1
|
Sharma KK, Sharma K, Rao K, Sharma A, Rathod GK, Aaghaz S, Sehra N, Parmar R, VanVeller B, Jain R. Unnatural Amino Acids: Strategies, Designs, and Applications in Medicinal Chemistry and Drug Discovery. J Med Chem 2024; 67:19932-19965. [PMID: 39527066 DOI: 10.1021/acs.jmedchem.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides can operate as therapeutic agents that sit within a privileged space between small molecules and larger biologics. Despite examples of their potential to regulate receptors and modulate disease pathways, the development of peptides with drug-like properties remains a challenge. In the quest to optimize physicochemical parameters and improve target selectivity, unnatural amino acids (UAAs) have emerged as critical tools in peptide- and peptidomimetic-based drugs. The utility of UAAs is illustrated by clinically approved drugs such as methyldopa, baclofen, and gabapentin in addition to small drug molecules, for example, bortezomib and sitagliptin. In this Perspective, we outline the strategy and deployment of UAAs in FDA-approved drugs and their targets. We further describe the modulation of the physicochemical properties in peptides using UAAs. Finally, we elucidate how these improved pharmacological parameters and the role played by UAAs impact the progress of analogs in preclinical stages with an emphasis on the role played by UAAs.
Collapse
Affiliation(s)
- Krishna K Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, Punjab 160 062, India
| |
Collapse
|
2
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
3
|
De Neve J, Breault É, Previti S, Vangeloven E, Loranger B, Chartier M, Brouillette R, Lanoie A, Holleran BJ, Longpré JM, Gendron L, Tourwé D, Sarret P, Ballet S. Design, Synthesis, and In Vitro Characterization of Proteolytically-Stable Opioid-Neurotensin Hybrid Peptidomimetics. ACS Pharmacol Transl Sci 2024; 7:2784-2798. [PMID: 39296263 PMCID: PMC11406707 DOI: 10.1021/acsptsci.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
Linking an opioid to a nonopioid pharmacophore represents a promising approach for reducing opioid-induced side effects during pain management. Herein, we describe the optimization of the previously reported opioid-neurotensin hybrids (OPNT-hybrids), SBL-OPNT-05 & -10, containing the μ-/δ-opioid agonist H-Dmt-d-Arg-Aba-β-Ala-NH2 and NT(8-13) analogs optimized for NTS2 affinity. In the present work, the constrained dipeptide Aba-β-Ala was modified to investigate the optimal linker length between the two pharmacophores, as well as the effect of expanding the aromatic moiety within constrained dipeptide analogs, via the inclusion of a naphthyl moiety. Additionally, the N-terminal Arg residue of the NT(8-13) pharmacophore was substituted with β3 hArg. For all analogs, affinity was determined at the MOP, DOP, NTS1, and NTS2 receptors. Several of the hybrid ligands showed a subnanomolar affinity for MOP, improved binding for DOP compared to SBL-OPNT-05 & -10, as well as an excellent NTS2-affinity with high selectivity over NTS1. Subsequently, the Gαi1 and β-arrestin-2 pathways were evaluated for all hybrids, along with their stability in rat plasma. Upon MOP activation, SBL-OPNT-13 and -18 were the least effective at recruiting β-arrestin-2 (E max = 17 and 12%, respectively), while both compounds were also found to be partial agonists at the Gαi1 pathway, despite improved potency compared to DAMGO. Importantly, these analogs also showed a half-life in rat plasma in excess of 48 h, making them valuable tools for future in vivo investigations.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Santo Previti
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Esaü Vangeloven
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bobbi Loranger
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Magali Chartier
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Rebecca Brouillette
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Annik Lanoie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Brian J Holleran
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Jean-Michel Longpré
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Louis Gendron
