1
|
Chen S, Pan Z, Liu M, Guo L, Jiang X, He G. Recent Advances on Small-Molecule Inhibitors of Lipocalin-like Proteins. J Med Chem 2024; 67:5144-5167. [PMID: 38525852 DOI: 10.1021/acs.jmedchem.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Lipid transfer proteins (LTPs) are crucial players in nonvesicular lipid trafficking. LTPs sharing a lipocalin lipid transfer domain (lipocalin-like proteins) have a wide range of biological functions, such as regulating immune responses and cell proliferation, differentiation, and death as well as participating in the pathogenesis of inflammatory, metabolic, and neurological disorders and cancer. Therefore, the development of small-molecule inhibitors targeting these LTPs is important and has potential clinical applications. Herein, we summarize the structure and function of lipocalin-like proteins, mainly including retinol-binding proteins, lipocalins, and fatty acid-binding proteins and discuss the recent advances on small-molecule inhibitors for these protein families and their applications in disease treatment. The findings of our Perspective can provide guidance for the development of inhibitors of these LTPs and highlight the challenges that might be faced during the procedures.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxia Liu
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linghong Guo
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Fabre M, Mateo L, Lamaa D, Baillif S, Pagès G, Demange L, Ronco C, Benhida R. Recent Advances in Age-Related Macular Degeneration Therapies. Molecules 2022; 27:molecules27165089. [PMID: 36014339 PMCID: PMC9414333 DOI: 10.3390/molecules27165089] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) was described for the first time in the 1840s and is currently the leading cause of blindness for patients over 65 years in Western Countries. This disease impacts the eye’s posterior segment and damages the macula, a retina section with high levels of photoreceptor cells and responsible for the central vision. Advanced AMD stages are divided into the atrophic (dry) form and the exudative (wet) form. Atrophic AMD consists in the progressive atrophy of the retinal pigment epithelium (RPE) and the outer retinal layers, while the exudative form results in the anarchic invasion by choroidal neo-vessels of RPE and the retina. This invasion is responsible for fluid accumulation in the intra/sub-retinal spaces and for a progressive dysfunction of the photoreceptor cells. To date, the few existing anti-AMD therapies may only delay or suspend its progression, without providing cure to patients. However, in the last decade, an outstanding number of research programs targeting its different aspects have been initiated by academics and industrials. This review aims to bring together the most recent advances and insights into the mechanisms underlying AMD pathogenicity and disease evolution, and to highlight the current hypotheses towards the development of new treatments, i.e., symptomatic vs. curative. The therapeutic options and drugs proposed to tackle these mechanisms are analyzed and critically compared. A particular emphasis has been given to the therapeutic agents currently tested in clinical trials, whose results have been carefully collected and discussed whenever possible.
Collapse
Affiliation(s)
- Marie Fabre
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Lou Mateo
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Diana Lamaa
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Stéphanie Baillif
- Ophthalmology Department, University Hospital of Nice, 30 Avenue De La Voie Romaine, 06000 Nice, France
| | - Gilles Pagès
- Institute for Research on Cancer and Aging (IRCAN), UMR 7284 and INSERM U 1081, Université Côte d’Azur, CNRS 28 Avenue de Valombrose, 06107 Nice, France
| | - Luc Demange
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Cyril Ronco
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Rachid Benhida
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Department of Chemical and Biochemical Sciences-Green Process Engineering (CBS-GPE), Mohamed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Correspondence: (L.D.); (C.R.); (R.B.)
| |
Collapse
|
3
|
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022; 14:1236. [PMID: 35334893 PMCID: PMC8951293 DOI: 10.3390/nu14061236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.
Collapse
Affiliation(s)
- Julia S. Steinhoff
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Schupp
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| |
Collapse
|
4
|
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226:113856. [PMID: 34547506 DOI: 10.1016/j.ejmech.2021.113856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.
