1
|
Huang WJ, Pannecouque C, De Clercq E, Corona A, Maloccu S, Tramontano E, Wang S, Chen FE. Expanding the Solvent/Protein Region Occupation of the Non-Nucleoside Reverse Transcriptase Inhibitor Binding Pocket for Improved Broad-Spectrum Anti-HIV-1 Efficacy: from Rigid Phenyl-Diarylpyrimidines to Flexible Hydrophilic Piperidine-Diarylpyrimidines. J Med Chem 2024; 67:19889-19904. [PMID: 39498544 DOI: 10.1021/acs.jmedchem.4c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Considering the nonideal antiresistance efficacy of our previously reported non-nucleoside reverse transcriptase inhibitor 7, a series of novel piperidine-diarylpyrimidine derivatives were designed through expanding solvent/protein region occupation. The representative compound 15f proved to be exceptionally potent against Y188L (EC50 = 23 nM), F227L + V106A (EC50 = 15 nM) and RES056 (EC50 = 45 nM), significantly better than 7. This analog exerted strong inhibition against wild-type HIV-1 (EC50 = 3 nM) and single mutant strains (L100I, K103N, Y181C, E138 K). Notably, its cytotoxicity and selectivity (CC50 = 18.23 μM, SI = 6537) were 4-fold better than etravirine and rilpivirine. Additionally, it exhibited minimal suppression of CYP isoenzymes and hERG, indicating low potential for drug-drug interactions and cardiotoxicity. No significant acute toxicity and tissue damage at a dose of 2 g/kg were revealed. These findings lay the groundwork for the advancement of 15f as a highly potent, safe, and broad-spectrum NNRTI for HIV therapy.
Collapse
Affiliation(s)
- Wen-Juan Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Angela Corona
- Dept Appl Sci Biosyst, University of Cagliari, I-09042 Monserrato, Italy
| | - Stefania Maloccu
- Dept Appl Sci Biosyst, University of Cagliari, I-09042 Monserrato, Italy
| | - Enzo Tramontano
- Dept Appl Sci Biosyst, University of Cagliari, I-09042 Monserrato, Italy
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- School of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
2
|
Jing L, Wu G, Zhao F, Jiang X, Liu N, Feng D, Sun Y, Zhang T, De Clercq E, Pannecouque C, Kang D, Liu X, Zhan P. Discovery of potent HIV-1 NNRTIs by CuAAC click-chemistry-based miniaturized synthesis, rapid screening and structure optimization. Eur J Med Chem 2024; 277:116772. [PMID: 39167895 DOI: 10.1016/j.ejmech.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
In addressing the urgent need for novel HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) to combat drug resistance, we employed CuAAC click chemistry to construct a diverse 312-member diarylpyrimidine (DAPY) derivative library. This rapid synthesis approach facilitated the identification of A6N36, demonstrating exceptional HIV-1 RT inhibitory activity. Moreover, it was demonstrated with EC50 values of 1.8-8.7 nM for mutant strains L100I, K103 N, Y181C, and E138K, being equipotent or superior to that of ETR. However, A6N36's efficacy was compromised against specific resistant strains (Y188L, F227L + V106A and RES056), highlighting a need for further optimization. Through scaffold hopping, we optimized this lead to develop 10c, which exhibited broad-spectrum activity with EC50 values ranging from 3.2 to 57.5 nM and superior water solubility. Molecular docking underscored the key interactions of 10c within the NNIBP. Our findings present 10c as a promising NNRTI lead, illustrating the power of click chemistry and rational design in combatting HIV-1 resistance.
Collapse
Affiliation(s)
- Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Na Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, B-3000, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Knockenhauer KE, Copeland RA. The importance of binding kinetics and drug-target residence time in pharmacology. Br J Pharmacol 2024; 181:4103-4116. [PMID: 37160660 DOI: 10.1111/bph.16104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
A dominant assumption in pharmacology throughout the 20th century has been that in vivo target occupancy-and attendant pharmacodynamics-depends on the systemic concentration of drug relative to the equilibrium dissociation constant for the drug-target complex. In turn, the duration of pharmacodynamics is temporally linked to the systemic pharmacokinetics of the drug. Yet, there are many examples of drugs for which pharmacodynamic effect endures long after the systemic concentration of a drug has waned to (equilibrium) insignificant levels. To reconcile such data, the drug-target residence time model was formulated, positing that it is the lifetime (or residence time) of the binary drug-target complex, and not its equilibrium affinity per se, that determines the extent and duration of drug pharmacodynamics. Here, we review this model, its evolution over time, and its applications to natural ligand-macromolecule biology and synthetic drug-target pharmacology.
Collapse
|
4
|
Huang WJ, Pannecouque C, De Clercq E, Wang S, Chen FE. Fragment Addition-Based Design of Heteroaromatic-Biphenyl-DAPYs as Potent and Orally Available Non-nucleoside Reverse Transcriptase Inhibitors Featuring Significantly Enhanced Safety. J Med Chem 2024; 67:17568-17584. [PMID: 39352547 DOI: 10.1021/acs.jmedchem.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Our previously disclosed biphenyl-DAPY 3 emerged as a potent inhibitor against WT HIV-1 and various mutant strains. Yet, its journey toward clinical application was thwarted by pronounced cytotoxicity and low selectivity (CC50 = 6 μM, SI = 3515). The safety improvement approach we employed in this work entailed the incorporation of diverse heteroaromatic substituents at the C5 position to exploit the tolerant regions of the NNRTIs' binding pocket through fragment addition-based drug design strategy, ultimately leading to the identification of a series of novel heteroaromatic-biphenyl-DAPYs. The exemplary compound 10d revealed a striking reduction in cytotoxicity (CC50 > 272.81 μM), nearly 45.5 times lower than 3, while showcasing 15-fold increase in selectivity (SI > 52632). This analog sustained exceptional anti-HIV-1 activity against both WT HIV-1 (EC50 = 5 nM) and various mutant strains. Compared to 3, a markedly slower rate of metabolism in human liver microsomes of 10d was observed. Its pharmacokinetic profile was equally captivating, featuring excellent oral bioavailability (F = 57.4%). Moreover, 10d exhibited a delicate sensitivity toward CYP, minimal inhibition of hERG, and no detectable acute toxicity in vivo. These enchanting findings illuminated the potential of 10d as a promising candidate for HIV-1 therapy.