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Wang SY, Zhang YZ, Liu XH, Guo XC, Wang XF, Wang JR, Liu BJ, Han FT, Zhang Y, Wang CL. BNT12, a novel hybrid peptide of opioid and neurotensin pharmacophores, produces potent central antinociception with limited side effects. Eur J Pharmacol 2024; 978:176775. [PMID: 38925288 DOI: 10.1016/j.ejphar.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The development of multitarget opioid drugs has emerged as an attractive approach for innovative pain management with reduced side effects. In the present study, a novel hybrid peptide BNT12 containing the opioid and neurotensin (NT)-like fragments was synthesized and pharmacologically characterized. In acute radiant heat paw withdrawal test, intracerebroventricular (i.c.v.) administration of BNT12 produced potent antinociception in mice. The central antinociceptive activity of BNT12 was mainly mediated by μ-, δ-opioid receptor, neurotensin receptor type 1 (NTSR1) and 2 (NTSR2), supporting a multifunctional agonism of BNT12 in the functional assays. BNT12 also exhibited significant antinociceptive effects in spared nerve injury (SNI)-neuropathic pain, complete Freund's adjuvant (CFA)-induced inflammatory pain, acetic acid-induced visceral and formalin-induced pain after i.c.v. administration. Furthermore, BNT12 exhibited substantial reduction of acute antinociceptive tolerance, shifted the dose-response curve to the right by only 1.3-fold. It is noteworthy that BNT12 showed insignificant chronic antinociceptive tolerance at the supraspinal level. In addition, BNT12 exhibited reduced or no opioid-like side effects on conditioned place preference (CPP) response, naloxone-precipitated withdrawal response, acute hyperlocomotion, motor coordination, gastrointestinal transit, and cardiovascular responses. The present investigation demonstrated that the novel hybrid peptide BNT12 might serve as a promising analgesic candidate with limited opioid-like side effects.
Collapse
Affiliation(s)
- Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xiao-Han Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xue-Ci Guo
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | | | - Jia-Ran Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Bing-Jie Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
5
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Krstulović L, Rastija V, Pessanha de Carvalho L, Held J, Rajić Z, Živković Z, Bajić M, Glavaš-Obrovac L. Design, Synthesis, Antitumor, and Antiplasmodial Evaluation of New 7-Chloroquinoline-Benzimidazole Hybrids. Molecules 2024; 29:2997. [PMID: 38998949 PMCID: PMC11243327 DOI: 10.3390/molecules29132997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Newly synthesized 7-chloro-4-aminoquinoline-benzimidazole hybrids were characterized by NMR and elemental analysis. Compounds were tested for their effects on the growth of the non-tumor cell line MRC-5 (human fetal lung fibroblasts) and carcinoma (HeLa and CaCo-2), leukemia, and lymphoma (Hut78, THP-1, and HL-60) cell lines. The obtained results, expressed as the concentration at which 50% inhibition of cell growth is achieved (IC50 value), show that the tested compounds affect cell growth differently depending on the cell line and the applied dose (IC50 ranged from 0.2 to >100 µM). Also, the antiplasmodial activity of these hybrids was evaluated against two P. falciparum strains (Pf3D7 and PfDd2). The tested compounds showed potent antiplasmodial activity, against both strains, at nanomolar concentrations. Quantitative structure-activity relationship (QSAR) analysis resulted in predictive models for antiplasmodial activity against the 3D7 strain (R2 = 0.886; Rext2 = 0.937; F = 41.589) and Dd2 strain (R2 = 0.859; Rext2 = 0.878; F = 32.525) of P. falciparum. QSAR models identified the structural features of these favorable effects on antiplasmodial activities.
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia;
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia;
| | - Lais Pessanha de Carvalho
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstrasse 27, D-72074 Tuebingen, Germany; (L.P.d.C.); (J.H.)
| | - Jana Held
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstrasse 27, D-72074 Tuebingen, Germany; (L.P.d.C.); (J.H.)
