1
|
Liu Q, Gele J, Zhao K, Zhang S, Gu W, Zhao Z, Li X. TCCA/RSeSeR-Mediated Selenoalkoxy of Allenamides via a Radical Process: Synthesis of Selanyl-allylic N,O-Aminals. J Org Chem 2024; 89:15529-15541. [PMID: 39422135 DOI: 10.1021/acs.joc.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
An efficient TCCA (trichloroisocyanuric acid)/RSeSeR-mediated selenoalkoxy of allenamides for the construction of selanyl-allylic N,OA-aminal derivatives was developed. The reaction exhibits good functional group tolerance and high efficiency, affording the products in good to excellent yields. Mechanistic investigations indicated that a selanyl-allylic radical intermediate was first formed via the RSe radical added to the central carbon of allenamides, which subsequently furnished highly stable selanyl-allylic carbocation intermediate by abstraction of an electron by the chlorine radical. Moreover, this is the first report of using selenium reagent (RSeCl) to activate allenamides via a radical process.
Collapse
Affiliation(s)
- Qingsong Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jiri Gele
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Shuting Zhang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Wen Gu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Kumar N, Kumar A. Enzyme-Catalyzed Regioselective Synthesis of 4-Hetero-Functionalized 1,5-Disubstituted 1,2,3-Triazoles. Org Lett 2024; 26:7514-7519. [PMID: 39230948 DOI: 10.1021/acs.orglett.4c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Enzyme-catalyzed novel protocols for the regioselective construction of fully substituted 1,2,3-triazoles by employing 2-azido-1,3,5-triazine (ADT) as a 1,3-dipole for the cycloaddition reaction with the activated alkene in an aqueous medium have been developed. Various 4-heterosubstituted-1,2,3-triazoles were readily assembled in good to excellent yields with high regioselectivity. This reaction also features wide substrate scope, strong functional group tolerance, gram-scale synthesis, and an environmentally friendly process.
Collapse
Affiliation(s)
- Navaneet Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Picnic Spot Road, Lucknow 226015, India
| | - Atul Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Chianese A, Giugliano R, Palma F, Nastri BM, Monti A, Doti N, Zannella C, Galdiero M, De Filippis A. The antiherpetic and anti-inflammatory activity of the frog-derived peptide Hylin-a1. J Appl Microbiol 2024; 135:lxae165. [PMID: 38991986 DOI: 10.1093/jambio/lxae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
AIM The high incidence of virus-related infections and the large diffusion of drug-resistant pathogens stimulate the search and identification of new antiviral agents with a broad spectrum of action. Antivirals can be designed to act on a single target by interfering with a specific step in the viral lifecycle. On the contrary, antiviral peptides (AVPs) are known for acting on a wide range of viruses, with a diversified mechanism of action targeting virus and/or host cell. In the present study, we evaluated the antiviral potential of the peptide Hylin-a1 secreted by the frog Hypsiobas albopunctatus against members of the Herpesviridae family. METHODS AND RESULTS The inhibitory capacity of the peptide was evaluated in vitro by plaque assays in order to understand the possible mechanism of action. The results were also confirmed by real-time PCR and Western blot evaluating the expression of viral genes. Hylin-a1 acts to block the herpetic infection interfering at the early stages of both herpes simplex virus type 1 (HSV-1) and type 2 infection. Its mechanism is mainly directed on the membrane, probably by damaging the viral envelope. The same effect was also observed against HSV-1 strains resistant to acyclovir. CONCLUSIONS The data presented in this study, such as the increased activity of the peptide when combined to acyclovir, a weak hemolytic profile, an anti-inflammatory effect, and a tolerable half-life in serum, indicates Hylin-a1 as a novel antiherpetic molecule with promising potential in the clinical setting.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Bianca M Nastri
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples 80131, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples 80131, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| |
Collapse
|
5
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
6
|
Zhan L, Tao YC, Gao L, He MX, Pan YM, Zhang Y, Ma XL, Mo ZY. Electrochemical Oxidative Difunctionalization of Diazo Compounds with Diselenides and Nucleophiles. Org Lett 2024; 26:4071-4076. [PMID: 38696713 DOI: 10.1021/acs.orglett.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
An electrochemical oxidative difunctionalization of diazo compounds with diselenides and nucleophiles has been developed. This innovative approach yields a diverse array of selenium-containing pyrazole esters and alkoxy esters, overcoming the limitations of traditional synthesis methods. Remarkably, various nucleophiles, including acids, alcohols, and pyrazoles, can be seamlessly incorporated. Notably, this protocol boasts high atom efficiency, excellent functional group tolerance, and good efficiency and operates under transition metal- and oxidant-free conditions, distinguishing it in the field.
Collapse
Affiliation(s)
- Lei Zhan
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Yi-Chen Tao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Lei Gao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Zu-Yu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
7
|
Manna S, Das K, Santra S, Nosova EV, Zyryanov GV, Halder S. Structural and Synthetic Aspects of Small Ring Oxa- and Aza-Heterocyclic Ring Systems as Antiviral Activities. Viruses 2023; 15:1826. [PMID: 37766233 PMCID: PMC10536032 DOI: 10.3390/v15091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Antiviral properties of different oxa- and aza-heterocycles are identified and properly correlated with their structural features and discussed in this review article. The primary objective is to explore the activity of such ring systems as antiviral agents, as well as their synthetic routes and biological significance. Eventually, the structure-activity relationship (SAR) of the heterocyclic compounds, along with their salient characteristics are exhibited to build a suitable platform for medicinal chemists and biotechnologists. The synergistic conclusions are extremely important for the introduction of a newer tool for the future drug discovery program.