Collapse
Affiliation(s)
- Wen-Juan Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
5
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2024. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Orleanska J, Wiecek W, Majzner K. Investigation of etravirine uptake and distribution in single aortic endothelial cells in vitro using Raman imaging. Analyst 2024; 149:4454-4463. [PMID: 39022813 DOI: 10.1039/d4an00314d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Etravirine (ETV) is an antiretroviral agent that belongs to the class of non-nucleoside reverse transcriptase inhibitors. This study explores the uptake and distribution of ETV in human aortic endothelial cells (HAECs) using Raman spectroscopy combined with chemometrics. The distinctive chemical structure of ETV facilitates tracking of its uptake by observing the Raman band at 2225 cm-1 in the Raman-silent region. The perinuclear distribution pattern in HAECs depends on drug concentration and incubation time. The uptake of ETV is observed within 5 minutes at a concentration of 10 μM, as evidenced by Raman images. Lower ETV concentrations, reflective of those found in human plasma, are detectable in HAECs by applying chemometric methods to Raman spectra from the perinuclear region. The ETV accumulation process is crucial in advancing our understanding of the drug's impact on biochemical alterations within endothelial cells. Additionally, ETV emerges as a promising Raman reporter for marking subcellular compartments, leveraging the 2225 cm-1 band in the cellular Raman silent region. This research contributes valuable insights into the behavior of ETV at the subcellular level, shedding light on its potential applications and impact on subcellular dynamics.
Collapse
Affiliation(s)
- Jagoda Orleanska
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2 St, 30-387 Krakow, Poland.
- Jagiellonian University in Krakow, Doctoral School of Exact and Natural Sciences, Prof. St. Lojasiewicza St 11, 30-348 Krakow, Poland
- Jagiellonian University in Krakow, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego St 14, 30-348 Krakow, Poland
| | - Wiktoria Wiecek
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2 St, 30-387 Krakow, Poland.
| | - Katarzyna Majzner
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2 St, 30-387 Krakow, Poland.
| |
Collapse
|
7
|
Wang Z, Wang W, Gao Z, Gao H, Clercq ED, Pannecouque C, Chen CH, Kang D, Zhan P, Liu X. Structure-based design, synthesis, and biological characterization of indolylarylsulfone derivatives as novel human immunodeficiency virus type 1 inhibitors with potent antiviral activities and favorable drug-like profiles. J Med Virol 2024; 96:e29830. [PMID: 39072764 DOI: 10.1002/jmv.29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
In the current antiretroviral landscape, continuous efforts are still needed to search for novel chemotypes of human immunodeficiency virus type 1 (HIV-1) inhibitors with improved drug resistance profiles and favorable drug-like properties. Herein, we report the design, synthesis, biological characterization, and druggability evaluation of a class of non-nucleoside reverse transcriptase inhibitors. Guided by the available crystallographic information, a series of novel indolylarylsulfone derivatives were rationally discovered via the substituent decorating strategy to fully explore the chemical space of the entrance channel. Among them, compound 11h bearing the cyano-substituted benzyl moiety proved to be the most effective inhibitor against HIV-1 wild-type and mutant strains (EC50 = 0.0039-0.338 μM), being far more potent than or comparable to etravirine and doravirine. Besides, 11h did not exhibit cytotoxicity at the maximum test concentration. Meanwhile, the binding target of 11h was further confirmed to be reverse transcriptase (IC50 = 0.055 μM). Preliminary structure-activity relationship were discussed to guide further optimization work. Molecular docking and dynamics simulation studies were investigated in detail to rationalize the biological evaluation results. Further drug-likeness assessment indicated that 11h possessed excellent physicochemical properties. Moreover, no apparent hERG blockade liability and cytochrome P450 inhibition were observed for 11h. Notably, 11h was characterized by favorable in vitro metabolic stability with moderate clearance rates and long half-lives in human plasma and liver microsomes. Overall, 11h holds great promise as an ideal Anti-HIV-1 lead compound due to its potent antiviral efficacy, low toxicity, and favorable drug-like profiles.
Collapse
Affiliation(s)
- Zhao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, China
| | - Wenbo Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen Gao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huizhan Gao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | - Chin-Ho Chen
- Surgical Oncology Research Facility, Duke University Medical Center, Durham, North Carolina, USA
| | - Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
8
|
Shen C, Song J, Hsieh CY, Cao D, Kang Y, Ye W, Wu Z, Wang J, Zhang O, Zhang X, Zeng H, Cai H, Chen Y, Chen L, Luo H, Zhao X, Jian T, Chen T, Jiang D, Wang M, Ye Q, Wu J, Du H, Shi H, Deng Y, Hou T. DrugFlow: An AI-Driven One-Stop Platform for Innovative Drug Discovery. J Chem Inf Model 2024; 64:5381-5391. [PMID: 38920405 DOI: 10.1021/acs.jcim.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Artificial intelligence (AI)-aided drug design has demonstrated unprecedented effects on modern drug discovery, but there is still an urgent need for user-friendly interfaces that bridge the gap between these sophisticated tools and scientists, particularly those who are less computer savvy. Herein, we present DrugFlow, an AI-driven one-stop platform that offers a clean, convenient, and cloud-based interface to streamline early drug discovery workflows. By seamlessly integrating a range of innovative AI algorithms, covering molecular docking, quantitative structure-activity relationship modeling, molecular generation, ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction, and virtual screening, DrugFlow can offer effective AI solutions for almost all crucial stages in early drug discovery, including hit identification and hit/lead optimization. We hope that the platform can provide sufficiently valuable guidance to aid real-word drug design and discovery. The platform is available at https://drugflow.com.
