1
|
Nazir S, Khan AI, Maharjan R, Khan SN, Akram MA, Maresca M, Khan FA, Shaheen F. Synthesis of Temporin-SHa Retro Analogs with Lysine Addition/Substitution and Antibiotic Conjugation to Enhance Antibacterial, Antifungal, and Anticancer Activities. Antibiotics (Basel) 2024; 13:1213. [PMID: 39766603 PMCID: PMC11672801 DOI: 10.3390/antibiotics13121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
In the face of rising the threat of resistant pathogens, antimicrobial peptides (AMPs) offer a viable alternative to the current challenge due to their broad-spectrum activity. This study focuses on enhancing the efficacy of temporin-SHa derived NST-2 peptide (1), which is known for its antimicrobial and anticancer activities. We synthesized new analogs of 1 using three strategies, i.e., retro analog preparation, lysine addition/substitution, and levofloxacin conjugation. Analogs were tested in terms of their antibacterial, antifungal, and anticancer activities. Analog 2, corresponding to retro analog of NST-2, was found to be more active but also more hemolytic, reducing its selectivity index and therapeutic potential. The addition of lysine (in analog 3) and lysine substitution (in analog 7) reduced the hemolytic effect resulting in safer peptides. Conjugation with levofloxacin on the lysine side chain (in analogs 4 and 5) decreased the hemolytic effect but unfortunately also the antimicrobial and anticancer activities of the analogs. Oppositely, conjugation with levofloxacin at the N-terminus of the peptide via the β-alanine linker (in analogs 6 and 8) increased their antimicrobial and anticancer activity but also their hemolytic effect, resulting in less safe/selective analogs. In conclusion, lysine addition/substitution and levofloxacin conjugation, at least at the N-terminal position through the β-alanine linker, were found to enhance the therapeutic potential of retro analogs of NST-2 whereas other modifications decreased the activity or increased the toxicity of the peptides.
Collapse
Affiliation(s)
- Shahzad Nazir
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.N.); (A.I.K.); (R.M.); (S.N.K.); (M.A.A.); (F.-A.K.)
| | - Arif Iftikhar Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.N.); (A.I.K.); (R.M.); (S.N.K.); (M.A.A.); (F.-A.K.)
| | - Rukesh Maharjan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.N.); (A.I.K.); (R.M.); (S.N.K.); (M.A.A.); (F.-A.K.)
| | - Sadiq Noor Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.N.); (A.I.K.); (R.M.); (S.N.K.); (M.A.A.); (F.-A.K.)
| | - Muhammad Adnan Akram
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.N.); (A.I.K.); (R.M.); (S.N.K.); (M.A.A.); (F.-A.K.)
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13013 Marseille, France
| | - Farooq-Ahmad Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.N.); (A.I.K.); (R.M.); (S.N.K.); (M.A.A.); (F.-A.K.)
| | - Farzana Shaheen
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.N.); (A.I.K.); (R.M.); (S.N.K.); (M.A.A.); (F.-A.K.)
| |
Collapse
|
2
|
Cui G, Sun Y, Wang S, Meng F, Zhong Z. Muramyl Dipeptide-Presenting Polymersomes as Artificial Nanobacteria to Boost Systemic Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61655-61663. [PMID: 39498882 DOI: 10.1021/acsami.4c13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The clinical efficacy of cancer vaccines is closely related to immunoadjuvants that play a crucial role in magnifying and prolonging the immune response. Muramyl dipeptide (MDP), a minimal and conserved peptidoglycan found in almost all bacteria, can trigger robust immune activation by uniquely antagonizing the nucleotide-binding oligomerization domain 2 (NOD2) pathway. However, its effectiveness has been hindered by limited solubility, poor membrane penetration, and rapid clearance from the body. Here, we introduce MDP-presenting polymersomes as artificial nanobacteria (NBA) to boost the antitumor immune response. The NBA, featuring abundant MDP molecules, induces superior stimulation of immune cells including macrophages and bone marrow-derived dendritic cells (BMDCs) compared to free MDP, likely via facilitating immune cell uptake and cooperatively stimulating systemic NOD2 signaling. Importantly, systemic administration of NBA significantly enhances the chemo-immunotherapy of B16-F10 melanoma-bearing mice pretreated with doxorubicin by reversing the immunosuppressive tumor microenvironment. Furthermore, NBA carrying ovalbumin and B16-F10 cell lysates induces robust OVA-IgG antibody production and effectively inhibit tumor growth, respectively. The artificial nanobacteria hold great promise as a potent systemic immunoadjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Shenqiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