Collapse
Affiliation(s)
- Sibasish Manna
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
| | - Emily V. Nosova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
8
|
Xiao J, Liu P, Hu Y, Liu T, Guo Y, Sun P, Zheng J, Ren Z, Wang Y. Antiviral activities of Artemisia vulgaris L. extract against herpes simplex virus. Chin Med 2023; 18:21. [PMID: 36855145 PMCID: PMC9972753 DOI: 10.1186/s13020-023-00711-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/13/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Artemisia vulgaris L. is often used as a traditional Chinese medicine with the same origin of medicine and food. Its active ingredient in leaves have multiple biological functions such as anti-inflammatory, antibacterial and insecticidal, anti-tumor, antioxidant and immune regulation, etc. It is confirmed that folium Artemisiae argyi has obvious anti-HBV activity, however, its antiviral activity and mechanism against herpesvirus or other viruses are not clear. Hence, we aimed to screen the crude extracts (Fr.8.3) isolated and extracted from folium A. argyi to explore the anti-herpesvirus activity and mechanism. METHODS The antiherpes virus activity of Fr.8.3 was mainly characterized by cytopathic effects, real-time PCR detection of viral gene replication and expression levels, western blotting, viral titer determination and plaque reduction experiments. The main components of Fr.8.3 were identified by using LC-MS, and selected protein targets of these components were investigated through molecular docking. RESULTS We collected and isolated a variety of A. vulgaris L. samples from Tangyin County, Henan Province and then screened the A. vulgaris L. leaf extracts for anti-HSV-1 activity. The results of the plaque reduction test showed that the crude extract of A. vulgaris L.-Fr.8.3 had anti-HSV-1 activity, and we further verified the anti-HSV-1 activity of Fr.8.3 at the DNA, RNA and protein levels. Moreover, we found that Fr.8.3 also had a broad spectrum of antiviral activity. Finally, we explored its anti-HSV-1 mechanism, and the results showed that Fr.8.3 exerted an anti-HSV-1 effect by acting directly on the virus itself. Then, the extracts were screened on HSV-1 surface glycoproteins and host cell surface receptors for potential binding ability by molecular docking, which further verified the phenotypic results. LC-MS analysis showed that 1 and 2 were the two main components of the extracts. Docking analysis suggested that compounds from extract 1 might similarly cover the binding domain between the virus and the host cells, thus interfering with virus adhesion to cell receptors, which provides new ideas and insights for clinical drug development for herpes simplex virus type 1. CONCLUSION We found that Fr.8.3 has anti-herpesvirus and anti-rotavirus effects. The main 12 components in Fr.8.3 were analyzed by LC-MS, and the protein targets were finally predicted through molecular docking, which showed that alkaloids may play a major role in antiviral activity.
Collapse
Affiliation(s)
- Ji Xiao
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Ping Liu
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yuze Hu
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548College of Pharmacy, Jinan University, Guangzhou, China
| | - Tao Liu
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yuying Guo
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Pinghua Sun
- grid.258164.c0000 0004 1790 3548College of Pharmacy, Jinan University, Guangzhou, China
| | - Junxia Zheng
- grid.411851.80000 0001 0040 0205School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhe Ren
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yifei Wang
- Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China. .,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China. .,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Telegina AA, Gruzdev DA, Levit GL, Krasnov VP. Synthesis of new conjugates of 6-thiopurine and thioguanine with (S)-glutamic acid. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Protti S, Fagnoni M. Recent Advances in Light-Induced Selenylation. ACS ORGANIC & INORGANIC AU 2022; 2:455-463. [PMID: 36855533 PMCID: PMC9955339 DOI: 10.1021/acsorginorgau.2c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Selenium-containing organic molecules have recently found a plethora of applications, ranging from organic synthesis to pharmacology and material sciences. In view of these concepts, the development of mild, efficient, and general protocols for the formation of C-Se bonds is desirable, and light induced approaches are appealing ways. The aim of this Review is to provide the reader with the most recent examples of light promoted selenylation processes.
Collapse
|
11
|
Jacob RG, Hartwig D, Nascimento JER, Abib PB, Ebersol CP, Nunes PP, Birmann PT, Casaril AM, Savegnago L, Schumacher RF. Sequential one-pot synthesis and antioxidant evaluation of 5-amino-4-(arylselanyl)-1H-pyrazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Wang Y, Tang X, Liu B. Crystal structure of 1-isopropyl-3-(prop-1-en-2-yl)-1 H-pyrazolo[3,4- d]pyrimidin-4-amine, C 11H 15N 5. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C11H15N5, monoclinic, P21/c (no. 14), a = 9.5677(16) Å, b = 8.1755(15) Å, c = 14.846(3) Å, β = 93.783(4)°, V = 1158.7(4) Å3, Z = 4, R
gt
(F) = 0.0473, wR
ref
(F
2) = 0.1425, T = 173 K.