Collapse
Affiliation(s)
- Chao Shen
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jianfei Song
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Chang-Yu Hsieh
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410004, Hunan, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenling Ye
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Odin Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hao Zeng
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Heng Cai
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Yu Chen
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Linkang Chen
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Hao Luo
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Xinda Zhao
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Tianye Jian
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Tong Chen
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Mingyang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qing Ye
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jialu Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hui Shi
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Yafeng Deng
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tingjun Hou
- Hangzhou Carbonsilicon AI Technology Co., Ltd., Hangzhou 310018, Zhejiang, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
9
|
Sun Y, Zhou Z, Shi Z, Zhao F, Xie M, Zhuo Z, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Design and optimization of piperidine-substituted thiophene[3,2- d]pyrimidine-based HIV-1 NNRTIs with improved drug resistance and pharmacokinetic profiles. Acta Pharm Sin B 2024; 14:3110-3124. [PMID: 39027243 PMCID: PMC11252457 DOI: 10.1016/j.apsb.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 07/20/2024] Open
Abstract
HIV-1 reverse transcriptase (RT) has received great attention as an attractive therapeutic target for acquired immune deficiency syndrome (AIDS), but the inevitable drug resistance and side effects have always been major challenges faced by non-nucleoside reverse transcriptase inhibitors (NNRTIs). This work aimed to identify novel chemotypes of anti-HIV-1 agents with improved drug-resistance profiles, reduced toxicity, and excellent druggability. A series of diarylpyrimidine (DAPY) derivatives were prepared via structural modifications of the leads K-5a2 and 25a. Among them, 15a with dimethylphosphine oxide moiety showed the most prominent antiviral potency against all of the tested viral panel, being 1.6-fold (WT, EC50 = 1.75 nmol/L), 3.0-fold (L100I, EC50 = 2.84 nmol/L), 2.4-fold (K103N, EC50 = 1.27 nmol/L), 3.3-fold (Y181C, EC50 = 5.38 nmol/L), 2.9-fold (Y188L, EC50 = 7.96 nmol/L), 2.5-fold (E138K, EC50 = 4.28 nmol/L), 4.8-fold (F227L/V106A, EC50 = 3.76 nmol/L) and 5.3-fold (RES056, EC50 = 15.8 nmol/L) more effective than that of the marketed drug ETR. Molecular docking results illustrated the detailed interactions formed by compound 15a and WT, F227L/V106A, and RES056 RT. Moreover, 15a·HCl carried outstanding pharmacokinetic (t 1/2 = 1.32 h, F = 40.8%) and safety profiles (LD50 > 2000 mg/kg), which demonstrated that 15a HCl is a potential anti-HIV-1 drug candidate.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhongling Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zongji Zhuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| |
Collapse
|
10
|
Ma S, Damfo S, Bowler MW, Mykhaylyk V, Kozielski F. High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms. Acta Crystallogr D Struct Biol 2024; 80:451-463. [PMID: 38841886 PMCID: PMC11154595 DOI: 10.1107/s2059798324004480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.
Collapse
Affiliation(s)
- Shumeng Ma
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Shymaa Damfo
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Mounawarah 30078, Saudi Arabia
| | | | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Frank Kozielski
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
11
|
Niu ZX, Hu J, Sun JF, Wang YT. Fluorine in the pharmaceutical industry: Synthetic approaches and application of clinically approved fluorine-enriched anti-infectious medications. Eur J Med Chem 2024; 271:116446. [PMID: 38678824 DOI: 10.1016/j.ejmech.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The strategic integration of fluorine atoms into anti-infectious agents has become a cornerstone in the field of medicinal chemistry, owing to the unique influence of fluorine on the chemical and biological properties of pharmaceuticals. This review examines the synthetic methodologies that enable the incorporation of fluorine into anti-infectious drugs, and the resultant clinical applications of these fluorine-enriched compounds. With a focus on clinically approved medications, the discussion extends to the molecular mechanisms. It further outlines the specific effects of fluorination, which contribute to the heightened efficacy of anti-infective therapies. By presenting a comprehensive analysis of current drugs and their developmental pathways, this review underscores the continuing evolution and significance of fluorine in advancing anti-infectious treatment options. The insights offered extend valuable guidance for future drug design and the development of next-generation anti-infectious agents.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jing Hu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin,133002, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Sun Y, Zhou Z, Wang N, Zhao F, Liu Y, Xu X, Wang X, Gou Z, De Clercq E, Pannecouque C, Zhan P, Kang D, Liu X. Discovery of Novel Aryl Triazolone Dihydropyridines (ATDPs) Targeting Highly Conserved Residue W229 as Promising HIV-1 NNRTIs. J Med Chem 2024; 67:6570-6584. [PMID: 38613773 DOI: 10.1021/acs.jmedchem.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
NNRTI is an important component of the highly active antiretroviral therapy (HAART), but the rapid emergence of drug resistance and poor pharmacokinetics limited their clinical application. Herein, a series of novel aryl triazolone dihydropyridines (ATDPs) were designed by structure-guided design with the aim of improving drug resistance profiles and pharmacokinetic profiles. Compound 10n (EC50 = 0.009-17.7 μM) exhibited the most active potency, being superior to or comparable to that of doravirine (DOR) against the whole tested viral panel. Molecular docking was performed to clarify the reason for its higher resistance profiles. Moreover, 10n demonstrated excellent pharmacokinetic profile (T1/2 = 5.09 h, F = 108.96%) compared that of DOR (T1/2 = 4.4 h, F = 57%). Additionally, 10n was also verified to have no in vivo acute or subacute toxicity (LD50 > 2000 mg/kg), suggesting that 10n is worth further investigation as a novel oral NNRTIs for HIV-1 therapy.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
| | - Na Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
| | - Ying Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
| | - Xiaoxuan Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
| | - Xiaohan Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
| | - Zhenbang Gou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, P.R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road ,Jinan ,Shandong 250012, P.R. China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, P.R. China
| |
Collapse
|
13
|
Sever B, Otsuka M, Fujita M, Ciftci H. A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication. Int J Mol Sci 2024; 25:3659. [PMID: 38612471 PMCID: PMC11012182 DOI: 10.3390/ijms25073659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Bioengineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye
| |
Collapse
|
14
|
Wang Z, Zhang H, Gao Z, Sang Z, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Structure-based design and optimization lead to the identification of novel dihydrothiopyrano[3,2- d]pyrimidine derivatives as potent HIV-1 inhibitors against drug-resistant variants. Acta Pharm Sin B 2024; 14:1257-1282. [PMID: 38486991 PMCID: PMC10935503 DOI: 10.1016/j.apsb.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
With our continuous endeavors in seeking potent anti-HIV-1 agents, we reported here the discovery, biological characterization, and druggability evaluation of a class of nonnucleoside reverse transcriptase inhibitors. To fully explore the chemical space of the NNRTI-binding pocket, novel series of dihydrothiopyrano [3,2-d]pyrimidines were developed by employing the structure-based design strategy. Most of the derivatives were endowed with prominent antiviral activities against HIV-1 wild-type and resistant strains at nanomolar levels. Among them, compound 23h featuring the aminopiperidine moiety was identified as the most potent inhibitor, with EC50 values ranging from 3.43 to 21.4 nmol/L. Especially, for the challenging double-mutants F227L + V106A and K103N + Y181C, 23h exhibited 2.3- to 14.5-fold more potent activity than the first-line drugs efavirenz and etravirine. Besides, the resistance profiles of 23h achieved remarkable improvement compared to efavirenz and etravirine. The binding target of 23h was further confirmed to be HIV-1 reverse transcriptase. Molecular modeling studies were also performed to elucidate the biological evaluation results and give guidance for the optimization campaign. Furthermore, no apparent inhibition of the major CYP450 enzymes and hERG channel was observed for 23h. Most importantly, 23h was characterized by good pharmacokinetic properties and excellent safety in vivo. Collectively, 23h holds great promise as a potential candidate for its effective antiviral efficacy and favorable drug-like profiles.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zihao Sang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| |
Collapse
|
15
|
Xie M, Wang Z, Zhao F, Li Y, Zhuo Z, Li X, De Clercq E, Pannecouque C, Zhan P, Liu X, Kang D. Structure-based design of diarylpyrimidines and triarylpyrimidines as potent HIV-1 NNRTIs with improved metabolic stability and drug resistance profiles. J Med Virol 2024; 96:e29502. [PMID: 38450817 DOI: 10.1002/jmv.29502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of anti-acquired immunodeficiency syndrome treatment regimen. In the present work, with the previously reported compound K-16c as lead, a series of novel 2,4,5-trisubstituted pyrimidine derivatives were designed based on the cocrystal structure of K-16c/RT, with the aim to improve the anti-human immunodeficiency virus type-1 (HIV-1) activities and metabolic stability properties. Compound 11b1 exhibited the most potent antiviral activity against wild-type (WT) and a panel of single mutant HIV-1 strains (EC50 = 2.4-12.4 nM), being superior to or comparable to those of the approved drug etravirine. Meanwhile, 11b1 exhibited moderate cytotoxicity (CC50 = 4.96 μM) and high selectivity index (SI = 1189) toward HIV-1 WT strain. As for HIV-1 RT inhibition test, 11b1 possessed excellent inhibitory potency (IC50 = 0.04 μM) and confirmed its target was RT. Moreover, the molecular dynamics simulation was performed to elucidate the improved drug resistance profiles. Moreover, 11b1 was demonstrated with favorable safety profiles and pharmacokinetic properties in vivo, indicating that 11b1 is a potential anti-HIV-1 drug candidate worthy of further development.
