1
|
Patil M, Thapa D, Warne LN, Lareu RR, Dallerba E, Lian J, Massi M, Carlessi R, Falasca M. Chronic metabolic effects of novel gut-oriented small-molecule GPR119 agonists in diet-induced obese mice. Biomed Pharmacother 2024; 181:117675. [PMID: 39566336 DOI: 10.1016/j.biopha.2024.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
The pharmacological activation of G-protein coupled receptor-119 (GPR119) modulates glucose, energy, and hepatic lipid homeostasis in type-2 diabetes (T2D). We developed synthetic small-molecule GPR119 agonists targeting gastrointestinal receptors. This study investigates the chronic metabolic effects of lead candidates, ps297 and ps318, individually and in combination with sitagliptin, a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in high-fat diet (HFD)-induced obese (DIO) mice. In a 10-week dose-escalation protocol, DIO mice were orally treated with the investigational agents alone (10-90 mg/kg/day) and in combination with sitagliptin (20 mg/kg/day). Weekly body weight, food intake, and random blood glucose levels were monitored during the treatment phase. Post-treatment, an intraperitoneal glucose tolerance test (ipGTT), estimation of plasma biomarkers and haematological assessment were conducted. The treatment's effect on hepatic steatosis was studied by estimating liver biomarkers and histological examinations. Ten-week sitagliptin combination therapy with the investigational entities restored incretins, insulin, and other metabolic hormonal secretions, accompanied by improved glucose homeostasis and retarded weight gain. Interestingly, monotherapy with investigational agents improved liver health by reducing liver weight, liver enzymes, and inflammation. Hepatic effects were further enhanced by co-administration of sitagliptin, evident by amelioration in hepatic steatosis endpoints such as liver weight, plasma liver enzyme concentrations, hepatic triglycerides (TG), total cholesterol (CHO), hydroxyproline content, and cytokine levels. Histopathological investigations confirmed regression in hepatic steatosis in the combination groups. These findings demonstrate the therapeutic potential of novel gut-oriented GPR119 agonists in combination with a DPP-IV inhibitor to ameliorate metabolic dysfunction-associated steatohepatitis (MASH), warranting further mechanistic investigations.
Collapse
Affiliation(s)
- Mohan Patil
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Dinesh Thapa
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Leon N Warne
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; College of Science, Health, Engineering, Murdoch University, Perth, WA, Australia
| | - Ricky R Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Elena Dallerba
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Jerome Lian
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Rodrigo Carlessi
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy.
| |
Collapse
|
2
|
Zhang C, Li J, Wang L, Ma J, Li X, Wu Y, Ren Y, Yang Y, Song H, Li J, Yang Y. Terazosin, a repurposed GPR119 agonist, ameliorates mitophagy and β-cell function in NAFPD by inhibiting MST1-Foxo3a signalling pathway. Cell Prolif 2024:e13764. [PMID: 39413003 DOI: 10.1111/cpr.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024] Open
Abstract
GPR119 agonists are being developed to safeguard the function of pancreatic β-cells, especially in the context of non-alcoholic fatty pancreas disease (NAFPD) that is closely associated with β-cell dysfunction. This study aims to employ a drug repurposing strategy to screen GPR119 agonists and explore their potential molecular mechanisms for enhancing β-cell function in the context of NAFPD. MIN6 cells were stimulated with palmitic acid (PA), and a NAFPD model was established in GPR119-/- mice fed with a high-fat diet (HFD). Terazosin, identified through screening, was utilized to assess its impact on enhancing β-cell function via the MST1-Foxo3a pathway and mitophagy. Terazosin selectively activated GPR119, leading to increased cAMP and ATP synthesis, consequently enhancing insulin secretion. Terazosin administration improved high blood glucose, obesity, and impaired pancreatic β-cell function in NAFPD mice. It inhibited the upregulation of MST1-Foxo3a expression in pancreatic tissue and enhanced damaged mitophagy clearance, restoring autophagic flux, and improving mitochondrial quantity and structure in β-cells. Nevertheless, GPR119 deficiency negated the positive impact of terazosin on pancreatic β-cell function in NAFPD mice and abolished its inhibitory effect on the MST1-Foxo3a pathway. Terazosin activates GPR119 on the surface of pancreatic β-cells, enhancing mitophagy and alleviating β-cell dysfunction in the context of NAFPD by suppressing the MST1-Foxo3a signalling pathway. Terazosin could be considered a priority treatment for patients with concomitant NAFPD and hypertension.
Collapse
Affiliation(s)
- Chenglei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiarui Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lijuan Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jie Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xin Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuanyuan Wu
- Department of Oncology, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanru Ren
- Day-Care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanhui Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hui Song
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jianning Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Patil M, Casari I, Thapa D, Warne LN, Dallerba E, Massi M, Carlessi R, Falasca M. Preclinical pharmacokinetics, pharmacodynamics, and toxicity of novel small-molecule GPR119 agonists to treat type-2 diabetes and obesity. Biomed Pharmacother 2024; 177:117077. [PMID: 38968799 DOI: 10.1016/j.biopha.2024.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
The escalating global prevalence of type-2 diabetes (T2D) and obesity necessitates the development of novel oral medications. Agonism at G-protein coupled receptor-119 (GPR119) has been recognized for modulation of metabolic homeostasis in T2D, obesity, and fatty liver disease. However, off-target effects have impeded the advancement of synthetic GPR119 agonist drug candidates. Non-systemic, gut-restricted GPR119 agonism is suggested as an alternative strategy that may locally stimulate intestinal enteroendocrine cells (EEC) for incretin secretion, without the need for systemic drug availability, consequently alleviating conventional class-related side effects. Herein, we report the preclinical acute safety, efficacy, and pharmacokinetics (PK) of novel GPR119 agonist compounds ps297 and ps318 that potentially target gut EEC for incretin secretion. In a proof-of-efficacy study, both compounds demonstrated glucagon-like peptide-1 (GLP-1) secretion capability during glucose and mixed-meal tolerance tests in healthy mice. Furthermore, co-administration of sitagliptin with investigational compounds in diabetic db/db mice resulted in synergism, with GLP-1 concentrations rising by three-fold. Both ps297 and ps318 exhibited low gut permeability assessed in the in-vitro Caco-2 cell model. A single oral dose PK study conducted on healthy mice demonstrated poor systemic bioavailability of both agents. PK measures (mean ± SD) for compound ps297 (Cmax 23 ± 19 ng/mL, Tmax range 0.5 - 1 h, AUC0-24 h 19.6 ± 21 h*ng/mL) and ps318 (Cmax 75 ± 22 ng/mL, Tmax range 0.25 - 0.5 h, AUC0-24 h 35 ± 23 h*ng/mL) suggest poor oral absorption. Additionally, examinations of drug excretion patterns in mice revealed that around 25 % (ps297) and 4 % (ps318) of the drugs were excreted through faeces as an unchanged form, while negligible drug concentrations (<0.005 %) were excreted in the urine. These acute PK/PD assessments suggest the gut is a primary site of action for both agents. Toxicity assessments conducted in the zebrafish and healthy mice models confirmed the safety and tolerability of both compounds. Future chronic in-vivo studies in relevant disease models will be essential to confirm the long-term safety and efficacy of these novel compounds.
