1
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Foster DJ, Dunnavant K, Shrader CW, LoPresti M, Seay S, Kharel Y, Brown AM, Huang T, Lynch KR, Santos WL. Discovery of Potent, Orally Bioavailable Sphingosine-1-Phosphate Transporter (Spns2) Inhibitors. J Med Chem 2024; 67:11273-11295. [PMID: 38952222 PMCID: PMC11247503 DOI: 10.1021/acs.jmedchem.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Targeting the S1P pathway has resulted in the development of S1P1 receptor modulators for the treatment of multiple sclerosis and ulcerative colitis. We hypothesize that targeting an upstream node of the S1P pathway may provide an improved adverse event profile. In this report, we performed a structure-activity relationship study focusing on the benzoxazole scaffold in SLB1122168, which lead to the discovery of 11i (SLF80821178) as a potent inhibitor of S1P release from HeLa cells (IC50: 51 ± 3 nM). Administration of SLF80821178 to mice induced ∼50% reduction in circulating lymphocyte counts, recapitulating the lymphopenia characteristic of Spns2 null animals. Molecular modeling studies suggest that SLF80821178 binds Spns2 in its occluded inward-facing state and forms hydrogen bonds with Asn112 and Ser211 and π stacking with Phe234. Taken together, SLF80821178 can serve as a scaffold for future inhibitor development and represents a chemical tool to study the therapeutic implication of inhibiting Spns2.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kyle Dunnavant
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher W Shrader
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marion LoPresti
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sarah Seay
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M Brown
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Niazy AA, Lambarte RNA, Sumague TS, Vigilla MGB, Bin Shwish NM, Kamalan R, Daeab EK, Aljehani NM. FTY720 Reduces the Biomass of Biofilms in Pseudomonas aeruginosa in a Dose-Dependent Manner. Antibiotics (Basel) 2024; 13:621. [PMID: 39061303 PMCID: PMC11273553 DOI: 10.3390/antibiotics13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa, a nosocomial pathogen, has strong biofilm capabilities, representing the main source of infection in the human body. Repurposing existing drugs has been explored as an alternative strategy to combat emerging antibiotic-resistant pathogens. Fingolimod hydrochloride (FTY720), an immunomodulatory drug for multiple sclerosis, has shown promising antimicrobial effects against some ESKAPE pathogens. Therefore, the effects of FTY720 on the biofilm capabilities of Pseudomonas aeruginosa were investigated in this study. It was determined that FTY720 inhibited the growth of P. aeruginosa PAO1 at 100 µM. The significant reduction in PAO1 cell viability was observed to be dose-dependent. Additional cytotoxicity analysis on human cell lines showed that FTY720 significantly reduced viabilities at sub-inhibitory concentrations of 25-50 µM. Microtiter assays and confocal analysis confirmed reductions in biofilm mass and thickness and the cell survivability ratio in the presence of FTY720. Similarly, virulence production and biofilm-related gene expression (rhlA, rhlB, pilA, pilI, fliC, fliD and algR) were determined. The results demonstrate that pigment production was affected and quantitative real-time PCR analysis showed a variable degree of reduced gene expression in response to FTY720 at 12.5-50 µM. These findings suggest that FTY720 could be repurposed as an alternative antibiofilm agent against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Terrence S. Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Mary Grace B. Vigilla
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Najla M. Bin Shwish
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Ranan Kamalan
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eid Khulaif Daeab
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Nami M. Aljehani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
4
|
Le TM, Njangiru IK, Vincze A, Zupkó I, Balogh GT, Szakonyi Z. Synthesis and medicinal chemical characterisation of antiproliferative O, N-functionalised isopulegol derivatives. RSC Adv 2024; 14:18508-18518. [PMID: 38867736 PMCID: PMC11168086 DOI: 10.1039/d4ra03467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
Benzylation of isopulegol furnished O-benzyl-protected isopulegol, which was transformed into aminodiols via epoxidation followed by ring opening of the corresponding epoxides and subsequent hydrogenolysis. On the other hand, (-)-isopulegol was oxidised to a diol, which was then converted into dibenzyl-protected diol derivatives. The products were then transformed into aminotriols by using a similar method. The antiproliferative activity of aminodiol and aminotriol derivatives was examined. In addition, structure-activity relationships were also explored from the aspects of substituent effects and stereochemistry on the aminodiol and aminotriol systems. The drug-likeness of the compounds was assessed by in silico and experimental physicochemical characterisations, completed by kinetic aqueous solubility and in vitro intestinal-specific parallel artificial membrane permeability assay (PAMPA-GI) measurements.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös utca 6 H-6720 Szeged Hungary +36 62 545705 +36 62 546809
- HUN-REN-SZTE Stereochemistry, Research Group, University of Szeged Eötvös u. 6 H-6720 Szeged Hungary
| | - Isaac Kinyua Njangiru
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged H-6720 Eötvös utca 6 Szeged Hungary
| | - Anna Vincze
- Department of Pharmaceutical Chemistry, Semmelweis University Hőgyes Endre u. 9 H-1092 Budapest Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged H-6720 Eötvös utca 6 Szeged Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University Hőgyes Endre u. 9 H-1092 Budapest Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös utca 6 H-6720 Szeged Hungary +36 62 545705 +36 62 546809
| |
Collapse
|
5
|
Sun G, Wang B, Wu X, Cheng J, Ye J, Wang C, Zhu H, Liu X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front Immunol 2024; 15:1362459. [PMID: 38482014 PMCID: PMC10932966 DOI: 10.3389/fimmu.2024.1362459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.