Collapse
Affiliation(s)
- Minghui Xie
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Fabao Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ye Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongji Zhuo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Leuven, Belgium
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
16
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Khalifa Z, Patel AB. Tri-substituted 1,3,5-triazine-based analogs as effective HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs): A systematic review. Drug Dev Res 2024; 85:e22154. [PMID: 38349259 DOI: 10.1002/ddr.22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/15/2024]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have significantly impacted the HIV-1 wild-type due to their high specificity and superior potency. As well as different combinations of NNRTIs have been used on clinically approved combining highly active antiretroviral therapy (HAART) to resist the growth of HIV-1 and decrease the mortality rate of HIV/AIDS. Although the feeble strength against the drug-resistant mutant strains and the long-term damaging effects have been reducing the effectiveness of HAART, it could be a crucial challenge to develop novel Anti-HIV leads with a vital mode of action and the least side effects. The extensive chemical reactivity and the diverse chemotherapeutic applications of the 1,3,5-triazine have provided a wide scope of research in medicinal chemistry via a structural modification. In this review, we focused on the Anti-HIV profile of the tri-substituted s-triazine derivatives with structure-based features and also discussed the active mode of action to evaluate the significant findings. The tri-substituted 1,3,5-triazine derivatives have been found more promising to inhibit the growth of the drug-sensitive and drug-resistant variants of HIV-1, especially HIV-1 wild-type, HIV-1 K103N/Y181C, and HIV-1 Tyr181Cys. It has been observed that these derivatives have interacted with the enzyme protein residues via a significantπ $\pi $ -π $\pi $ interaction and hydrogen bonding to resist the proliferation of the viral genomes. Further, the SAR and the active binding modes are critically described and highlight the role of structural variations with functional groups along with the binding affinity of targeted enzymes, which may be beneficial for rational drug discovery to develop highly dynamic Anti-HIV agents.
Collapse
Affiliation(s)
- Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
18
|
Sun Y, Feng D, Zhou Z, Zhang T, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. In situ click chemistry-based discovery of 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs by exploiting the tolerant region I in binding pocket. Bioorg Med Chem 2023; 96:117484. [PMID: 37976805 DOI: 10.1016/j.bmc.2023.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023]
Abstract
HIV-1 reverse transcriptase (RT) is considered as one of the most significant targets for the anti-HIV-1 drug design due to their determined mechanism and well-decoded crystal structure. As a part of our continuous efforts towards the development of potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) by exploiting the tolerant region I of NNRTIs binding pocket (NNIBP), the miniaturized parallel synthesis via CuAAC click chemistry reaction followed by in situ biological screening have been performed in this work. The in situ enzyme inhibition screening results showed that 14 compounds exhibited higher or equivalent inhibitory activity compared to the lead K-5a2 and ETR. Anti-HIV-1 activity results indicated that C1N51 displayed the most potent activity (EC50 = 0.01-0.26 μM) against wild-type and a panel of NNRTIs-resistant strains. Moreover, the molecular simulation demonstrated that the newly introduced triazole ring could develop new hydrogen bonds with Lys103 and Pro236, which explained the feasibility of introducing triazole in the tolerant region I of the RT binding pocket.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, PR China.
| |
Collapse
|
19
|
Sun L, Nie P, Luan L, Herdewijn P, Wang YT. Synthetic approaches and application of clinically approved small-molecule Anti-HIV drugs: An update. Eur J Med Chem 2023; 261:115847. [PMID: 37801826 DOI: 10.1016/j.ejmech.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Application of chemotherapeutic agents to inhibit the HIV replication process has brought about a significant metamorphosis in the landscape of AIDS. Substantial declines in morbidity and mortality rates have been attained, accompanied by notable decreases in healthcare resource utilization. However, treatment modalities do not uniformly inhibit HIV replication in every patient, while the emergence of drug-resistant viral strains poses a substantial obstacle to subsequent therapeutic interventions. Furthermore, chronic administration of therapy may lead to the manifestation of toxicities. These challenges necessitate the exploration of novel pharmacological agents and innovative therapeutic approaches aimed at effectively managing the persistent viral replication characteristic of chronic infection. This review examines the role of clinically approved small-molecule drugs in the treatment of HIV/AIDS, which provides an in-depth analysis of the major classes of small-molecule drugs, including nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), integrase inhibitors, entry inhibitors, and pharmacokinetic enhancers. The review mainly discusses the application, synthetic routes, and mechanisms of action of small-molecule drugs employed in the treatment of HIV, as well as their use in combination with antiretroviral therapy, presenting viewpoints on forthcoming avenues in the development of novel anti-HIV drugs.
Collapse
Affiliation(s)
- Lu Sun
- Zhongshan Hospital Affiliated to Dalian University, Dalian, 116001, China
| | - Peng Nie
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Li Luan
- Zhongshan Hospital Affiliated to Dalian University, Dalian, 116001, China.
