1
|
Tan M, Yin Y, Chen W, Zhang J, Jin Y, Zhang Y, Zhang L, Jiang T, Jiang B, Li H. Trimetazidine attenuates Ischemia/Reperfusion-Induced myocardial ferroptosis by modulating the Sirt3/Nrf2-GSH system and reducing Oxidative/Nitrative stress. Biochem Pharmacol 2024; 229:116479. [PMID: 39134283 DOI: 10.1016/j.bcp.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Ferroptosis is a newly defined mode of cellular demise. The increasing investigation supports that ferroptosis is a crucial factor in the complex mechanisms of myocardial ischemia-reperfusion (I/R) injury. Hence, targeting ferroptosis is a novel strategy for treating myocardial injury. Although evidence suggests that trimetazidine (TMZ) is potentially efficacious against myocardial injury, the exact mechanism of this efficacy is yet to be fully elucidated. This study aimed to determine whether TMZ can act as a ferroptosis resistor and affect I/R-mediated myocardial injury. To this end, researchers have constructed in vitro and in vivo models of I/R using H9C2 cardiomyocytes, primary cardiomyocytes, and SD rats. Here, I/R mediated the onset of ferroptosis in vitro and in vivo, as reflected by excessive iron aggregation, GSH depletion, and the increase in lipid peroxidation. TMZ largely reversed this alteration and attenuated cardiomyocyte injury. Mechanistically, we found that TMZ upregulated the expression of Sirt3. Therefore, we used si-Sirt3 and 3-TYP to interfere with Sirt3 action in vitro and in vivo, respectively. Both si-Sirt3 and 3-TYP partly mitigated the inhibitory effect of TMZ on I/R-mediated ferroptosis and upregulated the expression of Nrf2 and its downstream target, GPX4-SLC7A11. These results indicate that TMZ attenuates I/R-mediated ferroptosis by activating the Sirt3-Nrf2/GPX4/SLC7A11 signaling pathway. Our study offers insights into the mechanism underlying the cardioprotective benefits of TMZ and establishes a groundwork for expanding its potential applications.
Collapse
Affiliation(s)
- Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Weixiang Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yue Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Lei Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Bin Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
2
|
Yang X, Ge G, Wang H, Liu T, Pan D, Zhao X, Chen X, Wang J, Zhang J, Zhang K, Yao D. Design, synthesis and biological evaluation of novel SIRT3 inhibitors targeting both NAD + and substrate binding sites for the treatment of acute myeloid leukemia. Eur J Med Chem 2024; 276:116689. [PMID: 39053191 DOI: 10.1016/j.ejmech.2024.116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Acute myeloid leukemia (AML) represents a highly malignant subtype of leukemia with limited therapeutic options. In this study, we propose a novel therapeutic strategy for treating AML by inhibiting SIRT3 to regulate mitochondrial metabolism network involved in energy metabolism and epigenetic modifications essential for AML survival. A series of thieno [3,2-d]pyrimidine-6-carboxamide derivatives were designed and synthesized by structure-based strategy, 17f was documented to be a potent and acceptable selective SIRT3 inhibitor with IC50 value of 0.043 μM and exhibited profound anti-proliferative activity in MOLM13, MV4-11, and HL-60 cells. Through CETSA assay and the degree of deacetylation of intracellular SIRT3 substrates, we confirmed that 17f could effectively bind and inhibit SIRT3 activity in AML cells. Mechanistically, 17f suppressed mitochondrial function, triggered the accumulation of ROS, and significantly inhibited the production of ATP in AML cells. With the breakdown of mitochondrial function, 17f eventually induced apoptosis of AML cells. In addition, 17f also showed excellent anti-AML potential in nude mouse tumor models of HL-60-Luc. Collectively, these results demonstrate that 17f is a potent and acceptable selective SIRT3 inhibitor with promising potential to treat AML.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Apoptosis/drug effects
- Binding Sites/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Design
- Drug Screening Assays, Antitumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Nude
- Molecular Structure
- NAD/metabolism
- Sirtuin 3/antagonists & inhibitors
- Sirtuin 3/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xuetao Yang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ge Ge
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Hailing Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Tianli Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Dabo Pan
- Department of Medical Technology, Qiandongnan Vocational & Technical College for Nationalities, Kaili, 556000, China
| | - Xi Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiya Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jinhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
3
|
Fan C, Lou S, Shen C, Liao J, Ni H, Chen S, Zhu Z, Hu X, Xie W, Zhao H, Cui S. Natural Product-Inspired Discovery of Naphthoquinone-Furo-Piperidine Derivatives as Novel STAT3 Inhibitors for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2024; 67:15291-15310. [PMID: 39226127 DOI: 10.1021/acs.jmedchem.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and STAT3 has emerged as an effective drug target for TNBC treatment. Herein, we employed a scaffold-hopping strategy of natural products to develop a series of naphthoquinone-furopiperidine derivatives as novel STAT3 inhibitors. The in vitro assay showed that compound 10g possessed higher antiproliferative activity than Cryptotanshinone and Napabucasin against TNBC cell lines, along with lower toxicity and potent antitumor activity in a TNBC xenograft model. Mechanistically, 10g could inhibit the phosphorylation of STAT3 and the binding affinity was determined by the SPR assay (KD = 8.30 μM). Molecule docking studies suggested a plausible binding mode between 10g and the SH2 domain, in which the piperidine fragment and the terminal hydroxy group of 10g played an important role in demonstrating the success of this evolution strategy. These findings provide a natural product-inspired novel STAT3 inhibitor for TNBC treatment.