Collapse
Affiliation(s)
- Yanjiao Wang
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xianyang , Shaanxi , China
| | - Xiaoqin Tang
- Xi’an Wan Long Pharmaceutical Co., Ltd. , Xi’an , Shaanxi , China
| | - Bin Liu
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xianyang , Shaanxi , China
| |
Collapse
|
13
|
Makhal PN, Dannarm SR, Shaikh AS, Sonti R, Kaki VR. TBHP‐Mediated Selenocyclization of
N
‐Allylbenzamides/Benzthioamides
via In‐Situ
Generation of “PhSeOH” Species**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Priyanka N. Makhal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Srinivas Reddy Dannarm
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
14
|
Hou W, Xu H. Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. J Med Chem 2022; 65:4436-4456. [PMID: 35244394 DOI: 10.1021/acs.jmedchem.1c01859] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selenium (Se)-containing compounds have emerged as potential therapeutic agents for the treatment of a range of diseases. Through tremendous effort, considerable knowledge has been acquired to understand the complex chemical properties and biological activities of selenium, especially after its incorporation into bioactive molecules. From this perspective, we compiled extensive literature evidence to summarize and critically discuss the relationship between the pharmacological activities and chemical properties of selenium compounds and the strategic incorporation of selenium into organic molecules, especially bioactive heterocycles and natural products. We also provide perspectives regarding the challenges in selenium-based medicinal chemistry and future research directions.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
15
|
Vaskevych AI, Savinchuk NO, Vaskevych RI, Rusanov EB, Vovk MV. Chalcogenation/pyrrolo(pyrido)annulation of 2-(3-butenyl)quinazolin-4(3H)-ones by arylsulfenyl(selenyl) chlorides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Huang Q, Peng X, Li H, He H, Liu L. Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules 2022; 27:772. [PMID: 35164036 PMCID: PMC8839487 DOI: 10.3390/molecules27030772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
An efficient and general method for the synthesis of 3-sulfenylindoles and 3-selenylindoles employing visible-light irradiation with graphene oxide as a promoter at room temperature has been achieved. The reaction features are high yields, simple operation, metal-free and iodine-free conditions, an easy-to-handle oxidant, and gram-scalable synthesis. This simple protocol allows one to access a wide range of 3-arylthioindoles, 3-arylselenylindoles, and even 3-thiocyanatoindoles with good to excellent yields.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Hong Li
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Haiping He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| |
Collapse
|
17
|
Singh BG, Gandhi VV, Phadnis PP, Kunwar A. Identification of a pyridine derivative of diselenides as a potent inhibitor of the main protease of SARS-CoV-2 through in silico screening and biochemical evaluation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02744e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the 22 organoselenium compounds studied, 2-Py2Se2 & Nict2Se2 showed the highest affinity for Mpro. The biochemical studies confirmed their superiority as compared to standard compound like Ebselen in terms of the IC50 required for Mpro inhibition.
Collapse
Affiliation(s)
- B. G. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - V. V. Gandhi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - P. P. Phadnis
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - A. Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| |
Collapse
|
18
|
Liu H, Sun S, Ma X, Chen Y, Xu Y. Synthesis of Selenylated Spiro[indole-3,3'-quinoline] Derivatives via Visible-Light-Promoted Isocyanide Insertion. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Mukherjee S, Pramanik A. Mild and Expeditious Synthesis of Sulfenyl Enaminones of l-α-Amino Esters and Aryl/Alkyl Amines through NCS-Mediated Sulfenylation. ACS OMEGA 2021; 6:33805-33821. [PMID: 34926928 PMCID: PMC8675011 DOI: 10.1021/acsomega.1c05058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Sulfenylation or selenylation of enaminones of l-α-amino esters requires mild reaction conditions due to the presence of a racemization-prone chiral center and reactive side chains. An N-chlorosuccinimide (NCS)-mediated methodology has been developed for rapid sulfenylation of enaminones of l-α-amino esters and aryl/alkyl amines at room temperature in open air under metal-free conditions. Enaminones of l-α-amino esters bearing aliphatic, aromatic, and heterocyclic side chains react efficiently with diverse aryl/alkyl/heteroaryl thiols (R1SH) in the presence of NCS to afford a library of biologically important sulfenyl enaminones in good-to-excellent yields (71-90%). Under similar reaction conditions, the enaminones also react with benzeneselenol to produce selenyl enaminones in good yield (73-83%). The NCS-mediated pathway generates sulfenyl chloride (R1SCl) as an intermediate which leads to rapid sulfenylation of enaminones through cross-dehydrogenative coupling (CDC) under mild reaction conditions.