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
20
|
Zhao LM, Pannecouque C, Clercq ED, Wang S, Chen FE. Structure-based design of novel heterocycle-substituted ATDP analogs as non-nucleoside reverse transcriptase inhibitors with improved selectivity and solubility. Acta Pharm Sin B 2023; 13:4906-4917. [PMID: 38045058 PMCID: PMC10692386 DOI: 10.1016/j.apsb.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/10/2023] [Accepted: 07/11/2023] [Indexed: 12/05/2023] Open
Abstract
Following on our recently developed biphenyl-ATDP non-nucleoside reverse transcriptase inhibitor ZLM-66 (SI = 2019.80, S = 1.9 μg/mL), a series of novel heterocycle-substituted ATDP derivatives with significantly improved selectivity and solubility were identified by replacement of the biphenyl moiety of ZLM-66 with heterocyclic group with lower lipophilicity. Evidently, the representative analog 7w in this series exhibited dramatically enhanced selectivity and solubility (SI = 12,497.73, S = 4472 μg/mL) in comparison with ZLM-66 (SI = 2019.80, S = 1.9 μg/mL). This new NNRTI conferred low nanomolar inhibition of wild-type HIV-1 strain and tested mutant strains (K103N, L100I, Y181C, E138K, and K103N + Y181C). The analog also demonstrated favorable safety and pharmacokinetic profiles, as evidenced by its insensitivity to CYP and hERG, lack of mortality and pathological damage, and good oral bioavailability in rats (F = 27.1%). Further development of 7w for HIV therapy will be facilitated by this valuable information.
Collapse
Affiliation(s)
- Li-Min Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanbian University, Yanji 133002, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven B-3000, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanbian University, Yanji 133002, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
21
|
Zhou RL, Pannecouque C, De Clercq E, Wang S, Chen FE. Development of novel HEPT analogs featuring significantly improved anti-resistance potency against HIV-1 through chemical space exploration of the tolerant region I. Bioorg Chem 2023; 140:106783. [PMID: 37595396 DOI: 10.1016/j.bioorg.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Our recent great interest in developing 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) analogs for HIV therapy identified a potent non-nucleoside reverse transcriptase inhibitor (NNRTI) 3 (EC50 = 0.01681 μM), but its therapeutic efficacy was limited by its poor anti-resistance potency. This prompted us to search for potential HEPT analogs with broad-spectrum activities, leading to the generation of a series of novel HEPT analogs through exploring the chemical space of the solvent - protein interface. Encouraging improvements in anti-resistance efficacy were observed in some of these analogs, with the most promising compound 7 g being 3 to 26 - fold more potent than 3 against five mutant strains (E138K, Y181C, L100I, K103N, and Y188L). This analog surpassed the activity and selectivity of compound 3 by approximately 2-fold (EC50 = 0.007468 μM, SI = 4260). Furthermore, it was found to demonstrate feeble inhibition of CYP and hERG in vitro, and no in vivo acute toxicity. This study will further enrich the structure-activity relationships (SARs) of the HEPT scaffold, providing new guidance for the development of NNRTIs.
Collapse
Affiliation(s)
- Ruo-Lan Zhou
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China; Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China; Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
22
|
Zhang X, Sun L, Xu S, Huang T, Zhao F, Ding D, Liu C, Jiang X, Tao Y, Kang D, De Clercq E, Pannecouque C, Cocklin S, Dick A, Liu X, Zhan P. Design, synthesis, and mechanistic study of 2-piperazineone-bearing peptidomimetics as novel HIV capsid modulators. RSC Med Chem 2023; 14:1272-1295. [PMID: 37484571 PMCID: PMC10357934 DOI: 10.1039/d3md00134b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/29/2023] [Indexed: 07/25/2023] Open
Abstract
HIV-1 capsid (CA) is an attractive target for its indispensable roles in the viral life cycle. We report the design, synthesis, and mechanistic study of a novel series of 2-piperazineone peptidomimetics as HIV capsid modulators by mimicking the structure of host factors binding to CA. F-Id-3o was the most potent compound from the synthesized series, with an anti-HIV-1 EC50 value of 6.0 μM. However, this series of compounds showed a preference for HIV-2 inhibitory activity, in which Id-3o revealed an EC50 value of 2.5 μM (anti-HIV-2 potency), an improvement over PF74. Interestingly, F-Id-3o did bind HIV-1 CA monomers and hexamers with comparable affinity, unlike PF74, consequently showing antiviral activity in the early and late stages of the HIV-1 lifecycle. Molecular dynamics simulations shed light on F-Id-3o and Id-3o binding modes within the HIV-1/2 CA protein and provide a possible explanation for the increased anti-HIV-2 potency. Metabolic stability assays in human plasma and human liver microsomes indicated that although F-Id-3o has enhanced metabolic stability over PF74, further optimization is necessary. Moreover, we utilized computational prediction of drug-like properties and metabolic stability of F-Id-3o and PF74, which correlated well with experimentally derived metabolic stability, providing an efficient computational pipeline for future preselection based on metabolic stability prediction. Overall, the 2-piperazineone-bearing peptidomimetics are a promising new chemotype in the CA modulators class with considerable optimization potential.
Collapse
Affiliation(s)
- Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
- Department of Pharmacy, Qilu Hospital of Shandong University 107 West Culture Road Jinan 250012 Shandong PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven Herestraat 49 Postbus 1043 (09.A097) 3000 Leuven Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven Herestraat 49 Postbus 1043 (09.A097) 3000 Leuven Belgium
| | - Simon Cocklin
- Specifica, Inc. 1607 Alcaldesa Street Santa Fe NM 87501 USA
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine Philadelphia Pennsylvania, PA 19102 USA
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| |
Collapse
|
23
|
Han S, Lu Y. Fluorine in anti-HIV drugs approved by FDA from 1981 to 2023. Eur J Med Chem 2023; 258:115586. [PMID: 37393791 DOI: 10.1016/j.ejmech.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Human immunodeficiency virus (HIV) is the etiological agent of acquired immunodeficiency syndrome (AIDS). Nowadays, FDA has approved over thirty antiretroviral drugs grouped in six categories. Interestingly, one-third of these drugs contain different number of fluorine atoms. The introduction of fluorine to obtain drug-like compounds is a well-accepted strategy in medicinal chemistry. In this review, we summarized 11 fluorine-containing anti-HIV drugs, focusing on their efficacy, resistance, safety, and specific roles of fluorine in the development of each drug. These examples may be of help for the discovery of new drug candidates bearing fluorine in their structures.
Collapse
Affiliation(s)
- Sheng Han
- School of Medicine, Shanghai University, Shanghai, China.