3
|
Janež Š, Guzelj S, Kocbek P, de Vlieger EA, Slütter B, Jakopin Ž. Distinctive Immune Signatures Driven by Structural Alterations in Desmuramylpeptide NOD2 Agonists. J Med Chem 2024; 67:17585-17607. [PMID: 39344184 PMCID: PMC11472310 DOI: 10.1021/acs.jmedchem.4c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Herein we report on the design, synthesis and biological evaluation of a series of nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) desmuramylpeptide agonists. The structural prerequisites that shape both physicochemical and immunomodulatory profiles of desmuramylpeptide NOD2 agonists have been delineated. Within this context, we identified 3, a butyrylated desmuramylpeptide, as a potent in vitro NOD2 agonist (EC50 = 4.6 nM), exhibiting an almost 17-fold enhancement in potency compared to its unsubstituted counterpart 1 (EC50 = 77.0 nM). The novel set of desmuramylpeptides demonstrate unique in vitro immunomodulatory activities. They elicited cytokine production in peripheral blood mononuclear cells (PBMCs), both alone and in conjunction with lipopolysaccharide (LPS). The spermine-decorated 32 also stimulated the LPS-induced cytotoxic activity (2.95-fold) of PBMCs against K562 cancer cells. Notably, the cholesterol-conjugate 26 displayed anti-inflammatory actions, highlighted by its capacity to convert the inflammatory monocyte subset into an anti-inflammatory phenotype. Finally, the eicosapentaenoylated derivative 23 augmented antigen presentation by mouse bone marrow-derived dendritic cells (BMDCs), thus highlighting its potential as a vaccine adjuvant.
Collapse
Affiliation(s)
- Špela Janež
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Samo Guzelj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Petra Kocbek
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Eveline A. de Vlieger
- Div.
BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Bram Slütter
- Div.
BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Žiga Jakopin
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Paurević M, Maršavelski A, Ivanković S, Stojković R, Ribić R. Di-mannosylation enhances the adjuvant properties of adamantane-containing desmuramyl peptides in vivo. Org Biomol Chem 2024; 22:6506-6519. [PMID: 38884368 DOI: 10.1039/d4ob00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Muramyl dipeptide (MDP) is the smallest essential peptidoglycan substructure capable of promoting both innate and adaptive immune responses. Herein, we report on the design, synthesis, and in vivo study of the adjuvant properties of two novel MDP analogs containing an achiral adamantyl moiety attached to the desmuramyl dipeptide (DMP) pharmacophore and additionally modified by one mannosyl subunit (derivative 7) or two mannosyl subunits (derivative 11). Mannose substructures were introduced in order to assess how the degree of mannosylation affects the immune response and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) binding affinity, compared to the reference compound ManAdDMP. Both mannosylated MDP analogs showed improved immunomodulating properties, while the di-mannosylated derivative 11 displayed the highest, statistically significant increase in anti-OVA IgG production. In this study, for the first time, the di-mannosylated DMP derivative was synthesized and immunologically evaluated. Derivative 11 stimulates a Th-2-polarized type of immune reaction, similar to the reference compound ManAdDMP and MDP. Molecular dynamics (MD) simulations demonstrate that 11 has a higher NOD2 binding affinity than 7, indicating that introducing the second mannose significantly contributes to the binding affinity. Mannose interacts with key amino acid residues from the LRR hydrophobic pocket of the NOD2 receptor and loop 2.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University Osijek, HR-31000 Osijek, Croatia.
| | - Aleksandra Maršavelski
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia.
| | - Siniša Ivanković
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia.
| | - Ranko Stojković
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia.
| | - Rosana Ribić
- University Center Varaždin, University North, HR-42000 Varaždin, Croatia.