Collapse
Affiliation(s)
- Mohan Patil
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Dinesh Thapa
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia; College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Elena Dallerba
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy.
| |
Collapse
|
4
|
Das S, Ravi H, Babu A, Banerjee M, Kanagavalli R, Dhanasekaran S, Devi Rajeswari V, Venkatraman G, Ramanathan G. Therapeutic potentials of glucose-dependent insulinotropic polypeptide (GIP) in T2DM: Past, present, and future. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:293-328. [PMID: 39059989 DOI: 10.1016/bs.apcsb.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide health problem that has raised major concerns to the public health community. This chronic condition typically results from the cell's inability to respond to normal insulin levels. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the primary incretin hormones secreted from the intestinal tract. While clinical research has extensively explored the therapeutic potential of GLP-1R in addressing various T2DM-related abnormalities, the possibility of GIPR playing an important role in T2DM treatment is still under investigation. Evidence suggests that GIP is involved in the pathophysiology of T2DM. This chapter focuses on examining the role of GIP as a therapeutic molecule in combating T2DM, comparing the past, present, and future scenarios. Our goal is to delve into how GIP may impact pancreatic β-cell function, adipose tissue uptake, and lipid metabolism. Furthermore, we will elucidate the mechanistic functions of GIP and its receptors in relation to other clinical conditions like cardiovascular diseases, non-alcoholic fatty liver diseases, neurodegenerative diseases, and renal disorders. Additionally, this chapter will shed light on the latest advancements in pharmacological management for T2DM, highlighting potential structural modifications of GIP and the repurposing of drugs, while also addressing the challenges involved in bringing GIP-based treatments into clinical practice.
Collapse
Affiliation(s)
- Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Achsha Babu
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Manosi Banerjee
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Kanagavalli
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Patil M, Casari I, Warne LN, Falasca M. G protein-coupled receptors driven intestinal glucagon-like peptide-1 reprogramming for obesity: Hope or hype? Biomed Pharmacother 2024; 172:116245. [PMID: 38340396 DOI: 10.1016/j.biopha.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.
Collapse
Affiliation(s)
- Mohan Patil
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, Western Australia 6872, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
6
|
Hryciw DH, Patten RK, Rodgers RJ, Proietto J, Hutchinson DS, McAinch AJ. GPR119 agonists for type 2 diabetes: past failures and future hopes for preclinical and early phase candidates. Expert Opin Investig Drugs 2024; 33:183-190. [PMID: 38372052 DOI: 10.1080/13543784.2024.2321271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is metabolic disorder associated with a decrease in insulin activity and/or secretion from the β-cells of the pancreas, leading to elevated circulating glucose. Current management practices for T2D are complex with varying long-term effectiveness. Agonism of the G protein-coupled receptor GPR119 has received a lot of recent interest as a potential T2D therapeutic. AREAS COVERED This article reviews studies focused on GPR119 agonism in animal models of T2D and in patients with T2D. EXPERT OPINION GPR119 agonists in vitro and in vivo can potentially regulate incretin hormone release from the gut, then pancreatic insulin release which regulates blood glucose concentrations. However, the success in controlling glucose homeostasis in rodent models of T2D and obesity, failed to translate to early-stage clinical trials in patients with T2D. However, in more recent studies, acute and chronic dosing with the GPR119 agonist DS-8500a had increased efficacy, although this compound was discontinued for further development. New trials on GPR119 agonists are needed, however it may be that the future of GPR119 agonists lie in the development of combination therapy with other T2D therapeutics.
Collapse
Affiliation(s)
- Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Griffith Institute of Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Rhiannon K Patten
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Raymond J Rodgers
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joseph Proietto
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Li R, Qian Y, Wang J, Han Z, Ye S, Wu S, Qiao A. Structure of human GPR119-G s complex binding APD597 and characterization of GPR119 binding agonists. Front Pharmacol 2024; 15:1310231. [PMID: 38288442 PMCID: PMC10823026 DOI: 10.3389/fphar.2024.1310231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The rhodopsin-like receptor GPR119 plays a crucial role in glucose homeostasis and is an emerging target for the treatment of type 2 diabetes mellitus. In this study, we analyzed the structure of GPR119 with the agonist APD597 bound and in complex with the downstream G protein trimer by single particle cryo-electron microscopy (cryo-EM). Structural comparison in combination with function assay revealed the conservative and specific effects of different kinds of GPR119 agonists. The activation mechanism of GPR119 was analyzed by comparing the conformational changes between the inactive and active states. The interaction between APD597 derivatives and synthetic agonists with GPR119 was analyzed by molecular docking technique, and the necessary structural framework was obtained. The above conclusions can provide structural and theoretical basis for the development of therapeutic drugs for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ruixue Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yuxia Qian
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jiening Wang
- School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhen Han
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Sheng Ye
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Shan Wu
- School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Anna Qiao
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Bansode AH, Damuka N, Bashetti N, Gollapelli KK, Krizan I, Bhoopal B, Miller M, Jv SK, Whitlow CT, McClain D, Ma T, Jorgensen MJ, Solingapuram Sai KK. First GPR119 PET Imaging Ligand: Synthesis, Radiochemistry, and Preliminary Evaluations. J Med Chem 2023; 66:9120-9129. [PMID: 37315328 PMCID: PMC10999001 DOI: 10.1021/acs.jmedchem.3c00720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.
Collapse
Affiliation(s)
- Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Shanmukha Kumar Jv
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Donald McClain
- Department of Endocrinology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Matthew J Jorgensen
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | | |
Collapse
|
10
|
Kim H, Kim M, Oh K, Lee S, Lim S, Lee S, Kim YH, Suh KH, Min KH. Discovery of orally active sulfonylphenyl thieno[3,2-d]pyrimidine derivatives as GPR119 agonists. Eur J Med Chem 2023; 258:115584. [PMID: 37356344 DOI: 10.1016/j.ejmech.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
G-protein-coupled receptor 119 (GPR119) has great potential as a therapeutic target for the treatment of type II diabetes. Novel thieno[3,2-d]pyrimidine derivatives were discovered as GPR119 agonists through a bioisosteric replacement strategy. The sulfonylphenyl thieno[3,2-d] pyrimidine scaffold was introduced, and its derivatives exhibited potent agonistic activity for GPR119 in cell-based assays. The representative derivative 43 displayed excellent pharmacokinetic profiles in rodents and significantly improved glucose tolerance in vivo. In OGTT study, compound 43 reduced significantly blood glucose levels in both mice and rats.
Collapse
Affiliation(s)
- Heecheol Kim
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea; College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minjung Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyujin Oh
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sohee Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sunyoung Lim
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea
| | - Sangdon Lee
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea
| | - Kyung Hoon Min
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
11
|
Yang T, Wang H, Li C, Duan H. Mechanisms of drugs in the treatment of type 2 diabetes mellitus. Chin Med J (Engl) 2023; 136:394-396. [PMID: 36921103 PMCID: PMC10106166 DOI: 10.1097/cm9.0000000000002356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 03/17/2023] Open
Affiliation(s)
- Tao Yang
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Hongmei Wang
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Caili Li
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Haogang Duan
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
12
|
DeMarsilis A, Reddy N, Boutari C, Filippaios A, Sternthal E, Katsiki N, Mantzoros C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022; 137:155332. [PMID: 36240884 DOI: 10.1016/j.metabol.2022.155332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes (T2D) is a widely prevalent disease with substantial economic and social impact for which multiple conventional and novel pharmacotherapies are currently available; however, the landscape of T2D treatment is constantly changing as new therapies emerge and the understanding of currently available agents deepens. This review aims to provide an updated summary of the pharmacotherapeutic approach to T2D. Each class of agents is presented by mechanism of action, details of administration, side effect profile, cost, and use in certain populations including heart failure, non-alcoholic fatty liver disease, obesity, chronic kidney disease, and older individuals. We also review targets of novel therapeutic T2D agent development. Finally, we outline an up-to-date treatment approach that starts with identification of an individualized goal for glycemic control then selection, initiation, and further intensification of a personalized therapeutic plan for T2D.