Collapse
Affiliation(s)
- Sayan Mukherjee
- Department of Chemistry, University
of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Animesh Pramanik
- Department of Chemistry, University
of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
20
|
Zhang L, Qi L, Chen JM, Dong W, Fang ZY, Cao TY, Li W, Wang LJ. Preparation of selenyl 1,3-oxazines via PhICl 2/Cu 2O-promoted aminoselenation of O-homoallyl benzimidates with diselenides. Chem Commun (Camb) 2021; 57:12655-12658. [PMID: 34766959 DOI: 10.1039/d1cc04854f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A practical electrophilic aminoselenation of O-homoallyl benzimidate with diselenides promoted by PhICl2/Cu2O has been developed. The easily available and stable diselenides were used as selenium sources. Various selenyl 1,3-oxazines, which are important frameworks in medicinal and biological chemistry, were easily obtained in moderate to good yields for the first time. Easy scaleup and scalability make this method attractive for the preparation of other valuable organoselenides.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.
| | - Lin Qi
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.
| | - Jia-Min Chen
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.
| | - Wei Dong
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.
| | - Zhuo-Yue Fang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.
| | - Tong-Yang Cao
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.
| | - Wei Li
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| |
Collapse
|
21
|
Long X, Qiu Y, Zhang Z, Wu M. Insight for Immunotherapy of HCMV Infection. Int J Biol Sci 2021; 17:2899-2911. [PMID: 34345215 PMCID: PMC8326118 DOI: 10.7150/ijbs.58127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous in humans, has a high prevalence rate. Young people are susceptible to HCMV infection in developing countries, while older individuals are more susceptible in developed countries. Most patients have no obvious symptoms from the primary infection. Studies have indicated that the virus has gradually adapted to the host immune system. Therefore, the control of HCMV infection requires strong immune modulation. With the recent advances in immunotherapy, its application to HCMV infections is receiving increasing attention. Here, we discuss the immune response to HCMV infection, the immune escape mechanism, and the different roles that HCMV plays in various types of immunotherapy, including vaccines, adoptive cell therapy, checkpoint blockade therapy, and targeted antibodies.
Collapse
Affiliation(s)
- Xinmiao Long
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yi Qiu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zuping Zhang
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
| |
Collapse
|
22
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
23
|
Hellendahl KF, Kaspar F, Zhou X, Yang Z, Huang Z, Neubauer P, Kurreck A. Optimized Biocatalytic Synthesis of 2-Selenopyrimidine Nucleosides by Transglycosylation*. Chembiochem 2021; 22:2002-2009. [PMID: 33594780 PMCID: PMC8251958 DOI: 10.1002/cbic.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/16/2021] [Indexed: 01/09/2023]
Abstract
Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40-48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6-40 % isolated yield, which compares favorably to established chemical routes.
Collapse
Affiliation(s)
- Katja F. Hellendahl
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
| | - Felix Kaspar
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| | - Xinrui Zhou
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Zhaoyi Yang
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Zhen Huang
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Peter Neubauer
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
| | - Anke Kurreck
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| |
Collapse
|
24
|
Zhang J, He F, Chen J, Wang Y, Yang Y, Hu D, Song B. Purine Nucleoside Derivatives Containing a Sulfa Ethylamine Moiety: Design, Synthesis, Antiviral Activity, and Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5575-5582. [PMID: 33988985 DOI: 10.1021/acs.jafc.0c06612] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To find efficient and broad-spectrum viral agents, a series of purine nucleoside derivatives containing sulfa ethylamine moieties was designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), and potato virus Y (PVY) were evaluated. Some target compounds displayed good antiviral activities. Among them, compound 3 showed excellent protective activity against CMV and PVY with 50% effective concentration values (EC50) of 137 and 209 μg/mL, respectively, which were better than that of the control agent ningnanmycin (508 and 431 μg/mL). Moreover, the EC50 value of compound 3 for the inactivating activity against TMV was 48 μg/mL, which was better than that of ningnanmycin (88 μg/mL). In addition, compound 3 not only destroyed the structure of the TMV virus but also had a good interaction with the coat protein of the TMV virus. Therefore, compound 3 may further destroy the structure of the virus by binding to the coat protein of the TMV virus, thereby weakening the infectivity of the virus.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Yuyuan Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| |
Collapse
|
25
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
26
|
Ban YL, You L, Feng KW, Ma FC, Jin XL, Liu Q. Meyer-Schuster-Type Rearrangement of Propargylic Alcohols into α-Selenoenals and -enones with Diselenides. J Org Chem 2021; 86:5274-5283. [PMID: 33709711 DOI: 10.1021/acs.joc.1c00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We describe a mild and broadly applicable protocol for the preparation of a diverse array of multisubstituted α-selenoenals and -enones from readily accessible propargylic alcohols and diselenides. The transformation proceeds via the Selectfluor-promoted selenirenium pathway, which enables selenenylation/rearrangement of a variety of propargylic alcohols. Gram-scale experiments showed the potential of this synergistic protocol for practical application.