Collapse
Affiliation(s)
- Gehui Sun
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Shrader CW, Foster D, Kharel Y, Huang T, Lynch KR, Santos WL. Imidazole-based sphingosine-1-phosphate transporter Spns2 inhibitors. Bioorg Med Chem Lett 2023; 96:129516. [PMID: 37832799 PMCID: PMC10842094 DOI: 10.1016/j.bmcl.2023.129516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a chemotactic lipid that influences immune cell positioning. S1P concentration gradients are necessary for proper egress of lymphocytes from the thymus and secondary lymphoid tissues. This trafficking is interdicted by S1P receptor modulators, and it is expected that S1P transporter (Spns2) inhibitors, by reshaping S1P concentration gradients, will do the same. We previously reported SLF1081851 as a prototype Spns2 inhibitor, which provided a scaffold to investigate the importance of the oxadiazole core and the terminal amine. In this report, we disclose a structure-activity relationship study by incorporating imidazole as both a linker and surrogate for a positive charge in SLF1081851. In vitro inhibition of Spns2-dependent S1P transport in HeLa cells identified 7b as an inhibitor with an IC50 of 1.4 ± 0.3 µM. The SAR studies reported herein indicate that imidazolium can be a substitute for the terminal amine in SLF1081851 and that Spns2 inhibition is highly dependent on the lipid alkyl tail length.
Collapse
Affiliation(s)
- Christopher W Shrader
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24060, United States
| | - Daniel Foster
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24060, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22904, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22904, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22904, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24060, United States.
| |
Collapse
|
7
|
Cha E, Kim J, Gotina L, Kim J, Kim HJ, Seo SH, Park JE, Joo J, Kang M, Lee J, Hwang H, Kim HJ, Pae AN, Park KD, Park JH, Lim SM. Exploration of Tetrahydroisoquinoline- and Benzo[ c]azepine-Based Sphingosine 1-Phosphate Receptor 1 Agonists for the Treatment of Multiple Sclerosis. J Med Chem 2023; 66:10381-10412. [PMID: 37489798 DOI: 10.1021/acs.jmedchem.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Because of the wide use of Fingolimod for the treatment of multiple sclerosis (MS) and its cardiovascular side effects such as bradycardia, second-generation sphingosine 1-phosphate receptor 1 (S1P1) agonist drugs for MS have been developed and approved by FDA. The issue of bradycardia is still present with the new drugs, however, which necessitates further exploration of S1P1 agonists with improved safety profiles for next-generation MS drugs. Herein, we report a tetrahydroisoquinoline or a benzo[c]azepine core-based S1P1 agonists such as 32 and 60 after systematic examination of hydrophilic groups and cores. We investigated the binding modes of our representative compounds and their molecular interactions with S1P1 employing recent S1P1 cryo-EM structures. Also, favorable ADME properties of our compounds were shown. Furthermore, in vivo efficacy of our compounds was clearly demonstrated with PLC and EAE studies. Also, the preliminary in vitro cardiovascular safety of our compound was verified with human iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Eunji Cha
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jushin Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Lizaveta Gotina
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaehwan Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seon Hee Seo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jeong-Eun Park
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jeongmin Joo
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Minsik Kang
- Doping Control Center, Research Resources Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping Control Center, Research Resources Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sang Min Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Zhao J, Xiao R, Zeng R, He E, Zhang A. Small molecules targeting cGAS-STING pathway for autoimmune disease. Eur J Med Chem 2022; 238:114480. [DOI: 10.1016/j.ejmech.2022.114480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
|
9
|
He H, Xie M, Zhang M, Zhang H, Zhu H, Fang Y, Shen Z, Wang R, Zhao Z, Zhu L, Qian X, Li H. Design, synthesis and biological evaluation of potent and selective S1PR1 agonists for the treatment of Ulcerative Colitis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huan He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Mengting Xie
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Mengting Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Haiqin Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Huan Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Yuxian Fang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Zihao Shen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
| | - Xuhong Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
- Innovation Center for AI and Drug Discovery (ICAIDD) East China Normal University Shanghai 200062 China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science & Technology Shanghai 200237 China
- Innovation Center for AI and Drug Discovery (ICAIDD) East China Normal University Shanghai 200062 China
| |
Collapse
|
10
|
Zore M, Gilbert-Girard S, San-Martin-Galindo P, Reigada I, Hanski L, Savijoki K, Fallarero A, Yli-Kauhaluoma J, Patel JZ. Repurposing the Sphingosine-1-Phosphate Receptor Modulator Etrasimod as an Antibacterial Agent Against Gram-Positive Bacteria. Front Microbiol 2022; 13:926170. [PMID: 35733960 PMCID: PMC9207386 DOI: 10.3389/fmicb.2022.926170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
New classes of antibiotics are urgently needed in the fight against multidrug-resistant bacteria. Drug repurposing has emerged as an alternative approach to accelerate antimicrobial research and development. In this study, we screened a library of sphingosine-1-phosphate receptor (S1PR) modulators against Staphylococcus aureus and identified five active compounds. Among them, etrasimod (APD334), an investigational drug for the treatment of ulcerative colitis, displayed the best inhibitory activity against S. aureus when growing as free-floating planktonic cells and within biofilms. In follow-up studies, etrasimod showed bactericidal activity and drastic reduction of viable bacteria within 1 h of exposure. It also displayed a potent activity against other Gram-positive bacteria, including penicillin- and methicillin-resistant S. aureus strains, S. epidermidis, and Enterococcus faecalis, with a minimum inhibitory concentration (MIC) ranging from 5 to 10 μM (2.3–4.6 μg/mL). However, no inhibition of viability was observed against Gram-negative bacteria Acinetobacter baumannii, Escherichia coli, and Pseudomonas aeruginosa, showing that etrasimod preferably acts against Gram-positive bacteria. On the other hand, etrasimod was shown to inhibit quorum sensing (QS) signaling in Chromobacterium violaceum, suggesting that it may block the biofilm formation by targeting QS in certain Gram-negative bacteria. Furthermore, etrasimod displayed a synergistic effect with gentamicin against S. aureus, thus showing potential to be used in antibiotic combination therapy. Finally, no in vitro toxicity toward mammalian cells was observed. In conclusion, our study reports for the first time the potential of etrasimod as a repurposed antibacterial compound against Gram-positive bacteria.