Collapse
Affiliation(s)
- Antea DeMarsilis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Niyoti Reddy
- Department of Medicine, School of Medicine, Boston University, Boston, USA
| | - Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Filippaios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Elliot Sternthal
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Christos Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Mingrone G, Castagneto-Gissey L, Bornstein SR. New Horizons: Emerging Antidiabetic Medications. J Clin Endocrinol Metab 2022; 107:e4333-e4340. [PMID: 36106900 DOI: 10.1210/clinem/dgac499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 02/13/2023]
Abstract
Over the past century, since the discovery of insulin, the therapeutic offer for diabetes has grown exponentially, in particular for type 2 diabetes (T2D). However, the drugs in the diabetes pipeline are even more promising because of their impressive antihyperglycemic effects coupled with remarkable weight loss. An ideal medication for T2D should target not only hyperglycemia but also insulin resistance and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and the new class of GLP1 and gastric inhibitory polypeptide dual RAs counteract 2 of these metabolic defects of T2D, hyperglycemia and obesity, with stunning results that are similar to the effects of metabolic surgery. An important role of antidiabetic medications is to reduce the risk and improve the outcome of cardiovascular diseases, including coronary artery disease and heart failure with reduced or preserved ejection fraction, as well as diabetic nephropathy, as shown by SGLT2 inhibitors. This review summarizes the main drugs currently under development for the treatment of type 1 diabetes and T2D, highlighting their strengths and side effects.
Collapse
Affiliation(s)
- Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome 00169, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00169, Italy
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
| | | | - Stefan R Bornstein
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
14
|
Qian Y, Wang J, Yang L, Liu Y, Wang L, Liu W, Lin Y, Yang H, Ma L, Ye S, Wu S, Qiao A. Activation and signaling mechanism revealed by GPR119-G s complex structures. Nat Commun 2022; 13:7033. [PMID: 36396650 PMCID: PMC9671963 DOI: 10.1038/s41467-022-34696-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Agonists selectively targeting cannabinoid receptor-like G-protein-coupled receptor (GPCR) GPR119 hold promise for treating metabolic disorders while avoiding unwanted side effects. Here we present the cryo-electron microscopy (cryo-EM) structures of the human GPR119-Gs signaling complexes bound to AR231453 and MBX-2982, two representative agonists reported for GPR119. The structures reveal a one-amino acid shift of the conserved proline residue of TM5 that forms an outward bulge, opening up a hydrophobic cavity between TM4 and TM5 at the middle of the membrane for its endogenous ligands-monounsaturated lipid metabolites. In addition, we observed a salt bridge between ICL1 of GPR119 and Gβs. Disruption of the salt bridge eliminates the cAMP production of GPR119, indicating an important role of Gβs in GPR119-mediated signaling. Our structures, together with mutagenesis studies, illustrate the conserved binding mode of the chemically different agonists, and provide insights into the conformational changes in receptor activation and G protein coupling.
Collapse
Affiliation(s)
- Yuxia Qian
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Jiening Wang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Linlin Yang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Liu
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Lina Wang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Yun Lin
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Hong Yang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Lixin Ma
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Sheng Ye
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China ,grid.13402.340000 0004 1759 700XLife Sciences Institute, Zhejiang University, Hangzhou, Zhejiang China
| | - Shan Wu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Anna Qiao
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
15
|
Marquez-Gomez PL, Kruyer NS, Eisen SL, Torp LR, Howie RL, Jones EV, France S, Peralta-Yahya P. Discovery of 8-Hydroxyquinoline as a Histamine Receptor 2 Blocker Scaffold. ACS Synth Biol 2022; 11:2820-2828. [PMID: 35930594 PMCID: PMC9396701 DOI: 10.1021/acssynbio.2c00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Histamine receptor 2 (HRH2) activation in
the stomach
results in gastric acid secretion, and HRH2 blockers are
used for the treatment of peptidic ulcers and acid reflux. Over-the-counter
HRH2 blockers carry a five-membered aromatic heterocycle,
with two of them additionally carrying a tertiary amine that decomposes
to N-nitrosodimethylamine, a human carcinogen. To discover a novel
HRH2 blocker scaffold to serve in the development of next-generation
HRH2 blockers, we developed an HRH2-based sensor
in yeast by linking human HRH2 activation to cell luminescence.
We used the HRH2-based sensor to screen a 403-member anti-infection
chemical library and identified three HRH2 blockers, chlorquinaldol,
chloroxine, and broxyquinoline, all sharing an 8-hydroxyquinoline
scaffold, which is not found among known HRH2 antagonists.
Critically, we validate their HRH2-blocking ability in
mammalian cells. Molecular docking suggests that the HRH2 blockers bind the histamine binding pocket and structure–activity
data point toward these blockers acting as competitive antagonists.
Chloroxine and broxyquinoline are antimicrobials that can be found
in the gastrointestinal tract at concentrations that would block HRH2, thus likely modulating gastric acid secretion. Taken together,
this work demonstrates the utility of GPCR-based sensors for rapid
drug discovery applications, identifies a novel HRH2 blocker
scaffold, and provides further evidence that antimicrobials not only
target the human microbiota but also the human host.
Collapse
Affiliation(s)
- Paola L Marquez-Gomez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nicholas S Kruyer
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sara L Eisen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lily R Torp
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rebecca L Howie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elizabeth V Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Lee IS, Ko SJ, Lee YN, Lee G, Rahman MH, Kim B. The Effect of Laminaria japonica on Metabolic Syndrome: A Systematic Review of Its Efficacy and Mechanism of Action. Nutrients 2022; 14:3046. [PMID: 35893900 PMCID: PMC9370431 DOI: 10.3390/nu14153046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Metabolic syndrome (MetS) is a medical condition characterized by abdominal obesity, insulin resistance, high blood pressure, and hyperlipidemia. An increase in the incidence of MetS provokes an escalation in health care costs and a downturn in quality of life. However, there is currently no cure for MetS, and the absence of immediate treatment for MetS has prompted the development of novel therapies. In accordance with recent studies, the brown seaweed Laminaria japonica (LJP) has anti-inflammatory and antioxidant properties, and so forth. LJP contains bioactive compounds used as food globally, and it has been used as a medicine in East Asian countries. We conducted a systematic review to examine whether LJP could potentially be a useful therapeutic drug for MetS. The following databases were searched from initiation to September 2021: PubMed, Web of Science, EMBASE, and Cochrane Central Register of Controlled Trials Library. Clinical trials and in vivo studies evaluating the effects of LJP on MetS were included. LJP reduces the oxidative stress-related lipid mechanisms, inflammatory cytokines and macrophage-related chemokines, muscle cell proliferation, and migration. Bioactive-glucosidase inhibitors reduce diabetic complications, a therapeutic target in obesity and type 2 diabetes. In obesity, LJP increases AMP-activated protein kinase and decreases acetyl-CoA carboxylase. Based on our findings, we suggest that LJP could treat MetS, as it has pharmacological effects on MetS.
Collapse
Affiliation(s)
- In-Seon Lee
- Department of Meridians and Acupoints, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
| | - Yu Na Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Gahyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Md. Hasanur Rahman
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| |
Collapse
|
17
|
The Sensory Mechanisms of Nutrient-Induced GLP-1 Secretion. Metabolites 2022; 12:metabo12050420. [PMID: 35629924 PMCID: PMC9147592 DOI: 10.3390/metabo12050420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
The enteroendocrine system of the gut regulates energy homeostasis through the release of hormones. Of the gut-derived hormones, GLP-1 is particularly interesting, as analogs of the hormone have proven to be highly effective for the treatment of type 2 diabetes mellitus and obesity. Observations on increased levels of GLP-1 following gastric bypass surgery have enhanced the interest in endogenous hormone secretion and highlighted the potential of endogenous secretion in therapy. The macronutrients and their digestive products stimulate the secretion of GLP-1 through various mechanisms that we have only begun to understand. From findings obtained from different experimental models, we now have strong indications for a role for both Sodium-Glucose Transporter 1 (SGLT1) and the K+ATP channel in carbohydrate-induced GLP-1 secretion. For fat, the free fatty acid receptor FFA1 and the G-protein-coupled receptor GPR119 have been linked to GLP-1 secretion. For proteins, Peptide Transporter 1 (Pept1) and the Calcium-Sensing Receptor (CaSR) are thought to mediate the secretion. However, attempts at clinical application of these mechanisms have been unsuccessful, and more work is needed before we fully understand the mechanisms of nutrient-induced GLP-1 secretion.