Collapse
Affiliation(s)
- Chengcheng Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengying Lou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenjun Shen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jialing Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Ni
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2024. [PMID: 39215785 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
6
|
Peng F, Liao M, Jin W, Liu W, Li Z, Fan Z, Zou L, Chen S, Zhu L, Zhao Q, Zhan G, Ouyang L, Peng C, Han B, Zhang J, Fu L. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Signal Transduct Target Ther 2024; 9:133. [PMID: 38744811 PMCID: PMC11094072 DOI: 10.1038/s41392-024-01816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-β (TGF-β)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Liu
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhichao Fan
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Zou
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Ouyang
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Mou Y, Chen Y, Fan Z, Ye L, Hu B, Han B, Wang G. Discovery of a novel small-molecule activator of SIRT3 that inhibits cell proliferation and migration by apoptosis and autophagy-dependent cell death pathways in colorectal cancer. Bioorg Chem 2024; 146:107327. [PMID: 38579616 DOI: 10.1016/j.bioorg.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Colorectal cancer (CRC) is well known as a prevalent malignancy affecting the digestive tract, yet its precise etiological determinants remain to be elusive. Accordingly, identifying specific molecular targets for colorectal cancer and predicting potential malignant tumor behavior are potential strategies for therapeutic interventions. Of note, apoptosis (type I programmed cell death) has been widely reported to play a pivotal role in tumorigenesis by exerting a suppressive effect on cancer development. Moreover, autophagy-dependent cell death (type II programmed cell death) has been implicated in different types of human cancers. Thus, investigating the molecular mechanisms underlying apoptosis and autophagy-dependent cell death is paramount in treatment modalities of colorectal cancer. In this study, we uncovered that a new small-molecule activator of SIRT3, named MY-13, triggered both autophagy-dependent cell death and apoptosis by modulating the SIRT3/Hsp90/AKT signaling pathway. Consequently, this compound inhibited tumor cell proliferation and migration in RKO and HCT-116 cell lines. Moreover, we further demonstrated that the small-molecule activator significantly suppressed tumor growth in vivo. In conclusion, these findings demonstrate that the novel small-molecule activator of SIRT3 may hold a therapeutic potential as a drug candidate in colorectal cancer.
Collapse
Affiliation(s)
- Yi Mou
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yanmei Chen
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhichao Fan
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liansong Ye
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Bing Hu
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Guan Wang
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Ning Y, Dou X, Wang Z, Shi K, Wang Z, Ding C, Sang X, Zhong X, Shao M, Han X, Cao G. SIRT3: A potential therapeutic target for liver fibrosis. Pharmacol Ther 2024; 257:108639. [PMID: 38561088 DOI: 10.1016/j.pharmthera.2024.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Sirtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase located in the mitochondria, which mainly regulates the acetylation of mitochondrial proteins. In addition, SIRT3 is involved in critical biological processes, including oxidative stress, inflammation, DNA damage, and apoptosis, all of which are closely related to the progression of liver disease. Liver fibrosis characterized by the deposition of extracellular matrix is a result of long termed or repeated liver damage, frequently accompanied by damaged hepatocytes, the recruitment of inflammatory cells, and the activation of hepatic stellate cells. Based on the functions and pharmacology of SIRT3, we will review its roles in liver fibrosis from three aspects: First, the main functions and pharmacological effects of SIRT3 were investigated based on its structure. Second, the roles of SIRT3 in major cells in the liver were summarized to reveal its mechanism in developing liver fibrosis. Last, drugs that regulate SIRT3 to prevent and treat liver fibrosis were discussed. In conclusion, exploring the pharmacological effects of SIRT3, especially in the liver, may be a potential strategy for treating liver fibrosis.