Collapse
Affiliation(s)
- Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jayendra Z. Patel
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- *Correspondence: Jayendra Z. Patel,
| |
Collapse
|
11
|
Yu L, He L, Gan B, Ti R, Xiao Q, Yang X, Hu H, Zhu L, Wang S, Ren R. Structural insights into sphingosine-1-phosphate receptor activation. Proc Natl Acad Sci U S A 2022; 119:e2117716119. [PMID: 35412894 PMCID: PMC9169846 DOI: 10.1073/pnas.2117716119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 01/06/2023] Open
Abstract
As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays an essential role in immune and vascular systems. There are five S1P receptors, designated as S1PR1 to S1PR5, encoded in the human genome, and their activities are governed by endogenous S1P, lipid-like S1P mimics, or nonlipid-like therapeutic molecules. Among S1PRs, S1PR1 stands out due to its nonredundant functions, such as the egress of T and B cells from the thymus and secondary lymphoid tissues, making it a potential therapeutic target. However, the structural basis of S1PR1 activation and regulation by various agonists remains unclear. Here, we report four atomic resolution cryo-electron microscopy (cryo-EM) structures of Gi-coupled human S1PR1 complexes: bound to endogenous agonist d18:1 S1P, benchmark lipid-like S1P mimic phosphorylated Fingolimod [(S)-FTY720-P], or nonlipid-like therapeutic molecule CBP-307 in two binding modes. Our results revealed the similarities and differences of activation of S1PR1 through distinct ligands binding to the amphiphilic orthosteric pocket. We also proposed a two-step “shallow to deep” transition process of CBP-307 for S1PR1 activation. Both binding modes of CBP-307 could activate S1PR1, but from shallow to deep transition may trigger the rotation of the N-terminal helix of Gαi and further stabilize the complex by increasing the Gαi interaction with the cell membrane. We combine with extensive biochemical analysis and molecular dynamic simulations to suggest key steps of S1P binding and receptor activation. The above results decipher the common feature of the S1PR1 agonist recognition and activation mechanism and will firmly promote the development of therapeutics targeting S1PRs.
Collapse
Affiliation(s)
- Leiye Yu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200437, China
- School of Life Sciences, University of Science and Technology of China, Anhui 230026, China
| | - Licong He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Gan
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Rujuan Ti
- Warshal Institute of Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qingjie Xiao
- Zhangjiang Laboratory, National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xin Yang
- Suzhou Connect Biopharmaceuticals, Ltd
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lizhe Zhu
- Warshal Institute of Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruobing Ren
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200437, China
| |
Collapse
|
12
|
Park SJ, Yeon SK, Kim Y, Kim HJ, Kim S, Kim J, Choi JW, Kim B, Lee EH, Kim R, Seo SH, Lee J, Kim JW, Lee HY, Hwang H, Bahn YS, Cheong E, Park JH, Park KD. Discovery of Novel Sphingosine-1-Phosphate-1 Receptor Agonists for the Treatment of Multiple Sclerosis. J Med Chem 2022; 65:3539-3562. [PMID: 35077170 DOI: 10.1021/acs.jmedchem.1c01979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sphingosine-1-phosphate-1 (S1P1) receptor agonists have great potential for the treatment of multiple sclerosis (MS) because they can inhibit lymphocyte egress through receptor internalization. We designed and synthesized triazole and isoxazoline derivatives to discover a novel S1P1 agonist for MS treatment. Of the two scaffolds, the isoxazoline derivative was determined to have excellent in vitro efficacy and drug-like properties. Among them, compound 21l was found to have superior drug-like properties as well as excellent in vitro efficacies (EC50 = 7.03 nM in β-arrestin recruitment and EC50 = 11.8 nM in internalization). We also confirmed that 21l effectively inhibited lymphocyte egress in the peripheral lymphocyte count test and significantly improved the clinical score in the experimental autoimmune encephalitis MS mouse model.