Collapse
|
18
|
Thor D. G protein-coupled receptors as regulators of pancreatic islet functionality. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119235. [PMID: 35151663 DOI: 10.1016/j.bbamcr.2022.119235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023]
Abstract
Glucose homeostasis is maintained by hormones secreted from different types of pancreatic islets and its dysregulation can result in diseases including diabetes mellitus. The secretion of hormones from pancreatic islets is highly complex and tightly controlled by G protein-coupled receptors (GPCRs). Moreover, GPCR signaling may play a role in enhancing islet cell replication and proliferation. Thus, targeting GPCRs offers a promising strategy for regulating the functionality of pancreatic islets. Here, available RNAseq datasets from human and mouse islets were used to identify the GPCR expression profile and the impact of GPCR signaling for normal islet functionality is discussed.
Collapse
Affiliation(s)
- Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
19
|
Accurate in silico simulation of the rabbit Purkinje fiber electrophysiological assay to facilitate early pharmaceutical cardiosafety assessment: Dream or reality? J Pharmacol Toxicol Methods 2022; 115:107172. [DOI: 10.1016/j.vascn.2022.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
|
20
|
Joshi M, Nikte SV, Sengupta D. Molecular determinants of GPCR pharmacogenetics: Deconstructing the population variants in β 2-adrenergic receptor. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:361-396. [PMID: 35034724 DOI: 10.1016/bs.apcsb.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that play a central role in cell signaling and constitute one of the largest classes of drug targets. The molecular mechanisms underlying GPCR function have been characterized by several experimental and computational methods and provide an understanding of their role in physiology and disease. Population variants arising from nsSNPs affect the native function of GPCRs and have been implicated in differential drug response. In this chapter, we provide an overview on GPCR structure and activation, with a special focus on the β2-adrenergic receptor (β2-AR). First, we discuss the current understanding of the structural and dynamic features of the wildtype receptor. Subsequently, the population variants identified in this receptor from clinical and large-scale genomic studies are described. We show how computational approaches such as bioinformatics tools and molecular dynamics simulations can be used to characterize the variant receptors in comparison to the wildtype receptor. In particular, we discuss three examples of clinically important variants and discuss how the structure and function of these variants differ from the wildtype receptor at a molecular level. Overall, the chapter provides an overview of structure and function of GPCR variants and is a step towards the study of inter-individual differences and personalized medicine.
Collapse
Affiliation(s)
- Manali Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Siddhanta V Nikte
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
21
|
Dahlén AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schiöth HB. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front Pharmacol 2022; 12:807548. [PMID: 35126141 PMCID: PMC8807560 DOI: 10.3389/fphar.2021.807548] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) continues to be a substantial medical problem due to its increasing global prevalence and because chronic hyperglycemic states are closely linked with obesity, liver disease and several cardiovascular diseases. Since the early discovery of insulin, numerous antihyperglycemic drug therapies to treat diabetes have been approved, and also discontinued, by the United States Food and Drug Administration (FDA). To provide an up-to-date account of the current trends of antidiabetic pharmaceuticals, this review offers a comprehensive analysis of the main classes of antihyperglycemic compounds and their mechanisms: insulin types, biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors (AGIs), thiazolidinediones (TZD), incretin-dependent therapies, sodium-glucose cotransporter type 2 (SGLT2) inhibitors and combinations thereof. The number of therapeutic alternatives to treat T2DM are increasing and now there are nearly 60 drugs approved by the FDA. Beyond this there are nearly 100 additional antidiabetic agents being evaluated in clinical trials. In addition to the standard treatments of insulin therapy and metformin, there are new drug combinations, e.g., containing metformin, SGLT2 inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors, that have gained substantial use during the last decade. Furthermore, there are several interesting alternatives, such as lobeglitazone, efpeglenatide and tirzepatide, in ongoing clinical trials. Modern drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP4 inhibitors and SGLT2 inhibitors have gained popularity on the pharmaceutical market, while less expensive over the counter alternatives are increasing in developing economies. The large heterogeneity of T2DM is also creating a push towards more personalized and accessible treatments. We describe several interesting alternatives in ongoing clinical trials, which may help to achieve this in the near future.
Collapse
Affiliation(s)
- Amelia D. Dahlén
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Giovanna Dashi
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ivan Maslov
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Misty M. Attwood
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vladimir Trukhan
- Russia Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Russia Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
22
|
Roberts A, Phuah P, Cheng S, Murphy KG. Targeting Enteroendocrine Cells to Treat Metabolic Disease. COMPREHENSIVE PHARMACOLOGY 2022:344-372. [DOI: 10.1016/b978-0-12-820472-6.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Kim MK, Cheong YH, Lee SH, Kim TH, Jung IH, Chae Y, Lee JH, Yang EK, Park H, Yang JS, Hong KW. A novel GPR119 agonist DA-1241 preserves pancreatic function via the suppression of ER stress and increased PDX1 expression. Biomed Pharmacother 2021; 144:112324. [PMID: 34678732 DOI: 10.1016/j.biopha.2021.112324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
DA-1241 is a novel small molecule G protein-coupled receptor 119 (GPR119) agonist in early clinical development for type 2 diabetic patients. This study aimed to elucidate the pharmacological characteristics of DA-1241 for its hypoglycemic action. DA-1241 potently and selectively activated GPR119 with enhanced maximum efficacy. DA-1241 increased intracellular cAMP in HIT-T15 insulinoma cells (EC50, 14.7 nM) and increased insulin secretion (EC50, 22.3 nM) in association with enhanced human insulin promoter activity. Accordingly, postprandial plasma insulin levels were increased in mice after single oral administration of DA-1241. Postprandial glucose excursion was significantly reduced by single oral administration of DA-1241 in wild-type mice but not in GPR119 knockout mice. GLP-1 secretion was increased by DA-1241 treatment in mice. Thus, upon combined sitagliptin and DA-1241 treatment in high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mice, plasma active GLP-1 levels were synergistically increased. Accordingly, blood glucose and triglyceride levels were significantly lowered both by DA-1241 and sitagliptin alone and in combination. Immunohistochemical analysis revealed that β-cell mass with reduced PDX1 levels in the islets from HFD/STZ diabetic mice was significantly preserved by DA-1241, whereas increased glucagon and BiP levels were significantly suppressed. In HIT-T15 insulinoma cells subjected to ER stress, decreased cell viability was significantly rescued by treatment with DA-1241. Additionally, increased apoptosis was largely attenuated by DA-1241 by inhibiting BiP and CHOP expression through suppression of p38 MAPK. In conclusion, these studies provide evidence that DA-1241 can be a promising antidiabetic drug by potentially preserving pancreatic functions through suppressing ER stress and increasing PDX1 expression.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line, Tumor
- Cricetinae
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat
- Endoplasmic Reticulum Stress/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Male
- Mice, Inbred ICR
- Mice, Knockout
- Oxadiazoles/pharmacology
- Oxadiazoles/therapeutic use
- Pancreas/drug effects
- Pancreas/metabolism
- Pancreas/pathology
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Streptozocin
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Triglycerides/blood
- Up-Regulation
- Mice
- Rats
Collapse
Affiliation(s)
- Mi-Kyung Kim
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea.