Collapse
Affiliation(s)
- Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhichao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kao Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Zhong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiyu Shao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China; The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Bursch KL, Goetz CJ, Smith BC. Current Trends in Sirtuin Activator and Inhibitor Development. Molecules 2024; 29:1185. [PMID: 38474697 DOI: 10.3390/molecules29051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Sirtuins are NAD+-dependent protein deacylases and key metabolic regulators, coupling the cellular energy state with selective lysine deacylation to regulate many downstream cellular processes. Humans encode seven sirtuin isoforms (Sirt1-7) with diverse subcellular localization and deacylase targets. Sirtuins are considered protective anti-aging proteins since increased sirtuin activity is canonically associated with lifespan extension and decreased activity with developing aging-related diseases. However, sirtuins can also assume detrimental cellular roles where increased activity contributes to pathophysiology. Modulation of sirtuin activity by activators and inhibitors thus holds substantial potential for defining the cellular roles of sirtuins in health and disease and developing therapeutics. Instead of being comprehensive, this review discusses the well-characterized sirtuin activators and inhibitors available to date, particularly those with demonstrated selectivity, potency, and cellular activity. This review also provides recommendations regarding the best-in-class sirtuin activators and inhibitors for practical research as sirtuin modulator discovery and refinement evolve.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Tan M, Mao J, Zheng J, Meng Y, Li J, Hao J, Shen H. Mammalian STE20-like kinase 1 inhibits synoviocytes activation in rheumatoid arthritis through mitochondrial dysfunction mediated by SIRT3/mTOR axis. Inflamm Res 2024; 73:415-432. [PMID: 38265688 DOI: 10.1007/s00011-023-01846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Mammalian STE20-like kinase 1 (MST1) is involved in the occurrence of cancer and autoimmune diseases by regulating cell proliferation, differentiation, apoptosis and other functions. However, its role and downstream targets in rheumatoid arthritis (RA) remain unclear. METHODS The model of RA fibroblast-like synoviocytes (RA-FLSs) overexpressing MST1 was constructed by lentiviral transfection in vitro and analyzed the effects of MST1 on apoptosis, migration, invasion, and inflammation of RA-FLSs. The effect of MST1 on joint synovial membrane inflammation and bone destruction was observed in vivo by establishing a rat model of arthritis with complete Freund's adjuvant. RESULTS MST1 is down-regulated in RA-FLSs, and up-regulation of MST1 inhibits the survival, migration, invasion and inflammation of RA-FLSs. Mechanistically, MST1 inhibits SIRT3/mTOR-signaling pathway, inducing decreased mitochondrial autophagy and increased mitochondrial fission, resulting in mitochondrial morphological abnormalities and dysfunction, and ultimately increased apoptosis. We have observed that activation of MST1 alleviates synovial inflammation and bone erosion in vivo. CONCLUSIONS MST1 reduces the survival, migration, invasion and inflammation of FLSs by inhibiting the SIRT3/mTOR axis to reduce mitochondrial autophagy and promote mitochondrial division, thereby achieving the potential role of relieving rheumatoid arthritis.
Collapse
Affiliation(s)
- Min Tan
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jing Mao
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jianxiong Zheng
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yu Meng
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jun Li
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jiayao Hao
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China.
| |
Collapse
|
11
|
Lambona C, Zwergel C, Valente S, Mai A. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. J Med Chem 2024; 67:1662-1689. [PMID: 38261767 PMCID: PMC10859967 DOI: 10.1021/acs.jmedchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Sirtuins catalyze deacetylation of lysine residues with a NAD+-dependent mechanism. In mammals, the sirtuin family is composed of seven members, divided into four subclasses that differ in substrate specificity, subcellular localization, regulation, as well as interactions with other proteins, both within and outside the epigenetic field. Recently, much interest has been growing in SIRT3, which is mainly involved in regulating mitochondrial metabolism. Moreover, SIRT3 seems to be protective in diseases such as age-related, neurodegenerative, liver, kidney, heart, and metabolic ones, as well as in cancer. In most cases, activating SIRT3 could be a promising strategy to tackle these health problems. Here, we summarize the main biological functions, substrates, and interactors of SIRT3, as well as several molecules reported in the literature that are able to modulate SIRT3 activity. Among the activators, some derive from natural products, others from library screening, and others from the classical medicinal chemistry approach.