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, China; Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
24
|
Hu S, Chen J, Cao JX, Zhang SS, Gu SX, Chen FE. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg Chem 2023; 136:106549. [PMID: 37119785 DOI: 10.1016/j.bioorg.2023.106549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.
Collapse
Affiliation(s)
- Sha Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiong Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xu Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fen-Er Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
25
|
Carter ZJ, Hollander K, Spasov KA, Anderson KS, Jorgensen WL. Design, synthesis, and biological testing of biphenylmethyloxazole inhibitors targeting HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2023; 84:129216. [PMID: 36871704 PMCID: PMC10278203 DOI: 10.1016/j.bmcl.2023.129216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
We report non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) using a biphenylmethyloxazole pharmacophore. A crystal structure of benzyloxazole 1 was obtained and suggested the potential viability of biphenyl analogues. In particular, 6a, 6b, and 7 turned out to be potent NNRTIs with low-nanomolar activity in enzyme inhibition and infected T-cell assays, and with low cytotoxicity. Though modeling further suggested that analogues with fluorosulfate and epoxide warheads might provide covalent modification of Tyr188, synthesis and testing did not find evidence for this outcome.
Collapse
Affiliation(s)
- Zachary J Carter
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Klarissa Hollander
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Krasimir A Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| | | |
Collapse
|
26
|
Structure-directed expansion of biphenyl-pyridone derivatives as potent non-nucleoside reverse transcriptase inhibitors with significantly improved potency and safety. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
27
|
Prener L, Baszczyňski O, Kaiser MM, Dračínský M, Stepan G, Lee YJ, Brumshtein B, Yu H, Jansa P, Lansdon EB, Janeba Z. Design and Synthesis of Novel HIV-1 NNRTIs with Bicyclic Cores and with Improved Physicochemical Properties. J Med Chem 2023; 66:1761-1777. [PMID: 36652602 PMCID: PMC10017027 DOI: 10.1021/acs.jmedchem.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 01/19/2023]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent cornerstones of current regimens for treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, NNRTIs usually suffer from low aqueous solubility and the emergence of resistant viral strains. In the present work, novel bicyclic NNRTIs derived from etravirine (ETV) and rilpivirine (RPV), bearing modified purine, tetrahydropteridine, and pyrimidodiazepine cores, were designed and prepared. Compounds 2, 4, and 6 carrying the acrylonitrile moiety displayed single-digit nanomolar activities against the wild-type (WT) virus (EC50 = 2.5, 2.7, and 3.0 nM, respectively), where the low nanomolar activity was retained against HXB2 (EC50 = 2.2-2.8 nM) and the K103N and Y181C mutated strains (fold change, 1.2-6.7×). Most importantly, compound 2 exhibited significantly improved phosphate-buffered saline solubility (10.4 μM) compared to ETV and RPV (≪1 μM). Additionally, the binding modes of compounds 2, 4, and 6 to the reverse transcriptase were studied by X-ray crystallography.
Collapse
Affiliation(s)
- Ladislav Prener
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Baszczyňski
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128
43, Czech Republic
| | - Martin M. Kaiser
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - George Stepan
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yu-Jen Lee
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Boris Brumshtein
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Helen Yu
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Petr Jansa
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eric B. Lansdon
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Zlatko Janeba
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| |
Collapse
|
28
|
Ling X, Hao QQ, Huang WJ, Pannecouque C, De Clercq E, Wang S, Chen FE. Development of novel S-N 3-DABO derivatives as potent non-nucleoside reverse transcriptase inhibitors with improved potency and selectivity. Eur J Med Chem 2023; 247:115042. [PMID: 36577220 DOI: 10.1016/j.ejmech.2022.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Following on our initial discovery of S-CN-DABOs as non-nucleoside reverse transcriptase inhibitors (NNRTIs), a series of novel S-N3-DABO derivatives F1-F31 were developed by substituting the cyano group of S-CN-DABOs with azide group. Some of these compounds were conferred significantly increased potency against wild-type HIV-1 and clinically observed mutant strains. Remarkably, the best compound F10 exerted a 7-fold improvement in potency (EC50 = 0.053 μM) and 12.5-fold higher selectivity (SI = 6818) in MT-4 cells infected with wild-type HIV-1, compared to that of the parent compound B1 (EC50 = 370 nM, SI = 547). The anti-HIV-1 activity of F10 against the tested mutant strains was prominently enhanced. For wild-type reverse transcriptase, it was approximately 19-fold more potent (IC50 = 0.080 μM) than B1 (IC50 = 1.51 μM). It was not found that this analog had significant inhibition of hERG, CYP, and acute toxicity after a single dose of F10 (1.0 g/kg).
Collapse
Affiliation(s)
- Xu Ling
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, PR China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, PR China; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Qing-Qing Hao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, PR China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, PR China; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Wen-Juan Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, PR China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, PR China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, PR China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, PR China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, PR China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, PR China; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
29
|
Structure-guided design of novel HEPT analogs with enhanced potency and safety: From Isopropyl-HEPTs to Cyclopropyl-HEPTs. Eur J Med Chem 2023; 246:114939. [PMID: 36442370 DOI: 10.1016/j.ejmech.2022.114939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Members of the HEPT class are potential non-nucleoside inhibitors of HIV-1 reverse transcriptase. Our previously disclosed one representative HEPT analog 2 produced potent inhibitory activity against wild-type HIV-1 (EC50 = 63.0 nM), but its high cytotoxicity and low selectivity index still needs to be improved (CC50 = 34.0 μM, SI = 565). In this work, a series of novel cyclopropyl-substituted HEPT analogs were developed by substituting a cyclopropyl ring for the isopropyl group at the C-5 position of 2 with the purpose of improving its potency and safety. Of this series, the most potent compound 9h featuring a 2,5-fluoro substitution on the C-6 benzene ring exerted significantly increased inhibitory activity toward wild-type HIV-1 (EC50 = 0.017 μM), which was 4-fold more active than the lead compound 2. The cytotoxicity of 9h was also reduced with much higher selectivity index (SI > 2328). This compound possessed good pharmacokinetics profiles and potential safety: (1) No obvious in vitro inhibition effect toward CYP enzyme and hERG was observed in 9h; (2) The single-dose acute toxicity test did not induce mice death and obvious pathological damage; (3) Excellent oral bioavailability of 9h (F= 86%) in rats was unveiled. These results provide valuable guidance for further development of HEPT anti-HIV-1 drugs.
