRSUniversité Côte d'Azur06108NiceFrance
| | - Ines Joachim
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
- Department of ChemistrySaarland University66123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover-BraunschweigGermany
| | | | | | - Didier Rognan
- Laboratoire d'Innovation ThérapeutiqueUMR 7200 CNRS-Université de Strasbourg67400IllkirchFrance
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryDepartment of Biology, Chemistry and PharmacyFreie Universität Berlin14195BerlinGermany
| | - Anne Imberty
- Université Grenoble AlpesCNRSCERMAV38000GrenobleFrance
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
- Department of ChemistrySaarland University66123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover-BraunschweigGermany
| |
Collapse
|
22
|
Kuhaudomlarp S, Siebs E, Shanina E, Topin J, Joachim I, Silva Figueiredo Celestino Gomes P, Varrot A, Rognan D, Rademacher C, Imberty A, Titz A. Non‐Carbohydrate Glycomimetics as Inhibitors of Calcium(II)‐Binding Lectins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Eike Siebs
- Chemical Biology of Carbohydrates (CBCH) Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research 66123 Saarbrücken Germany
- Department of Chemistry Saarland University 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Hannover-Braunschweig Germany
| | - Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Department of Biology, Chemistry and Pharmacy Freie Universität Berlin 14195 Berlin Germany
| | - Jérémie Topin
- Université Grenoble Alpes CNRS CERMAV 38000 Grenoble France
- Institute of Chemistry-Nice UMR 7272 CNRS Université Côte d'Azur 06108 Nice France
| | - Ines Joachim
- Chemical Biology of Carbohydrates (CBCH) Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research 66123 Saarbrücken Germany
- Department of Chemistry Saarland University 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Hannover-Braunschweig Germany
| | | | | | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique UMR 7200 CNRS-Université de Strasbourg 67400 Illkirch France
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Department of Biology, Chemistry and Pharmacy Freie Universität Berlin 14195 Berlin Germany
| | - Anne Imberty
- Université Grenoble Alpes CNRS CERMAV 38000 Grenoble France
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH) Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research 66123 Saarbrücken Germany
- Department of Chemistry Saarland University 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Hannover-Braunschweig Germany
| |
Collapse
|
23
|
Galeev A, Suwandi A, Cepic A, Basu M, Baines JF, Grassl GA. The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. Int J Med Microbiol 2021; 311:151487. [PMID: 33662872 DOI: 10.1016/j.ijmm.2021.151487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The glycosylation profile of the gastrointestinal tract is an important factor mediating host-microbe interactions. Variation in these glycan structures is often mediated by blood group-related glycosyltransferases, and can lead to wide-ranging differences in susceptibility to both infectious- as well as chronic disease. In this review, we focus on the interplay between host glycosylation, the intestinal microbiota and susceptibility to gastrointestinal pathogens based on studies of two exemplary blood group-related glycosyltransferases that are conserved between mice and humans, namely FUT2 and B4GALNT2. We highlight that differences in susceptibility can arise due to both changes in direct interactions, such as bacterial adhesion, as well as indirect effects mediated by the intestinal microbiota. Although a large body of experimental work exists for direct interactions between host and pathogen, determining the more complex and variable mechanisms underlying three-way interactions involving the intestinal microbiota will be the subject of much-needed future research.
Collapse
Affiliation(s)
- Alibek Galeev
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Aleksa Cepic
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany.
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany.
| |
Collapse
|
24
|
Tung TT, Xuan HL. “Left-hand strategy” for the design, synthesis and discovery of novel triazole–mercaptobenzothiazole hybrid compounds as potent quorum sensing inhibitors and anti-biofilm formation of Pseudomonas aeruginosa. NEW J CHEM 2021. [DOI: 10.1039/d1nj04436b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triazole–benzothiazole hybrids as potent quorum sensing inhibitors and antibiofilm formation of Gram-negative bacteria.
Collapse
Affiliation(s)
- Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| | - Huy Luong Xuan
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| |
Collapse
|