Collapse
Affiliation(s)
- Yong-Liang Ban
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Long You
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai-Wen Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Fei-Cen Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
27
|
Ju Han H, Sub Byun W, Ho Lee G, Kyung Kim W, Jang K, Yang S, Yang J, Woo Ha M, Hong S, Lee J, Shin J, Bong Oh K, Kook Lee S, Park HG. Synthesis and biological activity of selenopsammaplin A and its analogues as antitumor agents with DOT1L inhibitory activity. Bioorg Med Chem 2021; 35:116072. [PMID: 33636429 DOI: 10.1016/j.bmc.2021.116072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Disruptor of telomeric silencing-1 like (DOT1L) is a histone H3 methyltransferase which specifically catalyzes the methylation of histone H3 lysine-79 residue. Recent findings demonstrate that DOT1L is abnormally overexpressed and the upregulated DOT1L evokes the proliferation and metastasis in human breast cancer cells. Therefore, the DOT1L inhibitor is considered a promising strategy to treat breast cancers. Non-nucleoside DOT1L inhibitors, selenopsammaplin A and its analogues, were firstly reported in the present study. Selenopsammaplin A was newly designed and synthesized with 25% overall yield in 8 steps from 3-bromo-4-hydroxybenzaldahyde, and thirteen analogues of selenopsammaplin A were prepared for structure-activity relationship studies of their cytotoxicity against cancer cells and inhibitory activity toward DOT1L for antitumor potential. All synthetic selenopsammaplin A analogues exhibited the higher cytotoxicity compared to psammaplin A with up to 6 - 60 times depending on cancer cells, and most analogues showed significant inhibitory activities against DOT1L. Among the prepared analogues, the phenyl analogue (10) possessed the most potent activity with both cytotoxicity and inhibition of DOT1L. Compound 10 also exhibited the antitumor and antimetastatic activity in an orthotopic mouse metastasis model implanted with MDA-MB-231 human breast cancer cells. These biological findings suggest that analogue 10 is a promising candidate for development as a cancer chemotherapeutic agent in breast cancers.
Collapse
Affiliation(s)
- Hae Ju Han
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Gyu Ho Lee
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Won Kyung Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyungkuk Jang
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sehun Yang
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jewon Yang
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Woo Ha
- College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jeeyeon Lee
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ki Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
28
|
Ali W, Benedetti R, Handzlik J, Zwergel C, Battistelli C. The innovative potential of selenium-containing agents for fighting cancer and viral infections. Drug Discov Today 2020; 26:256-263. [PMID: 33164821 DOI: 10.1016/j.drudis.2020.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Selenium-containing compounds have emerged as a potentially promising treatment for viral infections and tumor development and dissemination. Selenium per se is often considered as a toxic element with little or no beneficial effects, but considerable advances have been made in the understanding of the complex biology, chemistry and drug delivery of this element, especially when it is included in bioactive molecules. Here, we summarize and critically discuss recent findings in the field of selenium-based applications for the treatment of cancer and viral infections.
Collapse
Affiliation(s)
- Wesam Ali
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany
| | - Rosaria Benedetti
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Clemens Zwergel
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany; Department of Precision Medicine, Luigi Vanvitelli University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy; Department of Drug Chemistry and Technologies, Sapienza University of Rome, Department of Excellence 2018-2022, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Department of Excellence 2018-2022, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
29
|
Liu ZH, Niu FJ, Xie YX, Xie SM, Liu YN, Yang YY, Zhou CZ, Wan XH. A review: Natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism. Biomed Pharmacother 2020; 129:110469. [DOI: 10.1016/j.biopha.2020.110469] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
|
30
|
Copper/DTBP-Promoted Oxyselenation of Propargylic Amines with Diselenides and CO 2: Synthesis of Selenyl 2-Oxazolidinones. J Org Chem 2020; 85:10924-10933. [PMID: 32786223 DOI: 10.1021/acs.joc.0c01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A highly efficient electrophilic oxyselenation of propargylic amines with diselenides and CO2 under atmospheric pressure promoted by copper/DTBP is reported. Various biologically important selenyl 2-oxazolidinones were produced in moderate to excellent yields. The developed method features a broad substrate scope, easy scalability, and mild reaction conditions.
Collapse
|
31
|
Heredia AA, Soria-Castro SM, Castro-Godoy WD, Lemir ID, López-Vidal M, Bisogno FR, Argüello JE, Oksdath-Mansilla G. Multistep Synthesis of Organic Selenides under Visible Light Irradiation: A Continuous-Flow Approach. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Adrián A. Heredia
- Dpto. de Quı́mica Orgánica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Ciudad Universitaria, INFIQC-CONICET-UNC, Córdoba X5000HUA, Argentina
| | - Silvia M. Soria-Castro
- Dpto. de Quı́mica Orgánica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Ciudad Universitaria, INFIQC-CONICET-UNC, Córdoba X5000HUA, Argentina
| | - Willber D. Castro-Godoy
- Departamento de Quı́mica, Fı́sica y Matemática, Facultad de Quı́mica y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador 1101, El Salvador
| | - Ignacio D. Lemir
- Dpto. de Quı́mica Orgánica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Ciudad Universitaria, INFIQC-CONICET-UNC, Córdoba X5000HUA, Argentina
| | - Martín López-Vidal
- Dpto. de Quı́mica Orgánica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Ciudad Universitaria, INFIQC-CONICET-UNC, Córdoba X5000HUA, Argentina
| | - Fabricio R. Bisogno
- Dpto. de Quı́mica Orgánica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Ciudad Universitaria, INFIQC-CONICET-UNC, Córdoba X5000HUA, Argentina
| | - Juan E. Argüello
- Dpto. de Quı́mica Orgánica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Ciudad Universitaria, INFIQC-CONICET-UNC, Córdoba X5000HUA, Argentina
| | - Gabriela Oksdath-Mansilla
- Dpto. de Quı́mica Orgánica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Ciudad Universitaria, INFIQC-CONICET-UNC, Córdoba X5000HUA, Argentina
| |
Collapse
|
32
|
Liu C, Peng X, Hu D, Shi F, Huang P, Luo J, Liu Q, Liu L. The direct C3 chalcogenylation of indolines using a graphene-oxide-promoted and visible-light-induced synergistic effect. NEW J CHEM 2020. [DOI: 10.1039/d0nj00747a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green methodology for the construction of carbon–chalcogen (S and Se) bonds via a GO-promoted and metal-free light-induced synergistic effect is demonstrated.