- Partner Site Tuebingen, German Center for Infection Research (DZIF),Wilhelmstrasse 27, D-72074 Tuebingen, Germany
| | - Zrinka Rajić
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia;
| | - Zorislava Živković
- General County Hospital of Našice, Bana Jelačića 10, HR-31500 Našice, Croatia;
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia;
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| |
Collapse
|
7
|
De Neve J, Elhabazi K, Gonzalez S, Herby C, Schneider S, Utard V, Fellmann-Clauss R, Petit-Demouliere N, Lecat S, Kremer M, Ces A, Daubeuf F, Martin C, Ballet S, Bihel F, Simonin F. Multitarget μ-Opioid Receptor Agonists─Neuropeptide FF Receptor Antagonists Induce Potent Antinociception with Reduced Adverse Side Effects. J Med Chem 2024. [PMID: 38687204 DOI: 10.1021/acs.jmedchem.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The design of bifunctional compounds is a promising approach toward the development of strong analgesics with reduced side effects. We here report the optimization of the previously published lead peptide KGFF09, which contains opioid receptor agonist and neuropeptide FF receptor antagonist pharmacophores and is shown to induce potent antinociception and reduced side effects. We evaluated the novel hybrid peptides for their in vitro activity at MOP, NPFFR1, and NPFFR2 and selected four of them (DP08/14/32/50) for assessment of their acute antinociceptive activity in mice. We further selected DP32 and DP50 and observed that their antinociceptive activity is mostly peripherally mediated; they produced no respiratory depression, no hyperalgesia, significantly less tolerance, and strongly attenuated withdrawal syndrome, as compared to morphine and the recently FDA-approved TRV130. Overall, these data suggest that MOP agonist/NPFF receptor antagonist hybrids might represent an interesting strategy to develop novel analgesics with reduced side effects.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Simon Gonzalez
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Claire Herby
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Séverine Schneider
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Valérie Utard
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Rosine Fellmann-Clauss
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Nathalie Petit-Demouliere
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Mélanie Kremer
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), 67000 Strasbourg, France
| | - Aurelia Ces
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), 67000 Strasbourg, France
| | - François Daubeuf
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
8
|
Bodin S, Previti S, Jestin E, Vimont D, Ait-Arsa I, Lamare F, Rémond E, Hindié E, Cavelier F, Morgat C. Design, Synthesis, and Biological Evaluation of the First Radio-Metalated Neurotensin Analogue Targeting Neurotensin Receptor 2. ACS OMEGA 2023; 8:6994-7004. [PMID: 36844603 PMCID: PMC9948202 DOI: 10.1021/acsomega.2c07814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 05/28/2023]
Abstract
Neurotensin receptor 2 (NTS2) is a well-known mediator of central opioid-independent analgesia. Seminal studies have highlighted NTS2 overexpression in a variety of tumors including prostate cancer, pancreas adenocarcinoma, and breast cancer. Herein, we describe the first radiometalated neurotensin analogue targeting NTS2. JMV 7488 (DOTA-(βAla)2-Lys-Lys-Pro-(D)Trp-Ile-TMSAla-OH) was prepared using solid-phase peptide synthesis, then purified, radiolabeled with 68Ga and 111In, and investigated in vitro on HT-29 cells and MCF-7 cells, respectively, and in vivo on HT-29 xenografts. [68Ga]Ga-JMV 7488 and [111In]In-JMV 7488 were quite hydrophilic (logD7.4 = -3.1 ± 0.2 and -2.7 ± 0.2, respectively, p < 0.0001). Saturation binding studies showed good affinity toward NTS2 (K D = 38 ± 17 nM for [68Ga]Ga-JMV 7488 on HT-29 and 36 ± 10 nM on MCF-7 cells; K D = 36 ± 4 nM for [111In]In-JMV 7488 on HT-29 and 46 ± 1 nM on MCF-7 cells) and good selectivity (no NTS1 binding up to 500 nM). On cell-based evaluation, [68Ga]Ga-JMV 7488 and [111In]In-JMV 7488 showed high and fast NTS2-mediated internalization of 24 ± 5 and 25 ± 11% at 1 h for [111In]In-JMV 7488, respectively, along with low NTS2-membrane binding (<8%). Efflux was as high as 66 ± 9% at 45 min for [68Ga]Ga-JMV 7488 on HT-29 and increased for [111In]In-JMV 7488 up to 73 ± 16% on HT-29 and 78 ± 9% on MCF-7 cells at 2 h. Maximum intracellular calcium mobilization of JMV 7488 was 91 ± 11% to that of levocabastine, a known NTS2 agonist on HT-29 cells demonstrating the agonist behavior of JMV 7488. In nude mice bearing HT-29 xenograft, [68Ga]Ga-JMV 7488 showed a moderate but promising significant tumor uptake in biodistribution studies that competes well with other nonmetalated radiotracers targeting NTS2. Significant uptake was also depicted in lungs. Interestingly, mice prostate also demonstrated [68Ga]Ga-JMV 7488 uptake although the mechanism was not NTS2-mediated.