Collapse
Affiliation(s)
- Sun Jun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.,Cureverse Co., Ltd., KIST, 1st Floor, H2 Building, Seoul 02792, Republic of Korea
| | - Seul Ki Yeon
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoowon Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Byungeun Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Rium Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seon Hee Seo
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping Control Center, KIST, Seoul 02792, Republic of Korea
| | - Jun Woo Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ha-Yeon Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
13
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
14
|
Candadai AA, Liu F, Verma A, Adil MS, Alfarhan M, Fagan SC, Somanath PR, Narayanan SP. Neuroprotective Effects of Fingolimod in a Cellular Model of Optic Neuritis. Cells 2021; 10:cells10112938. [PMID: 34831161 PMCID: PMC8616192 DOI: 10.3390/cells10112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Visual dysfunction resulting from optic neuritis (ON) is one of the most common clinical manifestations of multiple sclerosis (MS), characterized by loss of retinal ganglion cells, thinning of the nerve fiber layer, and inflammation to the optic nerve. Current treatments available for ON or MS are only partially effective, specifically target the inflammatory phase, and have limited effects on long-term disability. Fingolimod (FTY) is an FDA-approved immunomodulatory agent for MS therapy. The objective of the current study was to evaluate the neuroprotective properties of FTY in the cellular model of ON-associated neuronal damage. R28 retinal neuronal cell damage was induced through treatment with tumor necrosis factor-α (TNFα). In our cell viability analysis, FTY treatment showed significantly reduced TNFα-induced neuronal death. Treatment with FTY attenuated the TNFα-induced changes in cell survival and cell stress signaling molecules. Furthermore, immunofluorescence studies performed using various markers indicated that FTY treatment protects the R28 cells against the TNFα-induced neurodegenerative changes by suppressing reactive oxygen species generation and promoting the expression of neuronal markers. In conclusion, our study suggests neuroprotective effects of FTY in an in vitro model of optic neuritis.
Collapse
Affiliation(s)
- Amritha A. Candadai
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S. Adil
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Susan C. Fagan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
15
|
Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res 2021; 31:1263-1274. [PMID: 34526663 PMCID: PMC8441948 DOI: 10.1038/s41422-021-00566-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important bioactive lipid molecule in cell membrane metabolism and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, physiological homeostasis, and pathogenic processes in various organs. S1PRs are lipid-sensing receptors and are therapeutic targets for drug development, including potential treatment of COVID-19. Herein, we present five cryo-electron microscopy structures of S1PRs bound to diverse drug agonists and the heterotrimeric Gi protein. Our structural and functional assays demonstrate the different binding modes of chemically distinct agonists of S1PRs, reveal the mechanical switch that activates these receptors, and provide a framework for understanding ligand selectivity and G protein coupling.
Collapse
|
16
|
Kalinkovich A, Livshits G. Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol Res 2021; 171:105794. [PMID: 34329703 DOI: 10.1016/j.phrs.2021.105794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
On the cellular level, osteoporosis (OP) is a result of imbalanced bone remodeling, in which osteoclastic bone resorption outcompetes osteoblastic bone formation. Currently available OP medications include both antiresorptive and bone-forming drugs. However, their long-term use in OP patients, mainly in postmenopausal women, is accompanied by severe side effects. Notably, the fundamental coupling between bone resorption and formation processes underlies the existence of an undesirable secondary outcome that bone anabolic or anti-resorptive drugs also reduce bone formation. This drawback requires the development of anti-OP drugs capable of selectively stimulating osteoblastogenesis and concomitantly reducing osteoclastogenesis. We propose that the application of small synthetic biased and allosteric modulators of bone cell receptors, which belong to the G-protein coupled receptors (GPCR) family, could be the key to resolving the undesired anti-OP drug selectivity. This approach is based on the capacity of these GPCR modulators, unlike the natural ligands, to trigger signaling pathways that promote beneficial effects on bone remodeling while blocking potentially deleterious effects. Under the settings of OP, an optimal anti-OP drug should provide fine-tuned regulation of downstream effects, for example, intermittent cyclic AMP (cAMP) elevation, preservation of Ca2+ balance, stimulation of osteoprotegerin (OPG) and estrogen production, suppression of sclerostin secretion, and/or preserved/enhanced canonical β-catenin/Wnt signaling pathway. As such, selective modulation of GPCRs involved in bone remodeling presents a promising approach in OP treatment. This review focuses on the evidence for the validity of our hypothesis.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel; Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
17
|
Bauer MR, Di Fruscia P, Lucas SCC, Michaelides IN, Nelson JE, Storer RI, Whitehurst BC. Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Med Chem 2021; 12:448-471. [PMID: 33937776 PMCID: PMC8083977 DOI: 10.1039/d0md00370k] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Aliphatic three- and four-membered rings including cyclopropanes, cyclobutanes, oxetanes, azetidines and bicyclo[1.1.1]pentanes have been increasingly exploited in medicinal chemistry for their beneficial physicochemical properties and applications as functional group bioisosteres. This review provides a historical perspective and comparative up to date overview of commonly applied small rings, exemplifying key principles with recent literature examples. In addition to describing the merits and advantages of each ring system, potential hazards and liabilities are also illustrated and explained, including any significant chemical or metabolic stability and toxicity risks.