Collapse
Affiliation(s)
- Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Zhang J, Ye J, Zhu S, Han B, Liu B. Context-dependent role of SIRT3 in cancer. Trends Pharmacol Sci 2024; 45:173-190. [PMID: 38242748 DOI: 10.1016/j.tips.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Sirtuin 3 (SIRT3), an NAD+-dependent deacetylase, plays a key role in the modulation of metabolic reprogramming and regulation of cell death, as well as in shaping tumor phenotypes. Owing to its critical role in determining tumor-type specificity or the direction of tumor evolution, the development of small-molecule modulators of SIRT3, including inhibitors and activators, is of significant interest. In this review, we discuss recent studies on the oncogenic or tumor-suppressive functions of SIRT3, evaluate advances in SIRT3-targeted drug discovery, and present potential avenues for the design of small-molecule modulators of SIRT3 for cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiou Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Fan Z, Wan LX, Jiang W, Liu B, Wu D. Targeting autophagy with small-molecule activators for potential therapeutic purposes. Eur J Med Chem 2023; 260:115722. [PMID: 37595546 DOI: 10.1016/j.ejmech.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Autophagy is well-known to be a lysosome-mediated catabolic process for maintaining cellular and organismal homeostasis, which has been established with many links to a variety of human diseases. Compared with the therapeutic strategy for inhibiting autophagy, activating autophagy seems to be another promising therapeutic strategy in several contexts. Hitherto, mounting efforts have been made to discover potent and selective small-molecule activators of autophagy to potentially treat human diseases. Thus, in this perspective, we focus on summarizing the complicated relationships between defective autophagy and human diseases, and further discuss the updated progress of a series of small-molecule activators targeting autophagy in human diseases. Taken together, these inspiring findings would provide a clue on discovering more small-molecule activators of autophagy as targeted candidate drugs for potential therapeutic purposes.
Collapse
Affiliation(s)
- Zhichao Fan
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dongbo Wu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Fiorentino F, Mai A, Rotili D. The role of structural biology in the design of sirtuin activators. Curr Opin Struct Biol 2023; 82:102666. [PMID: 37542908 DOI: 10.1016/j.sbi.2023.102666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Sirtuins are NAD+-dependent protein lysine deacylases and mono-ADP-ribosylases whose activity regulates different pathways, including DNA damage repair, cell survival and metabolism, reactive oxygen species (ROS) detoxification, inflammation, cardiac function, and neuronal signaling. Considering the beneficial effects of specific sirtuin isoforms on health and lifespan, the past two decades have seen a mounting interest in the development of sirtuin activators. The availability of enzyme-activator co-crystal structures has proven significant throughout the years for elucidating the mechanisms of action of activators and designing more potent and selective molecules. In this review, we highlight the most interesting examples of sirtuin activators and provide comprehensive coverage of the role that structural biology played in their discovery and characterization.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
15
|
Arce-Ramos L, Castillo JC, Becerra D. Synthesis and Biological Studies of Benzo[ b]furan Derivatives: A Review from 2011 to 2022. Pharmaceuticals (Basel) 2023; 16:1265. [PMID: 37765074 PMCID: PMC10537293 DOI: 10.3390/ph16091265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The importance of the benzo[b]furan motif becomes evident in the remarkable results of numerous biological investigations, establishing its potential as a robust therapeutic option. This review presents an overview of the synthesis of and exhaustive biological studies conducted on benzo[b]furan derivatives from 2011 to 2022, accentuating their exceptional promise as anticancer, antibacterial, and antifungal agents. Initially, the discussion focuses on chemical synthesis, molecular docking simulations, and both in vitro and in vivo studies. Additionally, we provide an analysis of the intricate interplay between structure and activity, thereby facilitating comparisons and profoundly emphasizing the applications of the benzo[b]furan motif within the realms of drug discovery and medicinal chemistry.
Collapse
Affiliation(s)
| | - Juan-Carlos Castillo
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia;
| | - Diana Becerra
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia;
| |
Collapse
|
16
|
Liu Y, Zou Y, Huang Y, Chen S, Zhang L. Identification of Balanol As a Potential Inhibitor of PAK1 That Induces Apoptosis and Cytoprotective Autophagy in Colorectal Cancer Cells. ChemMedChem 2023; 18:e202300114. [PMID: 37323074 DOI: 10.1002/cmdc.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract, often accompanied by poor prognosis and high incidence and mortality. p21 activated kinases (PAKs) have been used as therapeutic targets because of their central role in many oncogenic signaling networks. By exploring tumor databases, we found that PAK1 overexpression is associated with poor prognosis in colorectal cancer, and therefore, PAK1-targeted inhibition is a new potential therapeutic strategy for colorectal cancer. We identified that Balanol (compound 6, DB04098) can effectively target PAK1 by high-throughput virtual screening. In vitro, compound 6 exhibited favorable PAK1 inhibition with potent anti-proliferative and anti-migration activity in SW480 cells. Additionally, we also found that compound 6 induced apoptosis and cytoprotective autophagy in SW480 cells. Together, these results indicate that compound 6 is a potential novel PAK1 inhibitor, which would be utilized as a candidate compound for future CRC treatment.