Collapse
Affiliation(s)
- Sacha Bodin
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Santo Previti
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Emmanuelle Jestin
- Cyclotron
Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, France
| | - Delphine Vimont
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Imade Ait-Arsa
- Cyclotron
Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, France
| | - Frédéric Lamare
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Emmanuelle Rémond
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Elif Hindié
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Institut
Universitaire de France, 1 rue Descartes, 75231 Paris, France
| | - Florine Cavelier
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Clément Morgat
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| |
Collapse
|
9
|
Previti S, Desgagné M, Tourwé D, Cavelier F, Sarret P, Ballet S. Opening the amino acid toolbox for peptide-based NTS2-selective ligands as promising lead compounds for pain management. J Pept Sci 2022; 29:e3471. [PMID: 36539999 DOI: 10.1002/psc.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Chronic pain is one of the most critical health issues worldwide. Despite considerable efforts to find therapeutic alternatives, opioid drugs remain the gold standard for pain management. The administration of μ-opioid receptor (MOR) agonists is associated with detrimental and limiting adverse effects. Overall, these adverse effects strongly overshadow the effectiveness of opioid therapy. In this context, the development of neurotensin (NT) ligands has shown to be a promising approach for the management of chronic and acute pain. NT exerts its opioid-independent analgesic effects through the binding of two G protein-coupled receptors (GPCRs), NTS1 and NTS2. In the last decades, modified NT analogues have been proven to provide potent analgesia in vivo. However, selective NTS1 and nonselective NTS1/NTS2 ligands cause antinociception associated with hypothermia and hypotension, whereas selective NTS2 ligands induce analgesia without altering the body temperature and blood pressure. In light of this, various structure-activity relationship (SAR) studies provided findings addressing the binding affinity of ligands towards NTS2. Herein, we comprehensively review peptide-based NTS2-selective ligands as a robust alternative for future pain management. Particular emphasis is placed on SAR studies governing the desired selectivity and associated in vivo results.
Collapse
Affiliation(s)
- Santo Previti
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Desgagné
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Dumitrascuta M, Martin C, Ballet S, Spetea M. Bifunctional Peptidomimetic G Protein-Biased Mu-Opioid Receptor Agonist and Neuropeptide FF Receptor Antagonist KGFF09 Shows Efficacy in Visceral Pain without Rewarding Effects after Subcutaneous Administration in Mice. Molecules 2022; 27:8785. [PMID: 36557917 PMCID: PMC9780937 DOI: 10.3390/molecules27248785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
There is still an unmet clinical need to develop new pharmaceuticals for effective and safe pain management. Current pharmacotherapy offers unsatisfactory solutions due to serious side effects related to the chronic use of opioid drugs. Prescription opioids produce analgesia through activation of the mu-opioid receptor (MOR) and are major contributors to the current opioid crisis. Multifunctional ligands possessing activity at more than one receptor represent a prominent therapeutic approach for the treatment of pain with fewer adverse effects. We recently reported on the design of a bifunctional MOR agonist/neuropeptide FF receptor (NPFFR) antagonist peptididomimetic, KGFF09 (H-Dmt-DArg-Aba-βAla-Bpa-Phe-NH2), and its antinociceptive effects after subcutaneous (s.c.) administration in acute and persistent pain in mice with reduced propensity for unwanted side effects. In this study, we further investigated the antinociceptive properties of KGFF09 in a mouse model of visceral pain after s.c. administration and the potential for opioid-related liabilities of rewarding and sedation/locomotor dysfunction following chronic treatment. KGFF09 produced a significant dose-dependent inhibition of the writhing behavior in the acetic acid-induced writhing assay with increased potency when compared to morphine. We also demonstrated the absence of harmful effects caused by typical MOR agonists, i.e., rewarding effects (conditioned-place preference test) and sedation/locomotor impairment (open-field test), at a dose shown to be highly effective in inhibiting pain behavior. Consequently, KGFF09 displayed a favorable benefit/side effect ratio regarding these opioid-related side effects compared to conventional opioid analgesics, such as morphine, underlining the development of dual MOR agonists/NPFFR antagonists as improved treatments for various pain conditions.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Charlotte Martin