Collapse
Affiliation(s)
- Matthias R Bauer
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Paolo Di Fruscia
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Simon C C Lucas
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | | | - Jennifer E Nelson
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - R Ian Storer
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | | |
Collapse
|
18
|
Chen YC, Dinavahi SS, Feng Q, Gowda R, Ramisetti S, Xia X, LaPenna KB, Chirasani VR, Cho SH, Hafenstein SL, Battu MB, Berg A, Sharma AK, Kirchhausen T, Dokholyan NV, Amin S, He P, Robertson GP. Activating Sphingosine-1-phospahte signaling in endothelial cells increases myosin light chain phosphorylation to decrease endothelial permeability thereby inhibiting cancer metastasis. Cancer Lett 2021; 506:107-119. [PMID: 33600895 DOI: 10.1016/j.canlet.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Targeting the metastatic process to prevent disease dissemination in cancer remains challenging. One step in the metastatic cascade involves cancer cells transiting through the vascular endothelium after inflammation has increased the permeability of this cellular layer. Reducing inflammation-mediated gaps in the vascular endothelium could potentially be used to retard metastasis. This study describes the development of a novel ASR396-containing nanoparticle designed to activate the Sphingosine-1-Phosphate Receptor 1 (S1PR1) in order to tighten the junctions between the endothelial cells lining the vascular endothelium thereby inhibiting metastasis. ASR396 was derived from the S1PR1 agonist SEW2871 through chemical modification enabling the new compound to be loaded into a nanoliposome. ASR396 retained S1PR1 binding activity and the nanoliposomal formulation (nanoASR396) made it systemically bioavailable upon intravenous injection. Studies conducted in microvessels demonstrated that nanoASR396 significantly attenuated inflammatory mediator-induced permeability increase through the S1PR1 activation. Similarly, nanoASR396 inhibited gap formation mediated by inflammatory agents on an endothelial cell monolayer by decreasing levels of phosphorylated myosin light chain protein thereby inhibiting cellular contractility. In animal models, nanoASR396 inhibited lung metastasis by up to 80%, indicating its potential for retarding melanoma metastasis. Thus, a novel bioavailable nanoparticle-based S1PR1 agonist has been developed to negate the effects of inflammatory mediators on the vascular endothelium in order to reduce the metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Saketh S Dinavahi
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Qilong Feng
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Srinivasa Ramisetti
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xinghai Xia
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kyle B LaPenna
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Venkat R Chirasani
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sung Hyun Cho
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Susan L Hafenstein
- Departments of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Arthur Berg
- Departments of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arun K Sharma
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tom Kirchhausen
- Departments of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, MA, 02115, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Shantu Amin
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Pingnian He
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Gavin P Robertson
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Departments of Departments of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Departments of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Departments of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
19
|
Gilmore JL, Xiao HY, Dhar TGM, Yang M, Xiao Z, Yang X, Taylor TL, McIntyre KW, Warrack BM, Shi H, Levesque PC, Marino AM, Cornelius G, Mathur A, Shen DR, Pang J, Cvijic ME, Lehman-McKeeman LD, Sun H, Xie J, Salter-Cid L, Carter PH, Dyckman AJ. Bicyclic Ligand-Biased Agonists of S1P 1: Exploring Side Chain Modifications to Modulate the PK, PD, and Safety Profiles. J Med Chem 2021; 64:1454-1480. [PMID: 33492963 DOI: 10.1021/acs.jmedchem.0c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingosine-1-phosphate (S1P) binds to a family of sphingosine-1-phosphate G-protein-coupled receptors (S1P1-5). The interaction of S1P with these S1P receptors has a fundamental role in many physiological processes in the vascular and immune systems. Agonist-induced functional antagonism of S1P1 has been shown to result in lymphopenia. As a result, agonists of this type hold promise as therapeutics for autoimmune disorders. The previously disclosed differentiated S1P1 modulator BMS-986104 (1) exhibited improved preclinical cardiovascular and pulmonary safety profiles as compared to earlier full agonists of S1P1; however, it demonstrated a long pharmacokinetic half-life (T1/2 18 days) in the clinic and limited formation of the desired active phosphate metabolite. Optimization of this series through incorporation of olefins, ethers, thioethers, and glycols into the alkyl side chain afforded an opportunity to reduce the projected human T1/2 and improve the formation of the active phosphate metabolite while maintaining efficacy as well as the improved safety profile. These efforts led to the discovery of 12 and 24, each of which are highly potent, biased agonists of S1P1. These compounds not only exhibited shorter in vivo T1/2 in multiple species but are also projected to have significantly shorter T1/2 values in humans when compared to our first clinical candidate. In models of arthritis, treatment with 12 and 24 demonstrated robust efficacy.