Collapse
Affiliation(s)
- Chunping Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Feng Shi
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Juanjuan Luo
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Qian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
33
|
Antiviral, Antimicrobial and Antibiofilm Activity of Selenoesters and Selenoanhydrides. Molecules 2019; 24:molecules24234264. [PMID: 31771095 PMCID: PMC6930503 DOI: 10.3390/molecules24234264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/24/2023] Open
Abstract
Selenoesters and the selenium isostere of phthalic anhydride are bioactive selenium compounds with a reported promising activity in cancer, both due to their cytotoxicity and capacity to reverse multidrug resistance. Herein we evaluate the antiviral, the biofilm inhibitory, the antibacterial and the antifungal activities of these compounds. The selenoanhydride and 7 out of the 10 selenoesters were especially potent antiviral agents in Vero cells infected with herpes simplex virus-2 (HSV-2). In addition, the tested selenium derivatives showed interesting antibiofilm activity against Staphylococcus aureus and Salmonella enterica serovar Typhimurium, as well as a moderate antifungal activity in resistant strains of Candida spp. They were inactive against anaerobes, which may indicate that the mechanism of action of these derivatives depends on the presence of oxygen. The capacity to inhibit the bacterial biofilm can be of particular interest in the treatment of nosocomial infections and in the coating of surfaces of prostheses. Finally, the potent antiviral activity observed converts these selenium derivatives into promising antiviral agents with potential medical applications.
Collapse
|
34
|
Di Leo I, Messina F, Nascimento V, Nacca FG, Pietrella D, Lenardão EJ, Perin G, Sancineto L. Synthetic Approaches to Organoselenium Derivatives with Antimicrobial and Anti-Biofilm Activity. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x16666181227111038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the recent years, an increasing attention has been given to the biological activities exerted
by organoselenium compounds. In 1984, Sies reported for the first time the ability of ebselen to
mimic the activity of glutathione peroxidase. From this milestone, several studies reported the pharmacological
properties of selenium-containing compounds including their exploitation as antimicrobials.
In this context, this minireview presents the most recent examples of seleno derivatives endowed
with antimicrobial activities while discussing the most interesting and recent synthetic procedures
used to obtain these compounds.
Collapse
Affiliation(s)
- Iris Di Leo
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Batista, 24020-141 Niteroi, RJ, Brazil
| | | | - Vanessa Nascimento
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Batista, 24020-141 Niteroi, RJ, Brazil
| | - Francesca G. Nacca
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Donatella Pietrella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Eder J. Lenardão
- Laboratorio de Síntese Organica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratorio de Síntese Organica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Luca Sancineto
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
35
|
He F, Shi J, Wang Y, Wang S, Chen J, Gan X, Song B, Hu D. Synthesis, Antiviral Activity, and Mechanisms of Purine Nucleoside Derivatives Containing a Sulfonamide Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8459-8467. [PMID: 31339701 DOI: 10.1021/acs.jafc.9b02681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Novel purine nucleoside derivatives containing a sulfonamide moiety were prepared, as well as their antiviral activities against potato virus Y (PVY), cucumber mosaic virus (CMV), and tobacco mosaic virus (TMV) were evaluated. The antiviral mechanisms of the compounds were investigated. Results showed that most of the compounds had good antiviral activities. Compound 5 at 500 μg/mL exhibited excellent curative and protective activities of 52.5% and 60.0% and of 52.0% and 60.2% for PVY and CMV, respectively, which are higher than those of ningnanmycin (48.1%, 49.6%; 45.3%, 47.7%), ribavirin (38.3%, 48.2%; 40.8%, 45.5%), and chitosan oligosaccharide (32.5%, 33.8%; 35.1%, 34.6%). Moreover, compound 5 displayed good inactivating activity against TMV, with an EC50 value of 48.8 μg/mL, which is better than that of ningnanmycin (84.7 μg/mL), ribavirin (150.4 μg/mL), and chitosan oligosaccharide (521.3 μg/mL). The excellent antiviral activity of compound 5 is related to its immune induction effect which can regulate the physiological and biochemical processes in plants, including defense-related enzyme activities, defense-related genes, and photosynthesis-related proteins. These results indicate that purine nucleoside derivatives containing a sulfonamide moiety are worthy of further research and development as new antiviral agents.