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Zhuang T, Xiong J, Ren X, Liang L, Qi Z, Zhang S, Du W, Chen Y, Liu X, Zhang G. Benzylaminofentanyl derivates: Discovery of bifunctional μ opioid and σ1 receptor ligands as novel analgesics with reduced adverse effects. Eur J Med Chem 2022; 241:114649. [DOI: 10.1016/j.ejmech.2022.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/04/2022]
|
12
|
Previti S, Ettari R, Di Chio C, Ravichandran R, Bogacz M, Hellmich UA, Schirmeister T, Cosconati S, Zappalà M. Development of Reduced Peptide Bond Pseudopeptide Michael Acceptors for the Treatment of Human African Trypanosomiasis. Molecules 2022; 27:3765. [PMID: 35744891 PMCID: PMC9229991 DOI: 10.3390/molecules27123765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is an endemic protozoan disease widespread in the sub-Saharan region that is caused by T. b. gambiense and T. b. rhodesiense. The development of molecules targeting rhodesain, the main cysteine protease of T. b. rhodesiense, has led to a panel of inhibitors endowed with micro/sub-micromolar activity towards the protozoa. However, whilst impressive binding affinity against rhodesain has been observed, the limited selectivity towards the target still remains a hard challenge for the development of antitrypanosomal agents. In this paper, we report the synthesis, biological evaluation, as well as docking studies of a series of reduced peptide bond pseudopeptide Michael acceptors (SPR10-SPR19) as potential anti-HAT agents. The new molecules show Ki values in the low-micro/sub-micromolar range against rhodesain, coupled with k2nd values between 1314 and 6950 M-1 min-1. With a few exceptions, an appreciable selectivity over human cathepsin L was observed. In in vitro assays against T. b. brucei cultures, SPR16 and SPR18 exhibited single-digit micromolar activity against the protozoa, comparable to those reported for very potent rhodesain inhibitors, while no significant cytotoxicity up to 70 µM towards mammalian cells was observed. The discrepancy between rhodesain inhibition and the antitrypanosomal effect could suggest additional mechanisms of action. The biological characterization of peptide inhibitor SPR34 highlights the essential role played by the reduced bond for the antitrypanosomal effect. Overall, this series of molecules could represent the starting point for further investigations of reduced peptide bond-containing analogs as potential anti-HAT agents.
Collapse
Affiliation(s)
- Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Rahul Ravichandran
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (R.R.); (S.C.)
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany; (M.B.); (U.A.H.)
| | - Ute A. Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany; (M.B.); (U.A.H.)
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany;
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (R.R.); (S.C.)
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| |
Collapse
|
13
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
14
|
Lipiński PFJ, Matalińska J. Fentanyl Structure as a Scaffold for Opioid/Non-Opioid Multitarget Analgesics. Int J Mol Sci 2022; 23:ijms23052766. [PMID: 35269909 PMCID: PMC8910985 DOI: 10.3390/ijms23052766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the strategies in the search for safe and effective analgesic drugs is the design of multitarget analgesics. Such compounds are intended to have high affinity and activity at more than one molecular target involved in pain modulation. In the present contribution we summarize the attempts in which fentanyl or its substructures were used as a μ-opioid receptor pharmacophoric fragment and a scaffold to which fragments related to non-opioid receptors were attached. The non-opioid ‘second’ targets included proteins as diverse as imidazoline I2 binding sites, CB1 cannabinoid receptor, NK1 tachykinin receptor, D2 dopamine receptor, cyclooxygenases, fatty acid amide hydrolase and monoacylglycerol lipase and σ1 receptor. Reviewing the individual attempts, we outline the chemistry, the obtained pharmacological properties and structure-activity relationships. Finally, we discuss the possible directions for future work.