| |
Collapse
|
5
|
Garcia-Vidal E, Calba I, Riveira-Muñoz E, García E, Clotet B, Serra-Mitjà P, Cabrera C, Ballana E, Badia R. Nucleotide-Binding Oligomerization Domain 1 (NOD1) Agonists Prevent SARS-CoV-2 Infection in Human Lung Epithelial Cells through Harnessing the Innate Immune Response. Int J Mol Sci 2024; 25:5318. [PMID: 38791357 PMCID: PMC11121681 DOI: 10.3390/ijms25105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The lung is prone to infections from respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). A challenge in combating these infections is the difficulty in targeting antiviral activity directly at the lung mucosal tract. Boosting the capability of the respiratory mucosa to trigger a potent immune response at the onset of infection could serve as a potential strategy for managing respiratory infections. This study focused on screening immunomodulators to enhance innate immune response in lung epithelial and immune cell models. Through testing various subfamilies and pathways of pattern recognition receptors (PRRs), the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family was found to selectively activate innate immunity in lung epithelial cells. Activation of NOD1 and dual NOD1/2 by the agonists TriDAP and M-TriDAP, respectively, increased the number of IL-8+ cells by engaging the NF-κB and interferon response pathways. Lung epithelial cells showed a stronger response to NOD1 and dual NOD1/2 agonists compared to control. Interestingly, a less-pronounced response to NOD1 agonists was noted in PBMCs, indicating a tissue-specific effect of NOD1 in lung epithelial cells without inducing widespread systemic activation. The specificity of the NOD agonist pathway was confirmed through gene silencing of NOD1 (siRNA) and selective NOD1 and dual NOD1/2 inhibitors in lung epithelial cells. Ultimately, activation induced by NOD1 and dual NOD1/2 agonists created an antiviral environment that hindered SARS-CoV-2 replication in vitro in lung epithelial cells.
Collapse
Affiliation(s)
| | - Ignasi Calba
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | | | | | - Bonaventura Clotet
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- University of Vic—Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Pere Serra-Mitjà
- Pulmonology and Allergy Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Barcelona, Spain;
| | - Cecilia Cabrera
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Ester Ballana
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Roger Badia
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
6
|
Kamboj A, Patil MT, Petrovsky N, Salunke DB. Structure-activity relationship in NOD2 agonistic muramyl dipeptides. Eur J Med Chem 2024; 271:116439. [PMID: 38691886 PMCID: PMC11099613 DOI: 10.1016/j.ejmech.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is a receptor of the innate immune system that is capable of perceiving bacterial and viral infections. Muramyl dipeptide (MDP, N-acetyl muramyl L-alanyl-d-isoglutamine), identified as the minimal immunologically active component of bacterial cell wall peptidoglycan (PGN) is recognized by NOD2. In terms of biological activities, MDP demonstrated vaccine adjuvant activity and stimulated non-specific protection against bacterial, viral, and parasitic infections and cancer. However, MDP has certain drawbacks including pyrogenicity, rapid elimination, and lack of oral bioavailability. Several detailed structure-activity relationship (SAR) studies around MDP scaffolds are being carried out to identify better NOD2 ligands. The present review elaborates a comprehensive SAR summarizing structural aspects of MDP derivatives in relation to NOD2 agonistic activity.
Collapse
Affiliation(s)
- Aarzoo Kamboj
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Madhuri T Patil
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh 160036, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Warradale, Australia; Australian Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia.
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
8
|
Griffin ME, Tsukidate T, Hang HC. N-Arylpyrazole NOD2 Agonists Promote Immune Checkpoint Inhibitor Therapy. ACS Chem Biol 2023; 18:1368-1377. [PMID: 37172210 PMCID: PMC10578902 DOI: 10.1021/acschembio.3c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The characterization of microbiota mechanisms in health and disease has reinvigorated pattern recognition receptors as prominent targets for immunotherapy. Notably, our recent studies on Enterococcus species revealed peptidoglycan remodeling and activation of NOD2 as key mechanisms for microbiota enhancement of immune checkpoint inhibitor therapy. Inspired by this work and other studies of NOD2 activation, we performed in silico ligand screening and developed N-arylpyrazole dipeptides as novel NOD2 agonists. Importantly, our N-arylpyrazole NOD2 agonist is enantiomer-specific and effective at promoting immune checkpoint inhibitor therapy and requires NOD2 for activity in vivo. Given the significant functions of NOD2 in innate and adaptive immunity, these next-generation agonists afford new therapeutic leads and adjuvants for a variety of NOD2-responsive diseases.