Collapse
Affiliation(s)
- Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yuling Zou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yunli Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| |
Collapse
|
17
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
18
|
Mizuguchi M, Yokoyama T, Okada T, Nakagawa Y, Fujii K, Nabeshima Y, Toyooka N. Benziodarone and 6-hydroxybenziodarone are potent and selective inhibitors of transthyretin amyloidogenesis. Bioorg Med Chem 2023; 90:117370. [PMID: 37311373 DOI: 10.1016/j.bmc.2023.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Transthyretin amyloidosis is a progressive systemic disorder that is caused by the amyloid deposition of transthyretin in various organs. Stabilization of the native transthyretin is an effective strategy for the treatment of transthyretin amyloidosis. In this study we demonstrate that the clinically used uricosuric agent benziodarone is highly effective to stabilize the tetrameric structure of transthyretin. An acid-induced aggregation assay showed that benziodarone had strong inhibitory activity similar to that of tafamidis, which is currently used as a therapeutic agent for transthyretin amyloidosis. Moreover, a possible metabolite, 6-hydroxybenziodarone, retained the strong amyloid inhibitory activity of benziodarone. An ex vivo competitive binding assay using a fluorogenic probe showed that benziodarone and 6-hydroxybenziodarone were highly potent for selective binding to transthyretin in human plasma. An X-ray crystal structure analysis revealed that the halogenated hydroxyphenyl ring was located at the entrance of the thyroxine binding channel of transthyretin and that the benzofuran ring was located in the inner channel. These studies suggest that benziodarone and 6-hydroxybenziodarone would potentially be effective against transthyretin amyloidosis.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| | - Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Yusuke Nakagawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Kanako Fujii
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
19
|
Yang Y, Jin Y, Yin L, Liu P, Zhu L, Gao H. Sertaconazole nitrate targets IDO1 and regulates the MAPK signaling pathway to induce autophagy and apoptosis in CRC cells. Eur J Pharmacol 2023; 942:175515. [PMID: 36669614 DOI: 10.1016/j.ejphar.2023.175515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Colorectal cancer (CRC) has become the third most frequently occurring malignant tumor worldwide. It is vital to identify novel, effective targeted treatments while considering side effects and drug resistance in the clinic. Recently, the tryptophan-metabolizing enzyme indole-2, 3-dioxygenase 1 (IDO1) has been widely reported to be overexpressed in CRC, indicating that blocking IDO1 with small-molecule inhibitors may be a promising approach to CRC treatment. In this study, the antifungal drug sertaconazole nitrate (STZ) was repurposed and showed antitumor activity, and therefore, its anticancer effect was further investigated in CRC cells. The SwissTargetPrediction analysis indicated that STZ binding to IDO1 was significantly and highly probable, and STZ was found to downregulate IDO1 in CRC cells in a dose-dependent manner. STZ exhibited considerable antiproliferative activity and induced apoptosis and autophagy in HCT116 and RKO cells. Moreover, based on an RNA-seq analysis, STZ was shown to regulate signal transducer and activator of transcription 3 (STAT3) and the mitogen-activated protein kinase (MAPK) signaling pathways. We discovered that STZ suppressed tumor growth in an HCT116 nude mouse xenograft tumor model without causing evident cytotoxicity. In conclusion, our results reveal that STZ induces antitumor effects in CRC by inhibiting IDO1-modulated autophagy and apoptosis, providing a clue for repurposing STZ as a novel and potentially effective candidate medication for the future treatment of CRC.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Jin
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
20
|
Feng Z, Chen J, Chen C, Feng L, Wang R, Zhu J, Lou R, Liu J, Ye Y, Lin L. Bioactivity-based molecular networking-guided identification of guttiferone J from Garcinia cambogia as an anti-obesity candidate. Br J Pharmacol 2023; 180:589-608. [PMID: 36321884 DOI: 10.1111/bph.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological intervention to induce browning of white adipose tissue provides a promising anti-obesity therapy. The fruits of Garcinia cambogia (Clusiaceae) have been widely applied to manage body weight; however, the chemical principles remain unclear. The current study aims to discover browning inducers from the fruits of G. cambogia and investigate the underlying mechanisms. EXPERIMENTAL APPROACH The bioactivity-based molecular networking and Oil Red O staining on 3T3-L1 and C3H10T1/2 adipocytes were applied for guided isolation. High-fat diet-induced obese mice were recruited to evaluate the anti-obesity activity. KEY RESULTS The bioactivity-based molecular networking-guided isolation yielded several polycyclic polyprenylated acylphloroglucinols from the fruits of G. cambogia with lipid-lowering effect in adipocytes, including guttiferone J (GOJ), garcinol and 14-deoxygarcinol. As the most potent one, GOJ (10 μM) reduced lipid accumulation by 70% and 76% in 3T3-L1 and C3H10T1/2 adipocytes, respectively. Furthermore, GOJ (2.5-10 μM) increased the expression of the deacetylase sirtuin 3 (SIRT3) and activated it, which, in turn, reduced the acetylation level of PPARγ coactivator-1α to boost mitochondrial biogenesis and promoted uncoupling protein 1 expression to enhance thermogenesis, resulting in browning of adipocytes. In high-fat diet-induced-obese mice, GOJ (10 and 20 mg·kg-1 ·day-1 for 12 weeks) protected against adiposity, hyperlipidaemia, insulin resistance and liver lipotoxicity, through boosting SIRT3-mediated browning of inguinal adipose tissue. CONCLUSION AND IMPLICATIONS GOJ represents a new scaffold of thermogenic inducer, which is responsible for the anti-obesity property of G. cambogia and can be further developed as a candidate for treating obesity and its related disorders.