Collapse
Affiliation(s)
- Noheul Kim
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
5
|
Discovery of phenylpyrrolidine derivatives as a novel class of retinol binding protein 4 (RBP4) reducers. Bioorg Med Chem 2021; 54:116553. [PMID: 34953340 DOI: 10.1016/j.bmc.2021.116553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a potential drug target for metabolic and ophthalmologic diseases. A high-throughput screening of our compound library has identified a small-molecule RBP4 reducer 7a, as a hit compound. Aiming to provide a suitable tool for investigating the pharmacological effects of RBP4 reducers, we conducted a structure-activity relationship study of 7a. Exploration of the aryl head, oxazole core, and propanoic acid tail of 7a resulted in the discovery of novel, potent, and orally available phenylpyrrolidine derivatives 43b and 43c. Compound 43b had a potent and long-lasting blood RBP4-level-reducing effect when orally administered to mice at a dose as low as 0.3 mg/kg.
Collapse
|
6
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
7
|
Cioffi CL, Raja A, Muthuraman P, Jayaraman A, Jayakumar S, Varadi A, Racz B, Petrukhin K. Identification of Transthyretin Tetramer Kinetic Stabilizers That Are Capable of Inhibiting the Retinol-Dependent Retinol Binding Protein 4-Transthyretin Interaction: Potential Novel Therapeutics for Macular Degeneration, Transthyretin Amyloidosis, and Their Common Age-Related Comorbidities. J Med Chem 2021; 64:9010-9041. [PMID: 34138572 DOI: 10.1021/acs.jmedchem.1c00099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dissociation of transthyretin (TTR) tetramers may lead to misfolding and aggregation of proamyloidogenic monomers, which underlies TTR amyloidosis (ATTR) pathophysiology. ATTR is a progressive disease resulting from the deposition of toxic fibrils in tissues that predominantly presents clinically as amyloid cardiomyopathy and peripheral polyneuropathy. Ligands that bind to and kinetically stabilize TTR tetramers prohibit their dissociation and may prevent ATTR onset. Drawing from clinically investigated AG10, we designed a constrained congener (14) that exhibits excellent TTR tetramer binding potency, prevents TTR aggregation in a gel-based assay, and possesses desirable pharmacokinetics in mice. Additionally, 14 significantly lowers murine serum retinol binding protein 4 (RBP4) levels despite a lack of binding at that protein's all-trans-retinol site. We hypothesize that kinetic stabilization of TTR tetramers via 14 is allosterically hindering all-trans-retinol-dependent RBP4-TTR tertiary complex formation and that the compound could present ancillary therapeutic utility for indications treated with RBP4 antagonists, such as macular degeneration.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Aravindan Jayaraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Srinivasan Jayakumar
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
8
|
Butler JM, Supharattanasitthi W, Yang YC, Paraoan L. RNA-seq analysis of ageing human retinal pigment epithelium: Unexpected up-regulation of visual cycle gene transcription. J Cell Mol Med 2021; 25:5572-5585. [PMID: 33934486 PMCID: PMC8184696 DOI: 10.1111/jcmm.16569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ageing presents adverse effects on the retina and is the primary risk factor for age‐related macular degeneration (AMD). We report the first RNA‐seq analysis of age‐related transcriptional changes in the human retinal pigment epithelium (RPE), the primary site of AMD pathogenesis. Whole transcriptome sequencing of RPE from human donors ranging in age from 31 to 93 reveals that ageing is associated with increasing transcription of main RPE‐associated visual cycle genes (including LRAT, RPE65, RDH5, RDH10, RDH11; pathway enrichment BH‐adjusted P = 4.6 × 10−6). This positive correlation is replicated in an independent set of 28 donors and a microarray dataset of 50 donors previously published. LRAT expression is positively regulated by retinoid by‐products of the visual cycle (A2E and all‐trans‐retinal) involving modulation by retinoic acid receptor alpha transcription factor. The results substantiate a novel age‐related positive feedback mechanism between accumulation of retinoid by‐products in the RPE and the up‐regulation of visual cycle genes.
Collapse
Affiliation(s)
- Joe M Butler
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Wasu Supharattanasitthi
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Yit C Yang
- Department of Ophthalmology, Wolverhampton Eye Infirmary, New Cross Hospital, Wolverhampton, UK
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|