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Seung Ho Lee
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Tae Hyoung Kim
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Il Hoon Jung
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Yuna Chae
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Jeong-Ha Lee
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Eun Kyoung Yang
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Hansu Park
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Jae-Sung Yang
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Ki Whan Hong
- Department of Pharmacology, School of Medicine, Pusan National University, 46241, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
24
|
Paternoster S, Simpson PV, Kokh E, Kizilkaya HS, Rosenkilde MM, Mancera RL, Keating DJ, Massi M, Falasca M. Pharmacological and structure-activity relationship studies of oleoyl-lysophosphatidylinositol synthetic mimetics. Pharmacol Res 2021; 172:105822. [PMID: 34411732 DOI: 10.1016/j.phrs.2021.105822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023]
Abstract
Metabolic diseases, such as obesity and type 2 diabetes, are relentlessly spreading worldwide. The beginning of the 21st century has seen the introduction of mechanistically novel types of drugs, aimed primarily at keeping these pathologies under control. In particular, an important family of therapeutics exploits the beneficial physiology of the gut-derived glucagon-like peptide-1 (GLP-1), with important clinical benefits, from glycaemic control to cardioprotection. Nonetheless, these protein-based drugs act systemically as exogenous GLP-1 mimetics and are not exempt from side effects. The food-derived lipid oleoyl-lysophosphatidylinositol (LPI) is a potent GPR119-dependent GLP-1 secreting agent. Here we present a structure-activity relationship (SAR) study of a synthetic library of oleoyl-LPI mimetics capable to induce the physiological release of GLP-1 from gastrointestinal enteroendocrine cells (EECs). The best lead compounds have shown potent and efficient release of GLP-1 in vitro from human and murine cells, and in vivo in diabetic db/db mice. We have also generated a molecular model of oleoyl-LPI, as well as its best performing analogues, interacting with the orthosteric site of GPR119, laying foundational evidence for their pharmacological activity.
Collapse
Affiliation(s)
- Silvano Paternoster
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Peter V Simpson
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Elena Kokh
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ricardo L Mancera
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
25
|
Knerr JM, Kledal TN, Rosenkilde MM. Molecular Properties and Therapeutic Targeting of the EBV-Encoded Receptor BILF1. Cancers (Basel) 2021; 13:4079. [PMID: 34439235 PMCID: PMC8392491 DOI: 10.3390/cancers13164079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The γ-herpesvirus Epstein-Barr Virus (EBV) establishes lifelong infections in approximately 90% of adults worldwide. Up to 1,000,000 people yearly are estimated to suffer from health conditions attributed to the infection with this virus, such as nasopharyngeal and gastric carcinomas as well as several forms of B, T and NK cell lymphoma. To date, no EBV-specific therapeutic option has reached the market, greatly reducing the survival prognoses of affected patients. Similar to other herpesviruses, EBV encodes for a G protein-coupled receptor (GPCR), BILF1, affecting a multitude of cellular signaling pathways. BILF1 has been identified to promote immune evasion and tumorigenesis, effectively ensuring a life-long persistence of EBV in, and driving detrimental health conditions to its host. This review summarizes the epidemiology of EBV-associated malignancies, their current standard-of-care, EBV-specific therapeutics in development, GPCRs and their druggability, and most importantly consolidates the findings of over 15 years of research on BILF1 in the context of EBV-specific drug development. Taken together, BILF1 constitutes a promising target for the development of novel EBV-specific therapeutics.
Collapse
Affiliation(s)
- Julius Maximilian Knerr
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| | | | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| |
Collapse
|
26
|
Zhao J, Zhao Y, Hu Y, Peng J. Targeting the GPR119/incretin axis: a promising new therapy for metabolic-associated fatty liver disease. Cell Mol Biol Lett 2021; 26:32. [PMID: 34233623 PMCID: PMC8265056 DOI: 10.1186/s11658-021-00276-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
In the past decade, G protein-coupled receptors have emerged as drug targets, and their physiological and pathological effects have been extensively studied. Among these receptors, GPR119 is expressed in multiple organs, including the liver. It can be activated by a variety of endogenous and exogenous ligands. After GPR119 is activated, the cell secretes a variety of incretins, including glucagon-like peptide-1 and glucagon-like peptide-2, which may attenuate the metabolic dysfunction associated with fatty liver disease, including improving glucose and lipid metabolism, inhibiting inflammation, reducing appetite, and regulating the intestinal microbial system. GPR119 has been a potential therapeutic target for diabetes mellitus type 2 for many years, but its role in metabolic dysfunction associated fatty liver disease deserves further attention. In this review, we discuss relevant research and current progress in the physiology and pharmacology of the GPR119/incretin axis and speculate on the potential therapeutic role of this axis in metabolic dysfunction associated with fatty liver disease, which provides guidance for transforming experimental research into clinical applications.
Collapse
Affiliation(s)
- Jianan Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yu Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China. .,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China. .,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
27
|
Li H, Fang Y, Guo S, Yang Z. GPR119 agonists for the treatment of type 2 diabetes: an updated patent review (2014-present). Expert Opin Ther Pat 2021; 31:795-808. [PMID: 33896337 DOI: 10.1080/13543776.2021.1921152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Type 2 diabetes is a rapid-growing complex chronic metabolic disease characterized by hyperglycemia due to lessened insulin secretion, insulin resistance and hepatic glucose overproduction. GPR119 is a class A of G protein-coupled receptor, expressed on certain enteroendocrine L and K cells in the small intestine and by β-cells within the islets of Langerhans of the pancreas. Activation of GPR119 stimulates the secretion of glucagon-like peptide-1 (GLP-1) in the intestinal tract and glucose-dependent release of insulin in pancreatic β-cells.Area covered: This review summarized the reported patents on GPR119 agonists from 2014 to present. The authors described the structural features of these novel synthetic molecules and compared their biological activities (including in vitro and in vivo) as potent GPR119 agonists for the treatment of diabetes.Expert opinion: GPR119 agonists remain the advantage of stimulating both insulin and incretin release in a glucose-dependent manner over other hypoglycemic agents, although some GPR119 agonist clinical candidates have been discontinued in Phase І or Phase II. GPR119 agonists will succeed to be developed as anti-diabetic drugs after accumulated scaffolds of agonists are discovered and the crystallographic structure of GPR119 is elucidated. The synergic effect of GPR119 agonist and DPP-4 inhibitor will also elicit a benefit for the new therapeutic of diabetes.
Collapse
Affiliation(s)
- Huilan Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuchun Guo
- Medicinal Chemistry Department, Shanghai Jemincare Pharm Co., LTD, Shanghai, China
| | - Zunhua Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
28
|
Pola S, Shah SR, Pingali H, Zaware P, Thube B, Makadia P, Patel H, Bandyopadhyay D, Rath A, Giri S, Patel JH, Ranvir RK, Sundar SR, Patel H, Kumar J, Jain MR. Discovery of a potent G-protein-coupled receptor 119 agonist for the treatment of type 2 diabetes. Bioorg Med Chem 2021; 35:116071. [PMID: 33611013 DOI: 10.1016/j.bmc.2021.116071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing prevalence of Type-2 diabetes in the world has an urgent need for multiple orally effective agents that can regulate glucose homeostasis. G-Protein coupled receptor 119 (GPR 119) agonists have demonstrated the glucose-dependent insulin secretion and showed beneficial effects on glycemic control in humans and/or relevant animal models. Herein, we describe our efforts towards identification of a potent and oral GPR 119 agonist 13c (ZY-G19), which showed in vitro potency in the cell-based assay and in vivo efficacy without exerting any significant signs of toxicity in relevant animal models.