Collapse
Affiliation(s)
- Matthew E. Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
NOD2 Agonism Counter-Regulates Human Type 2 T Cell Functions in Peripheral Blood Mononuclear Cell Cultures: Implications for Atopic Dermatitis. Biomolecules 2023; 13:biom13020369. [PMID: 36830738 PMCID: PMC9953199 DOI: 10.3390/biom13020369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Atopic dermatitis (AD) is known as a skin disease; however, T cell immunopathology found in blood is associated with its severity. Skin Staphylococcus aureus (S. aureus) and associated host-pathogen dynamics are important to chronic T helper 2 (Th2)-dominated inflammation in AD, yet they remain poorly understood. This study sought to investigate the effects of S. aureus-derived molecules and skin alarmins on human peripheral blood mononuclear cells, specifically testing Th2-type cells, cytokines, and chemokines known to be associated with AD. We first show that six significantly elevated Th2-related chemokine biomarkers distinguish blood from adult AD patients compared to healthy controls ex vivo; in addition, TARC/CCL17, LDH, and PDGF-AA/AB correlated significantly with disease severity. We then demonstrate that these robust AD-associated biomarkers, as well as associated type 2 T cell functions, are readily reproduced from healthy blood mononuclear cells exposed to the alarmin TSLP and the S. aureus superantigen SEB in a human in vitro model, including IL-13, IL-5, and TARC secretion as well as OX-40-expressing activated memory T cells. We further show that the agonism of nucleotide-binding oligomerization domain-containing protein (NOD)2 inhibits this IL-13 secretion and memory Th2 and Tc2 cell functional activation while inducing significantly increased pSTAT3 and IL-6, both critical for Th17 cell responses. These findings identify NOD2 as a potential regulator of type 2 immune responses in humans and highlight its role as an endogenous inhibitor of pathogenic IL-13 that may open avenues for its therapeutic targeting in AD.
Collapse
|
10
|
Griffin ME, Tsukidate T, Hang HC. N -arylpyrazole NOD2 agonists promote immune checkpoint inhibitor therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525573. [PMID: 36747725 PMCID: PMC9901186 DOI: 10.1101/2023.01.26.525573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The characterization of microbiota mechanisms in health and disease has reinvigorated pattern recognition receptors as prominent targets for immunotherapy. Notably, our recent studies on Enterococcus species revealed peptidoglycan remodeling and activation of NOD2 as key mechanisms for microbiota enhancement of immune checkpoint inhibitor therapy. Inspired by this work and other studies of NOD2 activation, we performed in silico ligand screening and developed N -arylpyrazole dipeptides as novel NOD2 agonists. Importantly, our N -arylpyrazole NOD2 agonist is enantiomer-specific, effective at promoting immune checkpoint inhibitor therapy and requires NOD2 for activity in vivo . Given the significant functions of NOD2 in innate and adaptive immunity, these next-generation agonists afford new therapeutic leads and adjuvants for a variety of NOD2-responsive diseases.
Collapse
Affiliation(s)
- Matthew E. Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065
| | - Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
| |
Collapse
|
11
|
Guzelj S, Šišić M, Bizjak Š, Frkanec L, Frkanec R, Jakopin Ž. Lipidation of NOD2 Agonists with Adamantane and Stearoyl Moieties Differentially Regulates Their In Vivo Adjuvant Activity. Pharmaceutics 2022; 14:pharmaceutics14122755. [PMID: 36559249 PMCID: PMC9785857 DOI: 10.3390/pharmaceutics14122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
NOD2 is an innate immune receptor that constitutes an important target for the development of small molecule immunopotentiators with great potential to be used as vaccine adjuvants. We report here the results of an in vivo study of the adjuvant properties of a desmuramylpeptide NOD2 agonist SG29 and its lipidated analogs featuring an adamantyl moiety or a stearoyl group. These compounds have been synthesized, incorporated into liposomes, and evaluated for their in vivo adjuvant activity. The characterization of liposome formulations of examined compounds revealed that their size increased in comparison to that of empty liposomes. The introduction of a stearoyl or an adamantane lipophilic anchor into the structure of SG29, to produce SG115 and ZSB63, respectively, substantially improved the in vivo adjuvant activity. Of note, the attachment of the stearoyl moiety produced a Th2-biased immune response, while the incorporation of the adamantyl moiety greatly enhanced the production of total IgG but mostly augmented the production of IgG2a antibodies, which indicated a shift toward a Th1 immune response. The identified bona fide capacity of ZSB63 to initiate a cellular immune response thus highlights its untapped potential as an alternative vaccine adjuvant.