Collapse
Affiliation(s)
- Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| |
Collapse
|
36
|
Zhang QB, Yuan PF, Kai LL, Liu K, Ban YL, Wang XY, Wu LZ, Liu Q. Preparation of Heterocycles via Visible-Light-Driven Aerobic Selenation of Olefins with Diselenides. Org Lett 2019; 21:885-889. [DOI: 10.1021/acs.orglett.8b03738] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qing-Bao Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China
| | - Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China
| | - Liang-Lin Kai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China
| | - Kai Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China
| | - Yong-Liang Ban
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China
| | - Xue-Yang Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China
| |
Collapse
|
37
|
Ding C, Yu Y, Yu Q, Xie Z, Zhou Y, Zhou J, Liang G, Song Z. NIS/TBHP Induced Regioselective Selenation of (Hetero)Arenes
via
Direct C−H Functionalization. ChemCatChem 2018. [DOI: 10.1002/cctc.201801548] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaochao Ding
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Yuanzu Yu
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Qiongli Yu
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Zixin Xie
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Yan Zhou
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Jianmin Zhou
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Zengqiang Song
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| |
Collapse
|
38
|
Zhou D, Xie D, He F, Song B, Hu D. Antiviral properties and interaction of novel chalcone derivatives containing a purine and benzenesulfonamide moiety. Bioorg Med Chem Lett 2018; 28:2091-2097. [PMID: 29724588 DOI: 10.1016/j.bmcl.2018.04.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/20/2022]
Abstract
A new concise and facile method was explored to synthesize a series of novel chalcone derivatives containing a purine and benzenesulfonamide moiety and their antiviral properties were evaluated against TMV and CMV. Biological assays indicated that several of the derivatives exhibited significant anti-TMV and anti-CMV activities in vivo. In particular, compound d2 displayed excellent inactivating activity against TMV, with the EC50 value of 51.65 μg/mL, which was better than that of ribavirin (150.45 μg/mL). Molecular docking showed that there are four hydrogen bonds between compound d2 and TMV coat protein (TMV-CP). Compound d2 demonstrated strong binding capacity to TMV-CP with Ka = 1.58 × 105 L/mol and Kd = 12.16 μM. These findings indicated that chalcone derivatives are worthy of further research and development as templates for new antiviral agents.
Collapse
Affiliation(s)
- Dagui Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
39
|
Chen J, Su S, Hu D, Cui F, Xu Y, Chen Y, Ma X, Pan Y, Liang Y. Copper‐Catalyzed Bis‐ or Trifunctionalization of Alkynyl Carboxylic Acids: An Efficient Route to Bis‐ and Tris‐selenide Alkenes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Chen
- School of Life and Environmental SciencesGuilin University of Electronic Technology Guilin 541004 People's Republic of China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Shi‐Xia Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Da‐Chao Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Fei‐Hu Cui
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yan‐Li Xu
- College of PharmacyGuilin Medical University Guilin 541004 People's Republic of China),
| | - Yan‐Yan Chen
- College of PharmacyGuilin Medical University Guilin 541004 People's Republic of China),
| | - Xian‐Li Ma
- College of PharmacyGuilin Medical University Guilin 541004 People's Republic of China),
| | - Ying‐Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying Liang
- School of Life and Environmental SciencesGuilin University of Electronic Technology Guilin 541004 People's Republic of China
| |
Collapse
|
40
|
Munchen TS, Sonego MS, de Souza D, Dornelles L, Seixas FK, Collares T, Piccoli BC, da Silva FD, da Rocha JBT, Quoos N, Rodrigues OED. New 3’‐Triazolyl‐5’‐aryl‐chalcogenothymidine: Synthesis and Anti‐oxidant and Antiproliferative Bladder Carcinoma (5637) Activity. ChemistrySelect 2018. [DOI: 10.1002/slct.201800156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Taiana S. Munchen
- LabSelen-NanoBio – Departamento de QuímicaUniversidade Federal de Santa Maria RS - CEP 97105–900 – Brazil
| | - Mariana S. Sonego
- Programa de Pós-Graduação em Biotecnologia (PPGB)Biotecnologia/Centro de Desenvolvimento TecnológicoGrupo de Pesquisa em Oncologia Celular e Molecular (GPO)Laboratório de Biotecnologia do Câncer Universidade Federal de PelotasCampus Universitário s/n Capão do Leão-RS Brasil Cep: 96010–900
| | - Diego de Souza
- LabSelen-NanoBio – Departamento de QuímicaUniversidade Federal de Santa Maria RS - CEP 97105–900 – Brazil
| | - Luciano Dornelles
- LabSelen-NanoBio – Departamento de QuímicaUniversidade Federal de Santa Maria RS - CEP 97105–900 – Brazil
| | - Fabiana K. Seixas
- Programa de Pós-Graduação em Biotecnologia (PPGB)Biotecnologia/Centro de Desenvolvimento TecnológicoGrupo de Pesquisa em Oncologia Celular e Molecular (GPO)Laboratório de Biotecnologia do Câncer Universidade Federal de PelotasCampus Universitário s/n Capão do Leão-RS Brasil Cep: 96010–900
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia (PPGB)Biotecnologia/Centro de Desenvolvimento TecnológicoGrupo de Pesquisa em Oncologia Celular e Molecular (GPO)Laboratório de Biotecnologia do Câncer Universidade Federal de PelotasCampus Universitário s/n Capão do Leão-RS Brasil Cep: 96010–900