Collapse
Affiliation(s)
- Suresh Pola
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India; Department of Chemistry, Faculty of Science, M. S. University of Baroda, Vadodara 390002, India.
| | - Shailesh R Shah
- Department of Chemistry, Faculty of Science, M. S. University of Baroda, Vadodara 390002, India.
| | - Harikishore Pingali
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Pandurang Zaware
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Baban Thube
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Pankaj Makadia
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Hoshang Patel
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | | | - Akshyaya Rath
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Suresh Giri
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Jitendra H Patel
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - R K Ranvir
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - S R Sundar
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Harilal Patel
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Jeevan Kumar
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| | - Mukul R Jain
- Zydus Research Centre, Sarkhej-Bavla N.H 8A Moraiya, Ahmedabad 382210, India
| |
Collapse
|
29
|
Gupta A, Behl T, Sehgal A, Bhardwaj S, Singh S, Sharma N, Hafeez A. Exploring the recent molecular targets for diabetes and associated complications. Mol Biol Rep 2021; 48:2863-2879. [PMID: 33763776 DOI: 10.1007/s11033-021-06294-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022]
Abstract
Diabetes is likely one of the centenarian diseases which is apprehended with certainty to humans. According to established protocols of the World Health Organisation (WHO) and numerous investigated studies diabetes is analyzed as a stellar and leading health issue worldwide. Although, the implicit costs of this pathology are increasing every year, thus, there is a need to find a novel method which can provide promising results in the management of diabetes and can overcome the side effects associated with the conventional medication. Comprehensive review of this topic was undertaken through various research and review papers which were conducted using MEDLINE, BIOSIS and EMBASE database. Using various keywords, we retrieve the most relevant content for the thorough review on recent targets and novel molecular pathways for targeting diabetes and associated complications. From the detailed analysis, we have highlighted some molecular pathways and novel targets which had shown promising results in both in-vitro and in-vivo studies and may be considered as pipeline target for clinical trials. Furthermore, these targets not only abetted amelioration of diabetes but also helped in mitigation of diabetes associated complications as well. Thus, based on the available information and literature on these potential molecules, conclusive evidence can be drawn which confirms targeting these novel pathways may unleash an array of benefits that have the potential to overpower the benefits obtained from conventional therapy in the management of diabetes thereby decreasing morbidity and mortality associated with diabetic complications.
Collapse
Affiliation(s)
- Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shaveta Bhardwaj
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Uttar Pradesh, India
| |
Collapse
|
30
|
Lillich FF, Imig JD, Proschak E. Multi-Target Approaches in Metabolic Syndrome. Front Pharmacol 2021; 11:554961. [PMID: 33776749 PMCID: PMC7994619 DOI: 10.3389/fphar.2020.554961] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent disease cluster worldwide. It requires polypharmacological treatment of the single conditions including type II diabetes, hypertension, and dyslipidemia, as well as the associated comorbidities. The complex treatment regimens with various drugs lead to drug-drug interactions and inadequate patient adherence, resulting in poor management of the disease. Multi-target approaches aim at reducing the polypharmacology and improving the efficacy. This review summarizes the medicinal chemistry efforts to develop multi-target ligands for MetS. Different combinations of pharmacological targets in context of in vivo efficacy and future perspective for multi-target drugs in MetS are discussed.
Collapse
Affiliation(s)
- Felix F. Lillich
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt, Germany
| | - John D. Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
31
|
Le Y, Zhang Y, Wang Q, Rao N, Li D, Liu L, Ouyang G, Yan L. Microwave-assisted synthesis of phenylpyrimidine derivatives via Suzuki-Miyaura reactions in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Im DS. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide. Int J Mol Sci 2021; 22:ijms22031034. [PMID: 33494185 PMCID: PMC7864322 DOI: 10.3390/ijms22031034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oleoylethanolamide and palmitoylethanolamide are members of the fatty acid ethanolamide family, also known as acylethanolamides. Their physiological effects, including glucose homeostasis, anti-inflammation, anti-anaphylactic, analgesia, and hypophagia, have been reported. They have affinity for different receptor proteins, including nuclear receptors such as PPARα, channels such as TRPV1, and membrane receptors such as GPR119 and GPR55. In the present review, the pathophysiological functions of fatty acid ethanolamides have been discussed from the perspective of receptor pharmacology and drug discovery.
Collapse
Affiliation(s)
- Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; ; Tel.: +82-2-961-9377; Fax: +82-2-961-9580
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
33
|
Zeng Z, Huang SY, Sun T. Pharmacogenomic Studies of Current Antidiabetic Agents and Potential New Drug Targets for Precision Medicine of Diabetes. Diabetes Ther 2020; 11:2521-2538. [PMID: 32930968 PMCID: PMC7548012 DOI: 10.1007/s13300-020-00922-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes is a major threat to people's health and has become a burden worldwide. Current drugs for diabetes have limitations, such as different drug responses among individuals, failure to achieve glycemic control, and adverse effects. Exploring more effective therapeutic strategies for patients with diabetes is crucial. Currently pharmacogenomics has provided potential for individualized drug therapy based on genetic and genomic information of patients, and has made precision medicine possible. Responses and adverse effects to antidiabetic drugs are significantly associated with gene polymorphisms in patients. Many new targets for diabetes also have been discovered and developed, and even entered clinical trial phases. This review summarizes pharmacogenomic evidence of some current antidiabetic agents applied in clinical settings, and highlights potential drugs with new targets for diabetes, which represent a more effective treatment in the future.
Collapse
Affiliation(s)
- Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Shi-Ying Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
34
|
Simard JC, Thibodeau JF, Leduc M, Tremblay M, Laverdure A, Sarra-Bournet F, Gagnon W, Ouboudinar J, Gervais L, Felton A, Letourneau S, Geerts L, Cloutier MP, Hince K, Corpuz R, Blais A, Quintela VM, Duceppe JS, Abbott SD, Blais A, Zacharie B, Laurin P, Laplante SR, Kennedy CRJ, Hébert RL, Leblond FA, Grouix B, Gagnon L. Fatty acid mimetic PBI-4547 restores metabolic homeostasis via GPR84 in mice with non-alcoholic fatty liver disease. Sci Rep 2020; 10:12778. [PMID: 32728158 PMCID: PMC7391726 DOI: 10.1038/s41598-020-69675-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is the most common form of liver disease and is associated with metabolic dysregulation. Although G protein-coupled receptor 84 (GPR84) has been associated with inflammation, its role in metabolic regulation remains elusive. The aim of our study was to evaluate the potential of PBI-4547 for the treatment of NAFLD and to validate the role of its main target receptor, GPR84. We report that PBI-4547 is a fatty acid mimetic, acting concomitantly as a GPR84 antagonist and GPR40/GPR120 agonist. In a mouse model of diet-induced obesity, PBI-4547 treatment improved metabolic dysregulation, reduced hepatic steatosis, ballooning and NAFLD score. PBI-4547 stimulated fatty acid oxidation and induced gene expression of mitochondrial uncoupling proteins in the liver. Liver metabolomics revealed that PBI-4547 improved metabolic dysregulation induced by a high-fat diet regimen. In Gpr84−/− mice, PBI-4547 treatment failed to improve various key NAFLD-associated parameters, as was observed in wildtype littermates. Taken together, these results highlight a detrimental role for the GPR84 receptor in the context of meta-inflammation and suggest that GPR84 antagonism via PBI-4547 may reflect a novel treatment approach for NAFLD and its related complications.