Collapse
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Marcela Šišić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Špela Bizjak
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Leo Frkanec
- Rudjer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruža Frkanec
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (R.F.); (Ž.J.)
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: (R.F.); (Ž.J.)
| |
Collapse
|
12
|
Lewicky JD, Martel AL, Fraleigh NL, Picard E, Mousavifar L, Nakamura A, Diaz-Mitoma F, Roy R, Le HT. Exploiting the DNA Damaging Activity of Liposomal Low Dose Cytarabine for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14122710. [PMID: 36559204 PMCID: PMC9782803 DOI: 10.3390/pharmaceutics14122710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Perhaps the greatest limitation for the continually advancing developments in cancer immunotherapy remains the immunosuppressive tumor microenvironment (TME). The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis is an emerging immunotherapy target, with the resulting type I interferons and transcription factors acting at several levels in both tumor and immune cells for the generation of adaptive T cell responses. The cGAS-STING axis activation by therapeutic agents that induce DNA damage, such as certain chemotherapies, continues to be reported, highlighting the importance of the interplay of this signaling pathway and the DNA damage response in cancer immunity/immunotherapy. We have developed a multi-targeted mannosylated cationic liposomal immunomodulatory system (DS) which contains low doses of the chemotherapeutic cytarabine (Ara-C). In this work, we show that entrapment of non-cytotoxic doses of Ara-C within the DS improves its ability to induce DNA double strand breaks in human ovarian and colorectal cancer cell lines, as well as in various immune cells. Importantly, for the first time we demonstrate that the DNA damage induced by Ara-C/DS translates into cGAS-STING axis activation. We further demonstrate that Ara-C/DS-mediated DNA damage leads to upregulation of surface expression of immune ligands on cancer cells, coinciding with priming of cytotoxic lymphocytes as assessed using an ex vivo model of peripheral blood mononuclear cells from colorectal cancer patients, as well as an in vitro NK cell model. Overall, the results highlight a broad immunotherapeutic potential for Ara-C/DS by enhancing tumor-directed inflammatory responses.
Collapse
Affiliation(s)
- Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Nya L. Fraleigh
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Emilie Picard
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
- Cancer Research Center of Lyon, 28 rue Laennec, 69008 Lyon, France
| | - Leila Mousavifar
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Arnaldo Nakamura
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Francisco Diaz-Mitoma
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
- Correspondence: (R.R.); (H.-T.L.)
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Correspondence: (R.R.); (H.-T.L.)
| |
Collapse
|
13
|
Iwicka E, Hajtuch J, Dzierzbicka K, Inkielewicz-Stepniak I. Muramyl dipeptide-based analogs as potential anticancer compounds: Strategies to improve selectivity, biocompatibility, and efficiency. Front Oncol 2022; 12:970967. [PMID: 36237313 PMCID: PMC9551026 DOI: 10.3389/fonc.2022.970967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
According to the WHO, cancer is the second leading cause of death in the world. This is an important global problem and a major challenge for researchers who have been trying to find an effective anticancer therapy. A large number of newly discovered compounds do not exert selective cytotoxic activity against tumorigenic cells and have too many side effects. Therefore, research on muramyl dipeptide (MDP) analogs has attracted interest due to the urgency for finding more efficient and safe treatments for oncological patients. MDP is a ligand of the cytosolic nucleotide-binding oligomerization domain 2 receptor (NOD2). This molecule is basic structural unit that is responsible for the immune activity of peptidoglycans and exhibits many features that are important for modern medicine. NOD2 is a component of the innate immune system and represents a promising target for enhancing the innate immune response as well as the immune response against cancer cells. For this reason, MDP and its analogs have been widely used for many years not only in the treatment of immunodeficiency diseases but also as adjuvants to support improved vaccine delivery, including for cancer treatment. Unfortunately, in most cases, both the MDP molecule and its synthesized analogs prove to be too pyrogenic and cause serious side effects during their use, which consequently exclude them from direct clinical application. Therefore, intensive research is underway to find analogs of the MDP molecule that will have better biocompatibility and greater effectiveness as anticancer agents and for adjuvant therapy. In this paper, we review the MDP analogs discovered in the last 10 years that show promise for antitumor therapy. The first part of the paper compiles the achievements in the field of anticancer vaccine adjuvant research, which is followed by a description of MDP analogs that exhibit promising anticancer and antiproliferative activity and their structural changes compared to the original MDP molecule.