Collapse
|
15
|
Witkowska E, Godlewska M, Osiejuk J, Gątarz S, Wileńska B, Kosińska K, Starnowska-Sokół J, Piotrowska A, Lipiński PFJ, Matalińska J, Dyniewicz J, Halik PK, Gniazdowska E, Przewlocka B, Misicka A. Bifunctional Opioid/Melanocortin Peptidomimetics for Use in Neuropathic Pain: Variation in the Type and Length of the Linker Connecting the Two Pharmacophores. Int J Mol Sci 2022; 23:674. [PMID: 35054860 PMCID: PMC8775902 DOI: 10.3390/ijms23020674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/25/2023] Open
Abstract
Based on the mechanism of neuropathic pain induction, a new type of bifunctional hybrid peptidomimetics was obtained for potential use in this type of pain. Hybrids consist of two types of pharmacophores that are connected by different types of linkers. The first pharmacophore is an opioid agonist, and the second pharmacophore is an antagonist of the pronociceptive system, i.e., an antagonist of the melanocortin-4 receptor. The results of tests in acute and neuropathic pain models of the obtained compounds have shown that the type of linker used to connect pharmacophores had an effect on antinociceptive activity. Peptidomimetics containing longer flexible linkers were very effective at low doses in the neuropathic pain model. To elucidate the effect of linker lengths, two hybrids showing very high activity and two hybrids with lower activity were further tested for affinity for opioid (mu, delta) and melanocortin-4 receptors. Their complexes with the target receptors were also studied by molecular modelling. Our results do not show a simple relationship between linker length and affinity for particular receptor types but suggest that activity in neuropathic pain is related to a proper balance of receptor affinity rather than maximum binding to any or all of the target receptors.
Collapse
Affiliation(s)
- Ewa Witkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Magda Godlewska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Jowita Osiejuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Sandra Gątarz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Beata Wileńska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
- Biological and Chemical Research Centre, University of Warsaw, 101 Zwirki i Wigury St., 02-097 Warsaw, Poland
| | - Katarzyna Kosińska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Joanna Starnowska-Sokół
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland; (J.S.-S.); (A.P.); (B.P.)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland; (J.S.-S.); (A.P.); (B.P.)
| | - Piotr F. J. Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (P.F.J.L.); (J.M.); (J.D.)
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (P.F.J.L.); (J.M.); (J.D.)
| | - Jolanta Dyniewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (P.F.J.L.); (J.M.); (J.D.)
| | - Paweł K. Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland; (J.S.-S.); (A.P.); (B.P.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
- Biological and Chemical Research Centre, University of Warsaw, 101 Zwirki i Wigury St., 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Gadais C, Piekielna-Ciesielska J, De Neve J, Martin C, Janecka A, Ballet S. Harnessing the Anti-Nociceptive Potential of NK2 and NK3 Ligands in the Design of New Multifunctional μ/δ-Opioid Agonist-Neurokinin Antagonist Peptidomimetics. Molecules 2021; 26:molecules26175406. [PMID: 34500841 PMCID: PMC8434392 DOI: 10.3390/molecules26175406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic μ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual μ/δ opioid agonist H-Dmt-d-Arg-Aba-βAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range μ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (J.D.N.); (C.M.)
- Institut des Sciences Chimiques de Rennes, Equipe CORINT, UMR 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, CEDEX, 35043 Rennes, France
- Correspondence: (C.G.); (S.B.); Tel.: +32-2-6293-292 (S.B.)
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (J.P.-C.); (A.J.)
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (J.D.N.); (C.M.)
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (J.D.N.); (C.M.)
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (J.P.-C.); (A.J.)
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (J.D.N.); (C.M.)