Collapse
Affiliation(s)
- Jean-Christophe Simard
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Jean-François Thibodeau
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada. .,Department of Cellular and Molecular Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Martin Leduc
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Mikael Tremblay
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Alexandre Laverdure
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - François Sarra-Bournet
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - William Gagnon
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Jugurtha Ouboudinar
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Liette Gervais
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Alexandra Felton
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Sylvie Letourneau
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Lilianne Geerts
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Marie-Pier Cloutier
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Kathy Hince
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Ramon Corpuz
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Alexandra Blais
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Vanessa Marques Quintela
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Jean-Simon Duceppe
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Shaun D Abbott
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Amélie Blais
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Boulos Zacharie
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Pierre Laurin
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Steven R Laplante
- Institut National de La Recherche Scientifique, Institut Armand-Frappier, 531 Boul. Des Prairies, Laval, QC, H7V 5B7, Canada
| | - Christopher R J Kennedy
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - François A Leblond
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Brigitte Grouix
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Lyne Gagnon
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| |
Collapse
|
35
|
Johansson KS, Sonne DP, Knop FK, Christensen MB. What is on the horizon for type 2 diabetes pharmacotherapy? – An overview of the antidiabetic drug development pipeline. Expert Opin Drug Discov 2020; 15:1253-1265. [DOI: 10.1080/17460441.2020.1791078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karl Sebastian Johansson
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David Peick Sonne
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Exploring G Protein-Coupled Receptor Signaling in Primary Pancreatic Islets. Biol Proced Online 2020; 22:4. [PMID: 32082084 PMCID: PMC7023723 DOI: 10.1186/s12575-019-0116-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Targeting G protein-coupled receptors (GPCRs) in pancreatic cells is feasible to modulate glucose-induced insulin secretion. Because pancreatic islets consist of several cell types and GPCRs can couple to more than one G-protein family, results obtained in pancreatic cell lines do not always match the response in primary cells or intact islets. Therefore, we set out to establish a protocol to analyze second messenger activation in mouse pancreatic islets. Results Activation of Gq/11-coupled receptor expressed in primary β cells increased the second messenger IP1 in an accumulation assay. Applying a Gq/11 protein inhibitor completely abolished this signal. Activation of the V1 vasopressin and ghrelin receptors, predominantly expressed in the less abundant alpha and delta cells, was not sufficient to induce a significant IP1 increase in this assay. However, fura-2-based fluorescence imaging showed calcium signals upon application of arginine vasopressin or ghrelin within intact pancreatic islets. Using the here established protocol we were also able to determine changes in intracellular cAMP levels induced by receptors coupling to Gs and Gi/o proteins. Conclusions Detection of the second messengers IP1, cAMP, and calcium, can be used to reliably analyze GPCR activation in intact islets.
Collapse
|
38
|
Li G, Meng B, Yuan B, Huan Y, Zhou T, Jiang Q, Lei L, Sheng L, Wang W, Gong N, Lu Y, Ma C, Li Y, Shen Z, Huang H. The optimization of xanthine derivatives leading to HBK001 hydrochloride as a potent dual ligand targeting DPP-IV and GPR119. Eur J Med Chem 2020; 188:112017. [DOI: 10.1016/j.ejmech.2019.112017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/12/2023]
|
39
|
Zuo Z, Chen M, Shao X, Qian X, Liu X, Zhou X, Xiang J, Deng P, Li Y, Jie H, Liu C, Cen X, Xie Y, Zhao Y. Design and biological evaluation of tetrahydropyridine derivatives as novel human GPR119 agonists. Bioorg Med Chem Lett 2019; 30:126855. [PMID: 31898998 DOI: 10.1016/j.bmcl.2019.126855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/05/2023]
Abstract
A series of novel tetrahydropyridine derivatives were prepared and evaluated using cell-based measurements. Systematic optimization of general structure G-1 led to the identification of compound 35 (EC50 = 4.9 nM) and 37 (EC50 = 8.8 nM) with high GPR119 agonism activity and moderate clog P. Through single and long-term pharmacodynamic experiments, we found that compound35 showed a hypoglycemic effect and may have an effect on improving basal metabolic rate in DIO mice. Both in vitro and in vivo tests indicated that compound 35 was a potential potent GPR119 agonist in allusion to T2DM treatment.
Collapse
Affiliation(s)
- Zeping Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Miaomiao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaoni Shao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinying Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiawei Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Pengchi Deng
- Analytical &Testing Center, Sichuan University, Chengdu 610041, China
| | - Yan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hui Jie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
40
|
Devi S, Nongkhlaw B, Limesh M, Pasanna RM, Thomas T, Kuriyan R, Kurpad AV, Mukhopadhyay A. Acyl ethanolamides in Diabetes and Diabetic Nephropathy: Novel targets from untargeted plasma metabolomic profiles of South Asian Indian men. Sci Rep 2019; 9:18117. [PMID: 31792390 PMCID: PMC6889195 DOI: 10.1038/s41598-019-54584-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
The pathophysiology of diabetic nephropathy (DN) in type 2 diabetes (T2D) patients is minimally understood. We compared untargeted high-resolution accurate mass (HRAM) orbitrap-based plasma metabolomic profiles of 31 T2D-DN (with estimated glomerular filtration rate ≤80 mL/min/1.73 m2), 29 T2D and 30 normal glucose tolerance (NGT) Indian men. Of the 939 plasma metabolites that were differentially abundant amongst the NGT, T2D and T2D-DN (ANOVA, False Discovery Rate – FDR adjusted p-value < 0.05), 48 were associated with T2D irrespective of the renal function of the subjects. Acyl ethanolamides and acetylcholine were decreased while monoacylglycerols (MAGs) and cortisol were elevated in both T2D and T2D-DN. Sixteen metabolites, including amino acid metabolites Imidazolelactate and N-Acetylornithine, changed significantly between NGT, T2D and T2D-DN. 192 metabolites were specifically dysregulated in T2D-DN (ratio ≥2 or ≤0.5 between T2D-DN and T2D, similar abundance in NGT and T2D). These included increased levels of multiple acylcarnitine and amino acid metabolites. We observed a significant dysregulation of amino acid and fatty acid metabolism in South Asian Indian male T2D-DN subjects. Unique to this study, we report a reduction in acyl ethanolamide levels in both T2D and T2D-DN males. Those with dysregulation in acyl ethanolamides, which are endogenous agonists of GPR119, are likely to exhibit improved glycemic control with GPR119 agonists.
Collapse
Affiliation(s)
- Sarita Devi
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Bajanai Nongkhlaw
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - M Limesh
- Department of Nephrology, St. John's Medical College and Hospital, St. John's National Academy of Health Sciences, Bangalore, India
| | - Roshni M Pasanna
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Tinku Thomas
- Department of Biostatistics, St. John's Medical College and Hospital, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Anura V Kurpad
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.
| |
Collapse
|
41
|
Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 2019; 1:1189-1201. [PMID: 32694675 PMCID: PMC7378277 DOI: 10.1038/s42255-019-0148-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management.
Collapse
Affiliation(s)
- Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
42
|
Veilleux A, Di Marzo V, Silvestri C. The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Curr Diab Rep 2019; 19:117. [PMID: 31686231 DOI: 10.1007/s11892-019-1248-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. RECENT FINDINGS As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D.
Collapse
Affiliation(s)
- Alain Veilleux
- École de nutrition, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada
| | - Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada
- Institut de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
- Department de médecine, Université Laval, Québec, QC, Canada
| | - Cristoforo Silvestri
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada.
- Institut de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada.
- Department de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
43
|
Nieto A, Fernández-Vega V, Spicer TP, Sturchler E, Adhikari P, Kennedy N, Mandat S, Chase P, Scampavia L, Bannister T, Hodder P, McDonald PH. Identification of Novel, Structurally Diverse, Small Molecule Modulators of GPR119. Assay Drug Dev Technol 2019; 16:278-288. [PMID: 30019946 DOI: 10.1089/adt.2018.849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GPR119 drug discovery efforts in the pharmaceutical industry for the treatment of type 2 diabetes mellitus (T2DM) and obesity, were initiated based on its restricted distribution in pancreas and GI tract, and its possible role in glucose homeostasis. While a number of lead series have emerged, the pharmacological endpoints they provide have not been clear. In particular, many lead series have demonstrated loss of efficacy and significant toxic side effects. Thus, we sought to identify novel, potent, positive modulators of GPR119. In this study, we have successfully developed and optimized a high-throughput screening strategy to identify GPR119 modulators using a live cell assay format that utilizes a cyclic nucleotide-gated channel as a biosensor for cAMP production. Our high-throughput screening (HTS) approach is unique to that of previous HTS approaches targeting this receptor, as changes in cAMP were measured both in the presence and absence of an EC10 of the endogenous ligand, oleoylethanolamide, enabling detection of both agonists and potential allosteric modulators in a single assay. From these efforts, we have identified positive modulators of GPR119 with similar as well as unique scaffolds compared to existing compounds and similar as well as unique signaling properties. Our compounds will not only serve as novel molecular probes to better understand GPR119 pleiotropic signaling and the underlying physiological consequences of receptor activation, but are also well-suited for translation as potential therapeutic agents.
