1
|
Lyu W, Qin H, Li Q, Lu D, Shi C, Zhao K, Zhang S, Yu R, Zhang H, Zhou X, Xia S, Zhang L, Wang X, Chi X, Liu Z. Novel mechanistic insights - A brand new Era for anti-HBV drugs. Eur J Med Chem 2024; 279:116854. [PMID: 39276582 DOI: 10.1016/j.ejmech.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Hepatitis B Virus (HBV) remains a critical global health issue, with substantial morbidity and mortality. Current therapies, including interferons and nucleoside analogs, often fail to achieve complete cure or functional eradication. This review explores recent advances in anti-HBV agents, focusing on their innovative mechanisms of action. HBV entry inhibitors target the sodium taurocholate cotransporting polypeptide (NTCP) receptor, impeding viral entry, while nucleus translocation inhibitors disrupt key viral life cycle steps, preventing replication. Capsid assembly modulators inhibit covalently closed circular DNA (cccDNA) formation, aiming to eradicate the persistent viral reservoir. Transcription inhibitors targeting cccDNA and integrated DNA offer significant potential to suppress HBV replication. Immunomodulatory agents are highlighted for their ability to enhance host immune responses, facil-itating better control and possible eradication of HBV. These novel approaches represent significant advancements in HBV therapy, providing new strategies to overcome current treatment limitations. The development of cccDNA reducers is particularly critical, as they directly target the persistent viral reservoir, offering a promising pathway towards achieving a functional cure or complete viral eradication. Continued research in this area is essential to advance the effectiveness of anti-HBV therapies.
Collapse
Affiliation(s)
- Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Haoming Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Dehua Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Kangchen Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Shengran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Ruohan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Huiying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaonan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Sitian Xia
- Beijing National Day School, Beijing, 100089, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaoqian Wang
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Economic-Technological Development Area (BDA), Beijing, 100176, PR China.
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
2
|
Song Y, Gao J, Wang Y, Cui H, Wang D, Chang X, Lv X. Evaluation of the antifungal activity of novel bis-pyrazole carboxamide derivatives and preliminary investigation of the mechanism. Bioorg Chem 2024; 153:107779. [PMID: 39236583 DOI: 10.1016/j.bioorg.2024.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
To facilitate the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we synthesized three series of derivatives by introducing phenyl pyrazole fragments into the structure of pyrazol-4-yl amides. The results of the bioactivity assay showed that most of the target compounds possessed varying degrees of inhibitory activity against the tested fungi. At a concentration of 100 mg/L, the compound B8 exhibited effective protective activity against S. sclerotiorum in vivo. Molecular docking analysis and succinate dehydrogenase (SDH) inhibition assay indicated that B8 was not a potential SDHI. The preliminary antifungal mechanism of studies showed that B8 induced a large amount of reactive oxygen species (ROS) and severe lipid peroxidation damage in S. sclerotiorum mycelium, resulting in mycelial rupture and disruption of the integrity of the cell membrane and leakage of soluble proteins, soluble sugars and nucleic acids. Further transcriptome analysis showed that compound B8 blocked various metabolic pathways by downregulating the differentially expressed genes (DEGs) catalase, disrupting hydrogen peroxide hydrolysis, accelerating membrane oxidative damage, and upregulating neutral ceramidase, accelerating sphingolipid metabolism to disrupt cell membrane structure and cell proliferation and differentiation, potentially accelerating cell death. The above results indicated that the potential target of these dis-pyrazole carboxamide derivatives may be the cell membrane of pathogenic fungi.
Collapse
Affiliation(s)
- Yaping Song
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunxiao Wang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Hongyun Cui
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Dandan Wang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Du K, Wang X, Bai Y, Zhang X, Xue J, Li S, Xie Y, Sang Z, Tang Y, Wang X. Development of benzimidazole-based compounds as novel capsid assembly modulators for the treatment of HBV infection. Eur J Med Chem 2024; 271:116402. [PMID: 38636128 DOI: 10.1016/j.ejmech.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, the hit compound CDI (IC50 = 2.46 ± 0.33 μM) was identified by screening of an in-house compound library. And then novel potent benzimidazole derivatives were designed and synthesized as core assembly modulators, and their antiviral effects were evaluated in vitro and in vivo biological experiments. The results indicated that compound 26f displayed the most optimized modulator of HBV capsid assembly (IC50 = 0.51 ± 0.20 μM, EC50 = 2.24 ± 0.43 μM, CC50 = 84.29 μM) and high selectivity index. Moreover, treatment with compound 26f for 14 days significantly decreased serum levels of HBV DNA levels in the Hydrodynamic-Injection (HDI) mouse model. Therefore, compound 26f could be considered as a promising candidate drug for further development of novel HBV CAMs with the desired potency and safety.
Collapse
Affiliation(s)
- Kaixin Du
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xianyang Wang
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxin Bai
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xue Zhang
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jie Xue
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Shanshan Li
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Song H, Yang S, Wu S, Qin X, Wang Y, Ma X, Gong J, Wei M, Wang A, Wang M, Lan K, Guo J, Liu M, Chen X, Li Y, Lv K. Identification of dihydroquinolizinone derivatives with nitrogen heterocycle moieties as new anti-HBV agents. Eur J Med Chem 2024; 268:116280. [PMID: 38458109 DOI: 10.1016/j.ejmech.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
The sustained loss of HBsAg is considered a pivotal indicator for achieving functional cure of HBV. Dihydroquinolizinone derivatives (DHQs) have demonstrated remarkable inhibitory activity against HBsAg both in vitro and in vivo. However, the reported neurotoxicity associated with RG7834 has raised concerns regarding the development of DHQs. In this study, we designed and synthesized a series of DHQs incorporating nitrogen heterocycle moieties. Almost all of these compounds exhibited potent inhibition activity against HBsAg, with IC50 values at the nanomolar level. Impressively, the compound (S)-2a (10 μM) demonstrated a comparatively reduced impact on the neurite outgrowth of HT22 cells and isolated mouse DRG neurons in comparison to RG7834, thereby indicating a decrease in neurotoxicity. Furthermore, (S)-2a exhibited higher drug exposures than RG7834. The potent anti-HBV activity, reduced neurotoxicity, and favorable pharmacokinetic profiles underscore its promising potential as a lead compound for future anti-HBV drug discovery.
Collapse
Affiliation(s)
- Huijuan Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuo Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Qin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ya Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xican Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqi Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Meng Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengyuan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Lan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Juan Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|