Collapse
Affiliation(s)
- John L Gilmore
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hai-Yun Xiao
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - T G Murali Dhar
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Michael Yang
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zili Xiao
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Xiaoxia Yang
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Tracy L Taylor
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Kim W McIntyre
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bethanne M Warrack
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hong Shi
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Paul C Levesque
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anthony M Marino
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Ding Ren Shen
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jian Pang
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lois D Lehman-McKeeman
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Huadong Sun
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jenny Xie
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Luisa Salter-Cid
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Percy H Carter
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Alaric J Dyckman
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
20
|
Bihorel S, Singhal S, Shevell D, Sun H, Xie J, Basdeo S, Liu A, Dutta S, Ludwig E, Huang H, Lin KJ, Fura A, Throup J, Girgis IG. Population Pharmacokinetic Analysis of BMS-986166, a Novel Selective Sphingosine-1-Phosphate-1 Receptor Modulator, and Exposure-Response Assessment of Lymphocyte Counts and Heart Rate in Healthy Participants. Clin Pharmacol Drug Dev 2020; 10:8-21. [PMID: 33090733 PMCID: PMC7821288 DOI: 10.1002/cpdd.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/08/2020] [Indexed: 11/09/2022]
Abstract
Sphingosine‐1‐phosphate (S1P) binding to the S1P‐1 receptor (S1P1R) controls the egress of lymphocytes from lymphoid organs and targets modulation of immune responses in autoimmune diseases. Pharmacologic modulation of S1P receptors has been linked to heart rate reduction. BMS‐986166, a prodrug of the active phosphorylated metabolite BMS‐986166‐P, presents an improved cardiac safety profile in preclinical studies compared to other S1P1R modulators. The pharmacokinetics, safety, and pharmacodynamics of BMS‐986166 versus placebo after single (0.75–5.0 mg) and repeated (0.25–1.5 mg/day) oral administration were assessed in healthy participants after a 1‐day lead‐in placebo period. A population model was developed to jointly describe BMS‐986166 and BMS‐986166‐P pharmacokinetics and predict individual exposures. Inhibitory sigmoid models described the relationships between average daily BMS‐986166‐P concentrations and nadir of time‐matched (day –1) placebo‐corrected heart rate on day 1 (nDDHR, where DD represents ∆∆) and nadir of absolute lymphocyte count (nALC). Predicted decreases in nDDHR and nALC were 9 bpm and 20% following placebo, with maximum decreases of 10 bpm in nDDHR due to drug effect, and approximately 80% in nALC due to drug and placebo. A 0.5‐mg/day dose regimen achieves the target 65% reduction in nALC associated with a 2‐bpm decrease in nDDHR over placebo.
Collapse
Affiliation(s)
- Sébastien Bihorel
- Cognigen Corporation, a SimulationsPlus Company, Buffalo, New York, USA
| | | | | | - Huadong Sun
- Previously employed at Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Jenny Xie
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Ang Liu
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Elizabeth Ludwig
- Cognigen Corporation, a SimulationsPlus Company, Buffalo, New York, USA
| | - Hannah Huang
- Cognigen Corporation, a SimulationsPlus Company, Buffalo, New York, USA
| | - Kuan-Ju Lin
- Previously employed at Cognigen Corporation, a SimulationPlus Company, Buffalo, New York, USA
| | - Aberra Fura
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - John Throup
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | |
Collapse
|
21
|
A peptide immunoaffinity LC-MS/MS strategy for quantifying the GPCR protein, S1PR1 in human colon biopsies. Bioanalysis 2020; 12:1311-1324. [PMID: 32945691 DOI: 10.4155/bio-2020-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: S1PR1, a G protein-coupled receptor (GPCR) protein, is a therapeutic target for treatment of autoimmune diseases. As a potential biomarker for drug effect and patient stratification, it is of great significance to measure it in biological samples. However, due to the hydrophobic nature of S1PR1 and the difficulties in extraction and solubilization, as well as low expression levels, quantitative determination of S1PR1 remains challenging. Results: In this work, a peptide immunoaffinity LC-MS/MS method was developed to quantify S1PR1 in biopsy-sized colon samples with an LLOQ of 7.81 pM. Conclusion: Peptide immunoaffinity LC-MS/MS based strategy has achieved the desired sensitivity for low abundance S1PR1, and the same strategy could be applied to quantify S1PR1 in multiple species and other GPCR proteins.
Collapse
|
22
|
Xiao Z, Yang MG, Dhar TGM, Xiao HY, Gilmore JL, Marcoux D, McIntyre KW, Taylor TL, Shi H, Levesque PC, Marino AM, Cornelius G, Mathur A, Shen DR, Cvijic ME, Lehman-McKeeman LD, Sun H, Xie JH, Carter PH, Dyckman AJ. Aryl Ether-Derived Sphingosine-1-Phosphate Receptor (S1P 1) Modulators: Optimization of the PK, PD, and Safety Profiles. ACS Med Chem Lett 2020; 11:1766-1772. [PMID: 32944145 DOI: 10.1021/acsmedchemlett.0c00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Efforts aimed at increasing the in vivo potency and reducing the elimination half-life of 1 and 2 led to the identification of aryl ether and thioether-derived bicyclic S1P1 differentiated modulators 3-6. The effects of analogs 3-6 on lymphocyte reduction in the rat (desired pharmacology) along with pulmonary- and cardiovascular-related effects (undesired pharmacology) are described. Optimization of the overall properties in the aryl ether series yielded 3d, and the predicted margin of safety against the cardiovascular effects of 3d would be large enough for human studies. Importantly, compared to 1 and 2, compound 3d had a better profile in both potency (ED50 < 0.05 mg/kg) and predicted human half-life (t 1/2 ∼ 5 days).