Collapse
Affiliation(s)
- Ainhoa Nieto
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | | | - Timothy P Spicer
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Emmanuel Sturchler
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Pramisha Adhikari
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Nicole Kennedy
- 2 Department of Chemistry, The Scripps Research Institute , Jupiter, Florida
| | - Sean Mandat
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Peter Chase
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Louis Scampavia
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Thomas Bannister
- 2 Department of Chemistry, The Scripps Research Institute , Jupiter, Florida
| | - Peter Hodder
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Patricia H McDonald
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| |
Collapse
|
44
|
Gupta MK, Vasudevan NT. GPCRs and Insulin Receptor Signaling in Conversation: Novel Avenues for Drug Discovery. Curr Top Med Chem 2019; 19:1436-1444. [PMID: 31512997 DOI: 10.2174/1568026619666190712211642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes is a major health issue worldwide with complex metabolic and endocrine abnormalities. Hyperglycemia, defects in insulin secretion and insulin resistance are classic features of type 2 diabetes. Insulin signaling regulates metabolic homeostasis by regulating glucose and lipid turnover in the liver, skeletal muscle and adipose tissue. Major treatment modalities for diabetes include the drugs from the class of sulfonyl urea, Insulin, GLP-1 agonists, SGLT2 inhibitors, DPP-IV inhibitors and Thiazolidinediones. Emerging antidiabetic therapeutics also include classes of drugs targeting GPCRs in the liver, adipose tissue and skeletal muscle. Interestingly, recent research highlights several shared intermediates between insulin and GPCR signaling cascades opening potential novel avenues for diabetic drug discovery.
Collapse
Affiliation(s)
- Manveen K Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
45
|
Fang Y, Zhang S, Li M, Xiong L, Tu L, Xie S, Jin Y, Liu Y, Yang Z, Liu R. Optimisation of novel 4, 8-disubstituted dihydropyrimido[5,4- b][1,4]oxazine derivatives as potent GPR 119 agonists. J Enzyme Inhib Med Chem 2019; 35:50-58. [PMID: 31656107 PMCID: PMC6830257 DOI: 10.1080/14756366.2019.1681988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GPR119 is a promising target for discovery of anti-type 2 diabetes mellitus agents. We described the optimisation of a novel series of pyrimido[5,4-b][1,4]oxazine derivatives as GPR119 agonists. Most designed compounds exhibited good agonistic activities. Among them, compound 10 and 15 demonstrated the potent EC50 values (13 and 12 nM, respectively) and strong inherent activities. Moreover, significant hypoglycaemic effect of compound 15 was observed by reducing the blood glucose AUC0-2h at the dose of 30 mg/kg, which is stronger than Vildagliptin (23.4% reduction vs. 17.9% reduction).
Collapse
Affiliation(s)
- Yuanying Fang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang , China.,National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Shaokun Zhang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Min Li
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Lijuan Xiong
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Liangxing Tu
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Saisai Xie
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Yi Jin
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Yanhua Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Zunhua Yang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| |
Collapse
|
46
|
Harada K, Mizukami J, Watanabe T, Mori G, Ubukata M, Suwa K, Fukuda S, Negoro T, Sato M, Inaba T. Optimization of oxadiazole derivatives with a spirocyclic cyclohexane structure as novel GPR119 agonists. Bioorg Med Chem Lett 2019; 29:2100-2106. [DOI: 10.1016/j.bmcl.2019.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/28/2023]
|
47
|
Zhou Y, Wang Y, Zhang L, Tang C, Feng B. Discovery and biological evaluation of novel G protein-coupled receptor 119 agonists for type 2 diabetes. Arch Pharm (Weinheim) 2019; 352:e1800267. [PMID: 30740769 DOI: 10.1002/ardp.201800267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptor 119 (GPR119) is a member of the GPCR family promising to be the target for type 2 diabetes mellitus (T2DM) treatment. In this work, 30 novel compounds were designed, synthesized, and evaluated by in vitro cAMP activation assay, where compounds II-14 and II-18 showed the best potency with EC50 values of 69 and 99 nM, respectively. In the oral glucose tolerance test, compound II-18 showed even more efficacious activity in lowering blood excursions than MBX-2982 at a fixed dose of 30 mg/kg. Here, we report that compound II-18 with its excellent agonistic activity and its orally effective activity in decreasing blood glucose deviations may serve as a potent GPR119 agonist for the treatment of T2DM.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Youzhi Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Leilei Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| |
Collapse
|
48
|
Song TH, Lee SD, Ha YE, Choi KJ, Lee SH, Kim YH, Suh KH, Chun YJ. WITHDRAWN: HM47118A, a novel insulinotropic GPR119 agonist and potential oral antidiabetic agent. Diabetes Res Clin Pract 2019:S0168-8227(18)31385-8. [PMID: 30641165 DOI: 10.1016/j.diabres.2019.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Tae Hun Song
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., 550 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do 18469, Republic of Korea; College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Republic of Korea
| | - Sang Don Lee
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., 550 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do 18469, Republic of Korea
| | - Young Eun Ha
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., 550 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do 18469, Republic of Korea
| | - Kyung Jin Choi
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., 550 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do 18469, Republic of Korea
| | - Sang Hyun Lee
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., 550 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do 18469, Republic of Korea
| | - Young-Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., 550 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do 18469, Republic of Korea
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., 550 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do 18469, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Republic of Korea.
| |
Collapse
|
49
|
Abdel-Magid AF. Treatment of Diabetes, Obesity, Dyslipidemia, and Related Disorders with GPR119 Agonists. ACS Med Chem Lett 2019; 10:14-15. [PMID: 30655939 DOI: 10.1021/acsmedchemlett.8b00622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
- Ahmed F. Abdel-Magid
- Therachem Research Medilab, LLC., 100 Jade Park, Chelsea, Alabama 35043, United States
| |
Collapse
|
50
|
Harada K, Mizukami J, Watanabe T, Mori G, Ubukata M, Suwa K, Fukuda S, Negoro T, Sato M, Inaba T. Lead generation and optimization of novel GPR119 agonists with a spirocyclic cyclohexane structure. Bioorg Med Chem Lett 2018; 29:373-379. [PMID: 30587450 DOI: 10.1016/j.bmcl.2018.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
We describe here the generation of a lead compound and its optimization studies that led to the identification of a novel GPR119 agonist. Based on a spirocyclic cyclohexane structure reported in our previous work, we identified compound 8 as a lead compound, being guided by ligand-lipophilicity efficiency (LLE), which linked potency and lipophilicity. Subsequent optimization studies of 8 for improvement of solubility afforded representative 21. Compound 21 had no inhibitory activity against six CYP isoforms and showed favorable pharmacokinetic properties and hypoglycemic activity in rats.
Collapse
Affiliation(s)
- Kazuhito Harada
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | - Jun Mizukami
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takashi Watanabe
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Genki Mori
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Minoru Ubukata
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Katsunori Suwa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Sumiaki Fukuda
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tamotsu Negoro
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Motohide Sato
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takashi Inaba
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|