| | - Bruna C. Piccoli
- Departamento de Bioquímica e Biologia MolecularCentro de Ciências Naturais e ExatasUniversidade Federal de Santa Maria Santa Maria CEP 97105–900 Brazil
| | - Fernanda D'Ávila da Silva
- Departamento de Bioquímica e Biologia MolecularCentro de Ciências Naturais e ExatasUniversidade Federal de Santa Maria Santa Maria CEP 97105–900 Brazil
| | - João Batista T. da Rocha
- Departamento de Bioquímica e Biologia MolecularCentro de Ciências Naturais e ExatasUniversidade Federal de Santa Maria Santa Maria CEP 97105–900 Brazil
| | - Natália Quoos
- LabSelen-NanoBio – Departamento de QuímicaUniversidade Federal de Santa Maria RS - CEP 97105–900 – Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio – Departamento de QuímicaUniversidade Federal de Santa Maria RS - CEP 97105–900 – Brazil
| |
Collapse
|
41
|
Cui FH, Chen J, Mo ZY, Su SX, Chen YY, Ma XL, Tang HT, Wang HS, Pan YM, Xu YL. Copper-Catalyzed Decarboxylative/Click Cascade Reaction: Regioselective Assembly of 5-Selenotriazole Anticancer Agents. Org Lett 2018; 20:925-929. [PMID: 29388780 DOI: 10.1021/acs.orglett.7b03734] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A simple and efficient Cu-catalyzed decarboxylative/click reaction for the preparation of 1,4-disubstituted 5-arylselanyl-1,2,3-triazoles from propiolic acids, diselenides, and azides has been developed. The mechanistic study revealed that the intermolecular AAC reaction of an alkynyl selenium intermediate occurred. The resulting multisubstituted 5-seleno-1,2,3-triazoles were tested for in vitro anticancer activity by MTT assay, and compounds 4f, 4h, and 4p showed potent cancer cell-growth inhibition activities.
Collapse
Affiliation(s)
- Fei-Hu Cui
- College of Pharmacy, Guilin Medical University , Guilin 541004 People's Republic of China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, People's Republic of China
| | - Jing Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, People's Republic of China
| | - Zu-Yu Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, People's Republic of China
| | - Shi-Xia Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, People's Republic of China
| | - Yan-Yan Chen
- College of Pharmacy, Guilin Medical University , Guilin 541004 People's Republic of China
| | - Xian-Li Ma
- College of Pharmacy, Guilin Medical University , Guilin 541004 People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, People's Republic of China
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, People's Republic of China
| | - Yan-Li Xu
- College of Pharmacy, Guilin Medical University , Guilin 541004 People's Republic of China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004, People's Republic of China
| |
Collapse
|
42
|
Cui FH, Chen J, Su SX, Xu YL, Wang HS, Pan YM. Regioselective Synthesis of Selenide Ethers through a Decarboxylative Coupling Reaction. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fei-Hu Cui
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Jing Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Shi-Xia Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Yan-li Xu
- College of Pharmacy; Guilin Medical University; Guilin 541004 People's Republic of China
| | - Heng-shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Ying-ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| |
Collapse
|
43
|
Pachota M, Klysik K, Synowiec A, Ciejka J, Szczubiałka K, Pyrć K, Nowakowska M. Inhibition of Herpes Simplex Viruses by Cationic Dextran Derivatives. J Med Chem 2017; 60:8620-8630. [DOI: 10.1021/acs.jmedchem.7b01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Magdalena Pachota
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Katarzyna Klysik
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aleksandra Synowiec
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Ciejka
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Pyrć
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
44
|
Structure-Activity Relationships of Acyclic Selenopurine Nucleosides as Antiviral Agents. Molecules 2017; 22:molecules22071167. [PMID: 28704950 PMCID: PMC6152377 DOI: 10.3390/molecules22071167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 01/19/2023] Open
Abstract
A series of acyclic selenopurine nucleosides 3a–f and 4a–g were synthesized based on the bioisosteric rationale between oxygen and selenium, and then evaluated for antiviral activity. Among the compounds tested, seleno-acyclovir (4a) exhibited the most potent anti-herpes simplex virus (HSV)-1 (EC50 = 1.47 µM) and HSV-2 (EC50 = 6.34 µM) activities without cytotoxicity up to 100 µM, while 2,6-diaminopurine derivatives 4e–g exhibited significant anti-human cytomegalovirus (HCMV) activity, which is slightly more potent than the guanine derivative 4d, indicating that they might act as prodrugs of seleno-ganciclovir (4d).
Collapse
|
45
|
Sahu PK, Kim G, Nayak A, Ahn JY, Ha MW, Park C, Yu J, Park HG, Jeong LS. Synthesis of Acyclic Selenonucleoside Phosphonates as Potential Antiviral Agents. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pramod K. Sahu
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Akshata Nayak
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
- College of Pharmacy; Ewha Womans University; Seoul 120-750 Korea
| | - Ji Yoon Ahn
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Min Woo Ha
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Cheonhyoung Park
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Hyeung-geun Park
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| |
Collapse
|