Collapse
Affiliation(s)
- Eliza Iwicka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Justyna Hajtuch
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
- *Correspondence: Iwona Inkielewicz-Stepniak,
| |
Collapse
|
14
|
Synthesis and Immunological Evaluation of Mannosylated Desmuramyl Dipeptides Modified by Lipophilic Triazole Substituents. Int J Mol Sci 2022; 23:ijms23158628. [PMID: 35955759 PMCID: PMC9368957 DOI: 10.3390/ijms23158628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Muramyl dipeptide (N-acetylmuramyl-L-alanyl-D-isoglutamine, MDP) is the smallest peptidoglycan fragment able to trigger an immune response by activating the NOD2 receptor. Structural modification of MDP can lead to analogues with improved immunostimulating properties. The aim of this work was to prepare mannosylated desmuramyl peptides (ManDMP) containing lipophilic triazole substituents to study their immunomodulating activities in vivo. The adjuvant activity of the prepared compounds was evaluated in the mouse model using ovalbumin as an antigen and compared to the MDP and referent adjuvant ManDMPTAd. The obtained results confirm that the α-position of D-isoGln is the best position for the attachment of lipophilic substituents, especially adamantylethyl triazole. Compound 6c exhibited the strongest adjuvant activity, comparable to the MDP and better than referent ManDMPTAd.
Collapse
|
15
|
Novel Scaffolds for Modulation of NOD2 Identified by Pharmacophore-Based Virtual Screening. Biomolecules 2022; 12:biom12081054. [PMID: 36008948 PMCID: PMC9405794 DOI: 10.3390/biom12081054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an innate immune pattern recognition receptor responsible for the recognition of bacterial peptidoglycan fragments. Given its central role in the formation of innate and adaptive immune responses, NOD2 represents a valuable target for modulation with agonists and antagonists. A major challenge in the discovery of novel small-molecule NOD2 modulators is the lack of a co-crystallized complex with a ligand, which has limited previous progress to ligand-based design approaches and high-throughput screening campaigns. To that end, a hybrid docking and pharmacophore modeling approach was used to identify key interactions between NOD2 ligands and residues in the putative ligand-binding site. Following docking of previously reported NOD2 ligands to a homology model of human NOD2, a structure-based pharmacophore model was created and used to virtually screen a library of commercially available compounds. Two compounds, 1 and 3, identified as hits by the pharmacophore model, exhibited NOD2 antagonist activity and are the first small-molecule NOD2 modulators identified by virtual screening to date. The newly identified NOD2 antagonist scaffolds represent valuable starting points for further optimization.
Collapse
|
16
|
Guzelj S, Bizjak Š, Jakopin Ž. Discovery of Desmuramylpeptide NOD2 Agonists with Single-Digit Nanomolar Potency. ACS Med Chem Lett 2022; 13:1270-1277. [PMID: 35978688 PMCID: PMC9377006 DOI: 10.1021/acsmedchemlett.2c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Špela Bizjak
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Khan F, Khanam R, Wasim Qasim M, Wang Y, Jiang Z. Improved Synthesis of D‐Isoglutamine: Rapid Access to Desmuramyl Analogues of Muramyl Dipeptide for the Activation of Intracellular NOD2 Receptor and Vaccine Adjuvant Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Farooq‐Ahmad Khan
- Third World Center (TWC) for Chemical Sciences International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
| | - Rahila Khanam
- Third World Center (TWC) for Chemical Sciences International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
| | - Muhammad Wasim Qasim
- Third World Center (TWC) for Chemical Sciences International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
| | - Yan Wang
- H.E.J. Research Institute of Chemistry International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
| | - Zi‐Hua Jiang
- Department of Chemistry Lakehead University 955 Oliver Rd Thunder Bay Ontario P7B 5E1 Canada
| |
Collapse
|