Collapse
Affiliation(s)
- Zili Xiao
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Michael G. Yang
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - T. G. Murali Dhar
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Hai-Yun Xiao
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - John L. Gilmore
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - David Marcoux
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Kim W. McIntyre
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Tracy L. Taylor
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Hong Shi
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Paul C. Levesque
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Anthony M. Marino
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Ding Ren Shen
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Lois D. Lehman-McKeeman
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Huadong Sun
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jenny H. Xie
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Percy H. Carter
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Alaric J. Dyckman
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
23
|
Park WJ, Song JH, Kim GT, Park TS. Ceramide and Sphingosine 1-Phosphate in Liver Diseases. Mol Cells 2020; 43:419-430. [PMID: 32392908 PMCID: PMC7264474 DOI: 10.14348/molcells.2020.0054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 2999, Korea
| | - Jae-Hwi Song
- Department of Life Science, Gachon University, Seongnam 1310, Korea
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Seongnam 1310, Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Seongnam 1310, Korea
| |
Collapse
|
24
|
Kappe C, Mohamed ZH, Naser E, Carpinteiro A, Arenz C. A Novel Visible Range FRET Probe for Monitoring Acid Sphingomyelinase Activity in Living Cells. Chemistry 2020; 26:5780-5783. [PMID: 32092185 PMCID: PMC7317515 DOI: 10.1002/chem.202000133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Indexed: 02/04/2023]
Abstract
Activity of acid sphingomyelinase has been implicated in a number of diseases like acute lung injury, sepsis or metastasis of melanoma cells. Here, we present a sphingomyelinase FRET probe based on FAM/BODIPY dyes for real‐time monitoring of acid sphingomyelinase. The probe gives rise to a tremendous increase in fluorescence of the fluorescein FRET donor upon cleavage and we show that this is, to a significant part, due to cleavage‐associated phase transition, suggesting a more systematic consideration of such effects for future probe development. The probe allows for the first time to monitor relative sphingomyelinase activities of intact living cells by flow cytometry.
Collapse
Affiliation(s)
- Christian Kappe
- Institut for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Zainelabdeen H Mohamed
- Institut for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Eyad Naser
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Christoph Arenz
- Institut for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
25
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Wang K, Zhu H, Zhao H, Zhang K, Tian Y. Application of carbamyl in structural optimization. Bioorg Chem 2020; 98:103757. [PMID: 32217370 DOI: 10.1016/j.bioorg.2020.103757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Carbamyl is considered a privileged structure in medicinal chemistry. It has a wide range of biological activities such as antimicrobial, anticancer, anti-epilepsy, for which the best evidence is a number of marketed carbamyl-containing drugs. Carbamyl is formed of primary amine and carbonyl moieties that act as hydrogen bond donors and hydrogen acceptors with residues of targets respectively, which are benefit for improving pharmacological activities. In other cases, the introduced carbamyl improves drug-like properties including oral bioavailability. In this review, we introduce the carbamyl-containing drugs and the application of carbamyl in structural optimization as a result of enhancing activities or/and drug-like properties.
Collapse
Affiliation(s)
- Kuanglei Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxi Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongqian Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yongshou Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
27
|
Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. JOURNAL OF NATURAL PRODUCTS 2020; 83:770-803. [PMID: 32162523 DOI: 10.1021/acs.jnatprod.9b01285] [Citation(s) in RCA: 3206] [Impact Index Per Article: 641.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.
Collapse
Affiliation(s)
- David J Newman
- NIH Special Volunteer, Wayne, Pennsylvania 19087, United States
| | - Gordon M Cragg
- NIH Special Volunteer, Gaithersburg, Maryland 20877, United States
| |
Collapse
|
28
|
Rivas DA, Rice NP, Ezzyat Y, McDonald DJ, Cooper BE, Fielding RA. Sphingosine-1-phosphate analog FTY720 reverses obesity but not age-induced anabolic resistance to muscle contraction. Am J Physiol Cell Physiol 2019; 317:C502-C512. [PMID: 31241988 DOI: 10.1152/ajpcell.00455.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcopenia, the age-associated loss of skeletal muscle mass and function, is coupled with declines in physical functioning leading to subsequent higher rates of disability, frailty, morbidity, and mortality. Aging and obesity independently contribute to muscle atrophy that is assumed to be a result of the activation of mutual physiological pathways. Understanding mechanisms contributing to the induction of skeletal muscle atrophy with aging and obesity is important for determining targets that may have pivotal roles in muscle loss in these conditions. We find that aging and obesity equally induce an anabolic resistance to acute skeletal muscle contraction as observed with decreases in anabolic signaling activation after contraction. Furthermore, treatment with the sphingosine-1-phosphate analog FTY720 for 4 wk increased lean mass and strength, and the anabolic signaling response to contraction was improved in obese but not older animals. To determine the role of chronic inflammation and different fatty acids on anabolic resistance in skeletal muscle cells, we overexpressed IKKβ with and without exposure to saturated fatty acid (SFA; palmitic acid), polyunsaturated fatty acid (eicosapentaenoic acid), and monounsaturated fatty acid (oleic acid). We found that IKKβ overexpression increased inflammation markers in muscle cells, and this chronic inflammation exacerbated anabolic resistance in response to SFA. Pretreatment with FTY720 reversed the inflammatory effects of palmitic acid in the muscle cells. Taken together, these data demonstrate chronic inflammation can induce anabolic resistance, SFA aggravates these effects, and FTY720 can reverse this by decreasing ceramide accumulation in skeletal muscle.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Nicholas P Rice
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Yassine Ezzyat
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Devin J McDonald
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Brittany E Cooper
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| |
Collapse
|
29
|
Xiao L, Zhou Y, Friis T, Beagley K, Xiao Y. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology. Front Immunol 2019; 10:1409. [PMID: 31293578 PMCID: PMC6603153 DOI: 10.3389/fimmu.2019.01409] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling via modulating the immune system. Therefore, it could be likely that S1P-S1PR1 signaling might take part in the maintenance of continuous bone turnover under physiological conditions, while lead to the pathogenesis of bone deformities during inflammation. In this review, we summarized the immunological regulation of S1P-S1PR1 signal axis during bone remodeling with an emphasis on how osteo-immune regulators are affected by inflammation, an issue with relevance to chronical bone disorders such as rheumatoid arthritis, spondyloarthritis and periodontitis.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Wang Y, Liu BY, Yang G, Chai Z. Synthesis of 2-Aminophosphates via S N2-Type Ring Openings of Aziridines with Organophosphoric Acids. Org Lett 2019; 21:4475-4479. [PMID: 31184161 DOI: 10.1021/acs.orglett.9b01302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of 2-aminophosphates is achieved by a SN2-type ring opening reaction of various N-protected or free aziridines with phosphoric acids in a regiospecific and/or enantiospecific way. A one-pot, two-step procedure is also developed enabling direct access to 2-aminophosphates from olefins without isolation of the aziridine intermediates.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Bing-Yi Liu
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Gaosheng Yang
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Zhuo Chai
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| |
Collapse
|
31
|
Abstract
Abstract
It is frequently assumed, particularly in the last 15 plus years, that “Natural Product Structures” are no longer a source of drugs in the twenty-first century. In fact, this is not at all true. Even today, in the search for novel agents against manifold diseases, natural product structures, some quite old and some quite recent, are behind the compounds that are either recently (last 5–10 years) approved or that are now in clinical trials against manifold diseases of man. This chapter will cover agents approved since 2010 to the end of 2017 by the US FDA and its equivalent in other countries, plus selected agents that have entered clinical trials against major diseases such as cancer and infections that have “in their chemical pedigree” a natural product structure, even if the final product may be totally synthetic in nature.