- Correspondence: (C.G.); (S.B.); Tel.: +32-2-6293-292 (S.B.)
| |
Collapse
|
17
|
Xie TZ, Luo L, Zhao YL, Li H, Xiang ML, Qin XJ, He YJ, Zhu YY, Dai Z, Wang ZJ, Wei X, Liu YP, Zhao LX, Lai R, Luo XD. Steroidal Alkaloids with a Potent Analgesic Effect Based on N-type Calcium Channel Inhibition. Org Lett 2021; 24:467-471. [PMID: 34477387 DOI: 10.1021/acs.orglett.1c02853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Two distinctive alkaloids with 6/6/6/5/6/6 fused rings, in which a previously unidentified linkage of C-12/23 generates a rigid skeleton, resulting in a new subtype of steroidal alkaloid, were isolated from Veratrum grandiflorum. Compounds 1 and 2 showed potent analgesic effects in vivo, superior to the well-known analgesic, pethidine (Dolantin), likely by inhibiting CaV2.2 voltage-gated calcium channels.
Collapse
Affiliation(s)
- Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, P. R. China
| | - Mei-Ling Xiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan-Yan Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, P. R. China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
18
|
Cook DC, Goldstein PA. Non-canonical Molecular Targets for Novel Analgesics: Intracellular Calcium and HCN Channels. Curr Neuropharmacol 2021; 19:1937-1951. [PMID: 33463473 PMCID: PMC9185781 DOI: 10.2174/1570159x19666210119153047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pain is a prevalent biopsychosocial condition that poses a significant challenge to healthcare providers, contributes substantially to a disability, and is a major economic burden worldwide. An overreliance on opioid analgesics, which primarily target the μ-opioid receptor, has caused devastating morbidity and mortality in the form of misuse and overdose-related death. Thus, novel analgesic medications are needed that can effectively treat pain and provide an alternative to opioids. A variety of cellular ion channels contribute to nociception, the response of the sensory nervous system to a noxious stimulus that commonly leads to pain. Ion channels involved in nociception may provide a suitable target for pharmacologic modulation to achieve pain relief. This narrative review summarizes the evidence for two ion channels that merit consideration as targets for non-opioid pain medications: ryanodine receptors (RyRs), which are intracellular calcium channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which belong to the superfamily of voltage-gated K+ channels. The role of these channels in nociception and neuropathic pain is discussed and suitability as targets for novel analgesics and antihyperalgesics is considered.
Collapse
Affiliation(s)
- Daniel C. Cook
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
19
|
Matalińska J, Lipiński PFJ, Kosson P, Kosińska K, Misicka A. In Vivo, In Vitro and In Silico Studies of the Hybrid Compound AA3266, an Opioid Agonist/NK1R Antagonist with Selective Cytotoxicity. Int J Mol Sci 2020; 21:E7738. [PMID: 33086743 PMCID: PMC7588979 DOI: 10.3390/ijms21207738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
AA3266 is a hybrid compound consisting of opioid receptor agonist and neurokinin-1 receptor (NK1R) antagonist pharmacophores. It was designed with the desire to have an analgesic molecule with improved properties and auxiliary anticancer activity. Previously, the compound was found to exhibit high affinity for μ- and δ-opioid receptors, while moderate binding to NK1R. In the presented contribution, we report on a deeper investigation of this hybrid. In vivo, we have established that AA3266 has potent antinociceptive activity in acute pain model, comparable to that of morphine. Desirably, with prolonged administration, our hybrid induces less tolerance than morphine does. AA3266, contrary to morphine, does not cause development of constipation, which is one of the main undesirable effects of opioid use. In vitro, we have confirmed relatively strong cytotoxic activity on a few selected cancer cell lines, similar to or greater than that of a reference NK1R antagonist, aprepitant. Importantly, our compound affects normal cells to smaller extent what makes our compound more selective against cancer cells. In silico methods, including molecular docking, molecular dynamics simulations and fragment molecular orbital calculations, have been used to investigate the interactions of AA3266 with MOR and NK1R. Insights from these will guide structural optimization of opioid/antitachykinin hybrid compounds.
Collapse
Affiliation(s)
- Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (K.K.); (A.M.)
| | - Piotr F. J. Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (K.K.); (A.M.)
| | - Piotr Kosson
- Toxicology Research Laboratory, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Katarzyna Kosińska
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (K.K.); (A.M.)
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (K.K.); (A.M.)
| |
Collapse
|