Collapse
Affiliation(s)
- Zheling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Cheng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lu Feng
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rui Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jianzhong Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jia Liu
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
21
|
Shuai W, Bu F, Zhu Y, Wu Y, Xiao H, Pan X, Zhang J, Sun Q, Wang G, Ouyang L. Discovery of Novel Indazole Chemotypes as Isoform-Selective JNK3 Inhibitors for the Treatment of Parkinson's Disease. J Med Chem 2023; 66:1273-1300. [PMID: 36649216 DOI: 10.1021/acs.jmedchem.2c01410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the pathogenesis of various diseases. In particular, JNK3 and not JNK1/2 is primarily expressed in the brain and plays a key role in mediating neurodegenerative diseases like Parkinson's disease (PD). Due to the sequence similarity of JNK isoforms, developing isoform-selective JNK3 inhibitors to evaluate their biological functions and therapeutic potential in PD has become a challenge. Herein, docking-based virtual screening and structure-activity relationship studies identified 25c with excellent inhibitory activity against JNK3 (IC50 = 85.21 nM) and exhibited an over 100-fold isoform selectivity for JNK3 over JNK1/2 and remarkable kinase selectivity. 25c showed neuroprotective effects on in vitro and in vivo PD models by selectively inhibiting JNK3. Meanwhile, 25c showed an ideal blood-brain barrier permeability and low toxicity. Overall, this study provided a valuable molecular tool for investigating the role of JNK3 in PD and a solid foundation for developing JNK3-targeted drugs in PD treatment.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Teng M, Young DW, Tan Z. The Pursuit of Enzyme Activation: A Snapshot of the Gold Rush. J Med Chem 2022; 65:14289-14304. [PMID: 36265019 DOI: 10.1021/acs.jmedchem.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A range of enzymes drive human physiology, and their activities are tightly regulated through numerous signaling pathways. Depending on the context, these pathways may activate or inhibit an enzyme as a way to ensure proper execution of cellular functions. From a drug discovery and development perspective, pharmacological inhibition of enzymes has been a focus of interest, as many diseases are associated with the upregulation of enzyme function. On the other hand, however, pharmacological activation of enzymes such as kinases and phosphatases has been of increasing interest. In this review, we discuss seven case studies that highlight pharmacological activation strategy, describe the binding modes and pharmacology of the activators, and comment on how this on-demand activation strategy complements the commonly pursued inhibition strategy, thus jointly enabling bidirectional modulation of specific target of interest. Going forward, we expect activators to play important roles as chemical probes and drug leads.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Damian W Young
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
23
|
Liu SM, Zhang YR, Chen Y, Ji DR, Zhao J, Fu S, Jia MZ, Yu YR, Tang CS, Huang W, Zhou YB, Qi YF. Intermedin Alleviates Vascular Calcification in CKD through Sirtuin 3-Mediated Inhibition of Mitochondrial Oxidative Stress. Pharmaceuticals (Basel) 2022; 15:ph15101224. [PMID: 36297336 PMCID: PMC9608591 DOI: 10.3390/ph15101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Vascular calcification (VC) is a common pathophysiological process of chronic kidney disease (CKD). Sirtuin 3 (Sirt3), a major NAD+-dependent protein deacetylase predominantly in mitochondria, is involved in the pathogenesis of VC. We previously reported that intermedin (IMD) could protect against VC. In this study, we investigated whether IMD attenuates VC by Sirt3-mediated inhibition of mitochondrial oxidative stress. A rat VC with CKD model was induced by the 5/6 nephrectomy plus vitamin D3. Vascular smooth muscle cell (VSMC) calcification was induced by CaCl2 and β-glycerophosphate. IMD1-53 treatment attenuated VC in vitro and in vivo, rescued the depressed mitochondrial membrane potential (MMP) level and decreased mitochondrial ROS levels in calcified VSMCs. IMD1-53 treatment recovered the reduced protein level of Sirt3 in calcified rat aortas and VSMCs. Inhibition of VSMC calcification by IMD1-53 disappeared when the cells were Sirt3 absent or pretreated with the Sirt3 inhibitor 3-TYP. Furthermore, 3-TYP pretreatment blocked IMD1-53-mediated restoration of the MMP level and inhibition of mitochondrial oxidative stress in calcified VSMCs. The attenuation of VSMC calcification by IMD1-53 through upregulation of Sirt3 might be achieved through activation of the IMD receptor and post-receptor signaling pathway AMPK, as indicated by pretreatment with an IMD receptor antagonist or AMPK inhibitor blocking the inhibition of VSMC calcification and upregulation of Sirt3 by IMD1-53. AMPK inhibitor treatment reversed the effects of IMD1-53 on restoring the MMP level and inhibiting mitochondrial oxidative stress in calcified VSMCs. In conclusion, IMD attenuates VC by improving mitochondrial function and inhibiting mitochondrial oxidative stress through upregulating Sirt3.