Collapse
|
30
|
Zhang H, Liu C, Zhu D, Zhang Q, Li J. Medicinal Chemistry Strategies for the Development of Inhibitors Disrupting β-Catenin's Interactions with Its Nuclear Partners. J Med Chem 2023; 66:1-31. [PMID: 36583662 DOI: 10.1021/acs.jmedchem.2c01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with various aspects of cancer, including tumor initiation, proliferation, and metastasis as well as antitumor immunity, and presents a promising opportunity for cancer therapy. Wnt/β-catenin signaling activation increases nuclear dephosphorylated β-catenin levels, resulting in β-catenin binding to TCF and additional cotranscription factors, such as BCL9, CBP, and p300. Therefore, directly disrupting β-catenin's interactions with these nuclear partners holds promise for the effective and selective suppression of the aberrant activation of Wnt/β-catenin signaling. Herein, we summarize recent advances in biochemical techniques and medicinal chemistry strategies used to identify potent peptide-based and small-molecule inhibitors that directly disrupt β-catenin's interactions with its nuclear binding partners. We discuss the challenges involved in developing drug-like inhibitors that target the interactions of β-catenin and its nuclear binding partner into therapeutic agents.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
31
|
Sun Y, Zhou Z, Feng D, Jing L, Zhao F, Wang Z, Zhang T, Lin H, Song H, De Clercq E, Pannecouque C, Zhan P, Liu X, Kang D. Lead Optimization and Avoidance of Metabolic-perturbing Motif Developing Novel Diarylpyrimidines as Potent HIV-1 NNRTIs. J Med Chem 2022; 65:15608-15626. [PMID: 36411036 DOI: 10.1021/acs.jmedchem.2c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent an indispensable part of anti-HIV-1 therapy. To discover novel HIV-1 NNRTIs with increased drug resistance profiles and improved pharmacokinetic (PK) properties, a series of novel diarylpyrimidine derivatives were generated via the cocrystal structure-based drug design strategy. Among them, 36a exhibited outstanding antiviral activity against HIV-1 IIIB and a panel of mutant strains (L100I, K103N, Y181C, Y188L, E138K, F227L + V106A, and RES056), with EC50 ranging from 2.22 to 53.3 nM. Besides, 36a was identified with higher binding affinity (KD = 2.50 μM) and inhibitory activity (IC50 = 0.03 μM) to HIV-1 RT. Molecular docking and molecular dynamics simulation were performed to rationalize the design and the improved drug resistance of these novel inhibitors. Additionally, 36a·HCl exhibited favorable PK (T1/2 = 5.12 h, F = 12.1%) and safety properties (LD50 > 2000 mg/kg). All these suggested that 36a·HCl may serve as a novel drug candidate anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Hao Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Hao Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, P.R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, P.R. China
| |
Collapse
|
32
|
Wang S, Ren Y, Wang Z, Jiang X, Xu S, Zhang X, Zhao S, Zalloum WA, Liu X, Zhan P. The current progress in the use of boron as a platform for novel antiviral drug design. Expert Opin Drug Discov 2022; 17:1329-1340. [PMID: 36448326 DOI: 10.1080/17460441.2023.2153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health. Accordingly, we aim to comprehensively review the current status of antiviral boron-containing compounds. AREAS COVERED This review focuses on the utilization of boron to design molecules against viruses from two perspectives: (i) single boron atom-containing compounds acting on miscellaneous viral targets and (ii) boron clusters. The peculiar properties of antiviral boron-containing compounds and their diverse binding modes with viral targets are described in detail in this review. EXPERT OPINION Compounds bearing boronic acid can interact with viral targets by forming covalent or robust hydrogen bonds. This feature is valuable for combating resistant viruses. Furthermore, boron clusters can form dihydrogen bonds and bear features such as three-dimensional aromaticity, hydrophobicity, and biological stability. All these features demonstrated boron as a probable essential element with immense potential for drug design.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882 11821, Amman, Jordan
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| |
Collapse
|
33
|
Zuo Y, Li R, Zhang Y, Bao G, Le Y, Yan L. Design, synthesis and antitumor activity of 5-trifluoromethylpyrimidine derivatives as EGFR inhibitors. J Enzyme Inhib Med Chem 2022; 37:2742-2754. [PMID: 36176072 PMCID: PMC9542405 DOI: 10.1080/14756366.2022.2128797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A new series of 5-trifluoromethylpyrimidine derivatives were designed and synthesised as EGFR inhibitors. Three tumour cells A549, MCF-7, PC-3 and EGFR kinase were employed to evaluate their biological activities. The results were shown that most of the target compounds existed excellent antitumor activities. In particular, the IC50 values of compound 9u (E)-3-((2-((4-(3-(3-fluorophenyl)acrylamido)phenyl)amino)-5-(trifluoromethyl)pyrimidin-4-yl)amino)-N-methylthiophene-2-carboxamide against A549, MCF-7, PC-3 cells and EGFR kinase reached to 0.35 μM, 3.24 μM, 5.12 μM, and 0.091 μM, respectively. Additionally, further researches revealed that compound 9u could induce early apoptosis of A549 cells and arrest the cells in G2/M phase. Taken together, these findings indicated that compound 9u was potential for developing as antitumor reagent.
Collapse
Affiliation(s)
- Yaqing Zuo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Rongrong Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| |
Collapse
|
34
|
Xu S, Sun L, Zalloum WA, Huang T, Zhang X, Ding D, Shao X, Jiang X, Zhao F, Cocklin S, De Clercq E, Pannecouque C, Dick A, Liu X, Zhan P. Discovery and Mechanistic Investigation of Piperazinone Phenylalanine Derivatives with Terminal Indole or Benzene Ring as Novel HIV-1 Capsid Modulators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238415. [PMID: 36500508 PMCID: PMC9739877 DOI: 10.3390/molecules27238415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
HIV-1 capsid (CA) performs multiple roles in the viral life cycle and is a promising target for antiviral development. In this work, we describe the design, synthesis, assessment of antiviral activity, and mechanistic investigation of 20 piperazinone phenylalanine derivatives with a terminal indole or benzene ring. Among them, F2-7f exhibited moderate anti-HIV-1 activity with an EC50 value of 5.89 μM, which was slightly weaker than the lead compound PF74 (EC50 = 0.75 μM). Interestingly, several compounds showed a preference for HIV-2 inhibitory activity, represented by 7f with an HIV-2 EC50 value of 4.52 μM and nearly 5-fold increased potency over anti-HIV-1 (EC50 = 21.81 μM), equivalent to PF74 (EC50 = 4.16 μM). Furthermore, F2-7f preferred to bind to the CA hexamer rather than to the monomer, similar to PF74, according to surface plasmon resonance results. Molecular dynamics simulation indicated that F2-7f and PF74 bound at the same site. Additionally, we computationally analyzed the ADMET properties for 7f and F2-7f. Based on this analysis, 7f and F2-7f were predicted to have improved drug-like properties and metabolic stability over PF74, and no toxicities were predicted based on the chemotype of 7f and F2-7f. Finally, the experimental metabolic stability results of F2-7f in human liver microsomes and human plasma moderately correlated with our computational prediction. Our findings show that F2-7f is a promising small molecule targeting the HIV-1 CA protein with considerable development potential.