Collapse
Affiliation(s)
- Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yao Chen
- Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Su Fu
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (Y.-B.Z.); (Y.-F.Q.)
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Correspondence: (Y.-B.Z.); (Y.-F.Q.)
| |
Collapse
|
24
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
25
|
Zhang H, Ma C, Peng M, Lv X, Xie X, Huang R. The prognostic implications of SIRTs expression in breast cancer: a systematic review and meta-analysis. Discov Oncol 2022; 13:69. [PMID: 35927590 PMCID: PMC9352848 DOI: 10.1007/s12672-022-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sirtuins (SIRTs) have key roles in cancer progression. However, the prognostic implications of SIRTs in breast cancer (BC) remains a subject of debate and controversy. Thus, we performed a meta-analysis to identify the precise prognostic value of SIRTs in BC patients. METHODS Systematic literature searching was conducted in PubMed, Cochrane Library, Web of Science, and Embase databases. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to estimate the association of SIRTs expression and survival outcomes in BC patients. RESULTS A total of 22 original studies with 6317 patients were eligible for this meta-analysis. The results showed that in patients with BC, elevated SIRTs levels were associated with shorter overall survival (OS) and disease-free survival (DFS) both in univariate (HR = 1.56, 95% CI 1.21-2.00; HR = 1.67, 95% CI 1.32-2.12, respectively) and multivariate analysis models (HR = 2.11, 95% CI 1.48-3.00; HR = 1.70, 95% CI 1.20-2.39, respectively). Notably, further subgroup analysis revealed that overexpression of SIRT1 and SIRT6 predicted poor OS (HR = 2.65, 95% CI 1.54-4.56; HR = 2.53, 95% CI 1.64-3.90, respectively) and DFS (HR = 1.65, 95% CI 1.07-2.56; HR = 2.74; 95% CI 1.88-4.01, respectively) in BC. CONCLUSIONS Our data has elucidated that SIRT1 and SIRT6 could serve as prognostic biomarkers for patients with BC and may contribute to refined patient management.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Chenyang Ma
- Department of Internal Medicine of Traditional Chinese Medicine, The Second People's Hospital of Xiaoshan District, Hangzhou, 310000, China
| | - Mingying Peng
- The First Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310000, China
| | - Xiaoai Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Run Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200000, China.
| |
Collapse
|
26
|
Yapryntseva MA, Maximchik PV, Zhivotovsky B, Gogvadze V. Mitochondrial sirtuin 3 and various cell death modalities. Front Cell Dev Biol 2022; 10:947357. [PMID: 35938164 PMCID: PMC9354933 DOI: 10.3389/fcell.2022.947357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuin 3, a member of the mammalian sirtuin family of proteins, is involved in the regulation of multiple processes in cells. It is a major mitochondrial NAD+-dependent deacetylase with a broad range of functions, such as regulation of oxidative stress, reprogramming of tumor cell energy pathways, and metabolic homeostasis. One of the intriguing functions of sirtuin 3 is the regulation of mitochondrial outer membrane permeabilization, a key step in apoptosis initiation/progression. Moreover, sirtuin 3 is involved in the execution of various cell death modalities, which makes sirtuin 3 a possible regulator of crosstalk between them. This review is focused on the role of sirtuin 3 as a target for tumor cell elimination and how mitochondria and reactive oxygen species (ROS) are implicated in this process.
Collapse
Affiliation(s)
| | - Polina V. Maximchik
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Vladimir Gogvadze
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
- *Correspondence: Vladimir Gogvadze,
| |
Collapse
|
27
|
Zhao Q, Zhou J, Li F, Guo S, Zhang L, Li J, Qi Q, Shi Y. The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance. Front Oncol 2022; 12:910963. [PMID: 35832551 PMCID: PMC9272524 DOI: 10.3389/fonc.2022.910963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Sirtuin 3 (SIRT3), the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, acts as a metabolic modulator mainly located in mitochondria via regulating the process of the relevant biochemical processes by targeting crucial mediators. Recently, owing to its dual role in cancer, SIRT3 has attracted extensive attention. Cancer cells have different metabolic patterns from normal cells, and SIRT3-mediated metabolism reprogramming could be critical in the cancer context, which is closely related to the mechanism of metabolism reprogramming, metastasis, and chemoresistance in tumor cells. Therefore, it is crucial to elucidate the relevant pathological mechanisms and take appropriate countermeasures for the progression of clinical strategies to inhibit the development of cancer. In this review, existing available data on the regulation of cancer metabolism reprogramming, metastasis, and chemoresistance progression of SIRT3 are detailed, as well as the status quo of SIRT3 small molecule modulators is updated in the application of cancer therapy, aiming to highlight strategies directly targeting SIRT3-mediated tumor-suppressing and tumor-promoting, and provide new approaches for therapy application. Furthermore, we offer an effective evidence-based basis for the evolvement of potential personalized therapy management strategies for SIRT3 in cancer settings.
Collapse
Affiliation(s)
- QingYi Zhao
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Guo
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| |
Collapse
|
28
|
Wang Z, Pan H, Sun H, Kang Y, Liu H, Cao D, Hou T. fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation. Brief Bioinform 2022; 23:6587180. [PMID: 35580866 DOI: 10.1093/bib/bbac201] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/12/2023] Open
Abstract
Predicting the native or near-native binding pose of a small molecule within a protein binding pocket is an extremely important task in structure-based drug design, especially in the hit-to-lead and lead optimization phases. In this study, fastDRH, a free and open accessed web server, was developed to predict and analyze protein-ligand complex structures. In fastDRH server, AutoDock Vina and AutoDock-GPU docking engines, structure-truncated MM/PB(GB)SA free energy calculation procedures and multiple poses based per-residue energy decomposition analysis were well integrated into a user-friendly and multifunctional online platform. Benefit from the modular architecture, users can flexibly use one or more of three features, including molecular docking, docking pose rescoring and hotspot residue prediction, to obtain the key information clearly based on a result analysis panel supported by 3Dmol.js and Apache ECharts. In terms of protein-ligand binding mode prediction, the integrated structure-truncated MM/PB(GB)SA rescoring procedures exhibit a success rate of >80% in benchmark, which is much better than the AutoDock Vina (~70%). For hotspot residue identification, our multiple poses based per-residue energy decomposition analysis strategy is a more reliable solution than the one using only a single pose, and the performance of our solution has been experimentally validated in several drug discovery projects. To summarize, the fastDRH server is a useful tool for predicting the ligand binding mode and the hotspot residue of protein for ligand binding. The fastDRH server is accessible free of charge at http://cadd.zju.edu.cn/fastdrh/.
Collapse
Affiliation(s)
- Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong Pan
- Day Surgery Center, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, SAR, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
29
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Honokiol attenuates lipotoxicity in hepatocytes via activating SIRT3-AMPK mediated lipophagy. Chin Med 2021; 16:115. [PMID: 34758848 PMCID: PMC8579168 DOI: 10.1186/s13020-021-00528-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is characterized by ectopic accumulation of triglycerides in the liver. Emerging evidence has demonstrated that lipophagy regulates lipid mobilization and energy homeostasis in the liver. Sirtuin 3 (SIRT3), a mitochondrial NAD+-dependent deacetylase, modulates the activities of several substrates involving in autophagy and energy metabolism. Honokiol (HK) is a natural lignan from the plants of Magnolia genus that exhibits potent liver protective property. Methods AML12 was challenged with 500 μM palmitic acid and 250 μM oleic acid mixture solution to induce lipotoxicity. C57BL/6J mice were fed with a choline-deficient high fat diet (CDHFD) to generate liver steatosis. The expression of autophagy-related and AMP-activated protein kinase (AMPK) pathway proteins was evaluated by Western blotting and immunofluorescence staining. Intracellular lipid accumulation was validated by Nile red staining. Molecular docking analysis was performed on AutoDock 4.2. Results HK (5 and 10 μM) was found to attenuate lipid accumulation through promoting SIRT3-AMPK-mediated autophagy, mainly on lipid droplets. HK had hydrophobic interaction with amino acid residues (PHE294, GLU323 and VAL324) and NAD+. Moreover, HK improved mitochondrial function to enhance lipolysis, through decreasing the acetylated long-chain acyl-CoA dehydrogenase level. In CDHFD-fed mice, HK (2.5 and 10 mg/Kg) treatment obviously prevented lipid accumulation in the liver. And co-treatment of the AMPK inhibitor, Compound C, almost abolished the above changes. Conclusions These results suggest that HK could ameliorate lipotoxicity in hepatocytes by activating SIRT3-AMPK-lipophagy axis, which might be a potential therapeutic agent against NAFLD.
Collapse
|