Collapse
Affiliation(s)
- Shujing Xu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lin Sun
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Waleed A. Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O. Box 2882, Amman 11821, Jordan
| | - Tianguang Huang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xujie Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dang Ding
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiaoyu Shao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangyi Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Fabao Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Simon Cocklin
- Specifica Inc., The Santa Fe Railyard, 1607 Alcaldesa Street, Santa Fe, NM 87501, USA
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| |
Collapse
|
35
|
Zhang X, Sun L, Xu S, Shao X, Li Z, Ding D, Jiang X, Zhao S, Cocklin S, Clercq ED, Pannecouque C, Dick A, Liu X, Zhan P. Design, Synthesis, and Mechanistic Study of 2-Pyridone-Bearing Phenylalanine Derivatives as Novel HIV Capsid Modulators. Molecules 2022; 27:molecules27217640. [PMID: 36364467 PMCID: PMC9658817 DOI: 10.3390/molecules27217640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The AIDS pandemic is still of importance. HIV-1 and HIV-2 are the causative agents of this pandemic, and in the absence of a viable vaccine, drugs are continually required to provide quality of life for infected patients. The HIV capsid (CA) protein performs critical functions in the life cycle of HIV-1 and HIV-2, is broadly conserved across major strains and subtypes, and is underexploited. Therefore, it has become a therapeutic target of interest. Here, we report a novel series of 2-pyridone-bearing phenylalanine derivatives as HIV capsid modulators. Compound FTC-2 is the most potent anti-HIV-1 compound in the new series of compounds, with acceptable cytotoxicity in MT-4 cells (selectivity index HIV-1 > 49.57; HIV-2 > 17.08). However, compound TD-1a has the lowest EC50 in the anti-HIV-2 assays (EC50 = 4.86 ± 1.71 μM; CC50= 86.54 ± 29.24 μM). A water solubility test found that TD-1a showed a moderately increased water solubility compared with PF74, while the water solubility of FTC-2 was improved hundreds of times. Furthermore, we use molecular simulation studies to provide insight into the molecular contacts between the new compounds and HIV CA. We also computationally predict drug-like properties and metabolic stability for FTC-2 and TD-1a. Based on this analysis, TD-1a is predicted to have improved drug-like properties and metabolic stability over PF74. This study increases the repertoire of CA modulators and has important implications for developing anti-HIV agents with novel mechanisms, especially those that inhibit the often overlooked HIV-2.
Collapse
Affiliation(s)
- Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 West Culture Road, Jinan 250012, China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiaoyu Shao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ziyi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Simon Cocklin
- Specifica, Inc., 1607 Alcaldesa Street, Santa Fe, NM 87501, USA
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| |
Collapse
|
36
|
Kang D, Yang J, Kong L, Luo R, Huang X, Zhang T, Ma M, Feng D, Wang Z, Fang H, Zhan P, Zheng Y, Liu X. Structure-Based Discovery and Characterization of a Preclinical Drug Candidate for the Treatment of HIV-1 Infection. Viruses 2022; 14:v14112390. [PMID: 36366488 PMCID: PMC9699427 DOI: 10.3390/v14112390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/31/2023] Open
Abstract
HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) area key component of the current HIV-1 combination drug regimens. Although they exhibit potent anti-HIV-1 activity and modest toxicity, the emergence of mutant strains limits their application in clinical. Our previous research efforts contributed to the identification of compound K-5a2, which exhibits nanomolar activity in HIV-1-infected MT-4 cells. In this study, K-5a2 was shown to have a high level of anti-HIV-1 activity against various lab-adapted strains and clinical isolate strains, being comparable to ETR. Moreover, we showed the feasibility of K-5a2 as a preclinical anti-HIV-1 candidate by establishing its synergistic or additive anti-HIV-1 activity in combination with other representative anti-HIV-1 drugs and candidates. In addition, K-5a2 exhibited no inhibitory activity to the primary CYP isoforms and favorable pharmacokinetics. Taken together, its robust anti-HIV-1 potency, synergistic or additive effects with other anti-HIV drugs, and favorable pharmacokinetic and safety profiles make K-5a2 a potent alternative drug for HIV/AIDS treatment.
Collapse
Affiliation(s)
- Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Jinxuan Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lingjin Kong
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Shandong Qidu Pharmaceutical Co., Ltd., Zibo 255400, China
| | - Ronghua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xusheng Huang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Shandong Qidu Pharmaceutical Co., Ltd., Zibo 255400, China
| | - Mengdi Ma
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Feng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Zhao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Hao Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
- Correspondence: (P.Z.); (Y.Z.); (X.L.)
| | - Yongtang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Correspondence: (P.Z.); (Y.Z.); (X.L.)
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
- Correspondence: (P.Z.); (Y.Z.); (X.L.)
| |
Collapse
|
37
|
Ling X, Hao QQ, Pannecouque C, Clercq ED, Chen FE. Expansion of the S–CN-DABO scaffold to exploit the impact on inhibitory activities against the non-nucleoside HIV-1 reverse transcriptase. Eur J Med Chem 2022; 238:114512. [DOI: 10.1016/j.ejmech.2022.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
|
38
|
Benedetto Tiz D, Bagnoli L, Rosati O, Marini F, Sancineto L, Santi C. New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use. Molecules 2022; 27:1643. [PMID: 35268744 PMCID: PMC8912053 DOI: 10.3390/molecules27051643] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
This review describes the recent Food and Drug Administration (FDA)-approved drugs (in the year 2021) containing at least one halogen atom (covalently bound). The structures proposed throughout this work are grouped according to their therapeutical use. Their synthesis is presented as well. The number of halogenated molecules that are reaching the market is regularly preserved, and 14 of the 50 molecules approved by the FDA in the last year contain halogens. This underlines the emergent role of halogens and, in particular, of fluorine and chlorine in the preparation of drugs for the treatment of several diseases such as viral infections, several types of cancer, cardiovascular disease, multiple sclerosis, migraine and inflammatory diseases such as vasculitis.
Collapse
Affiliation(s)
- Davide Benedetto Tiz
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy; (L.B.); (O.R.); (F.M.); (L.S.)
| | | | | | | | | | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy; (L.B.); (O.R.); (F.M.); (L.S.)
| |
Collapse
|