Collapse
|
32
|
Loewith R, Riezman H, Winssinger N. Sphingolipids and membrane targets for therapeutics. Curr Opin Chem Biol 2019; 50:19-28. [PMID: 30897494 DOI: 10.1016/j.cbpa.2019.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Lipids and membranes are often strongly altered in various diseases and pathologies, but are not often targeted for therapeutic advantage. In particular, the sphingolipids are particularly sensitive to altered physiology and have been implicated as important players in not only several rare hereditary diseases, but also other major pathologies, including cancer. This review discusses some potential targets in the sphingolipid pathway and describes how the initial drug compounds have been evolved to create potentially improved therapeutics. This reveals how lipids and their interactions with proteins can be used for therapeutic advantage. We also discuss the possibility that modification of the physical properties of membranes could also affect intracellular signaling and be of therapeutic interest.
Collapse
Affiliation(s)
- Robbie Loewith
- Department of Molecular Biology, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| |
Collapse
|
33
|
Talmont F, Moulédous L, Baranger M, Gomez-Brouchet A, Zajac JM, Deffaud C, Cuvillier O, Hatzoglou A. Development and characterization of sphingosine 1-phosphate receptor 1 monoclonal antibody suitable for cell imaging and biochemical studies of endogenous receptors. PLoS One 2019; 14:e0213203. [PMID: 30845158 PMCID: PMC6405204 DOI: 10.1371/journal.pone.0213203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/15/2019] [Indexed: 11/18/2022] Open
Abstract
Although sphingosine-1-phosphate receptor 1 (S1P1) has been shown to trigger several S1P targeted functions such as immune cell trafficking, cell proliferation, migration, or angiogenesis, tools that allow the accurate detection of endogenous S1P1 localization and trafficking remain to be obtained and validated. In this study, we developed and characterized a novel monoclonal S1P1 antibody. Mice were immunized with S1P1 produced in the yeast Pichia pastoris and nine hybridoma clones producing monoclonal antibodies were created. Using different technical approaches including Western blot, immunoprecipitation and immunocytochemistry, we show that a selected clone, hereinafter referred to as 2B9, recognizes human and mouse S1P1 in various cell lineages. The interaction between 2B9 and S1P1 is specific over receptor subtypes, as the antibody does not binds to S1P2 or S1P5 receptors. Using cell-imaging methods, we demonstrate that 2B9 binds to an epitope located at the intracellular domain of S1P1; reveals cytosolic and membrane localization of the endogenous S1P1; and receptor internalization upon S1P or FTY720-P stimulation. Finally, loss of 2B9 signal upon knockdown of endogenous S1P1 by specific small interference RNAs further confirms its specificity. 2B9 was also able to detect S1P1 in human kidney and spinal cord tissue by immunohistochemistry. Altogether, our results suggest that 2B9 could be a useful tool to detect, quantify or localize low amounts of endogenous S1P1 in various physiological and pathological processes.
Collapse
Affiliation(s)
- Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Moulédous
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Anne Gomez-Brouchet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Service d'anatomie et cytologie pathologiques, IUCT Oncopole, Toulouse, France
| | - Jean-Marie Zajac
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anastassia Hatzoglou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
34
|
Cao S, Cheng R, Wang D, Zhao Y, Tang R, Yang X, Chen J. Dinuclear copper(II) complexes of “end-off” bicompartmental ligands: Alteration of the chelating arms on ligands to regulate the reactivity of the complexes towards DNA. J Inorg Biochem 2019; 192:126-139. [DOI: 10.1016/j.jinorgbio.2018.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 01/08/2023]
|
35
|
Hopkin SJ, Lewis JW, Krautter F, Chimen M, McGettrick HM. Triggering the Resolution of Immune Mediated Inflammatory Diseases: Can Targeting Leukocyte Migration Be the Answer? Front Pharmacol 2019; 10:184. [PMID: 30881306 PMCID: PMC6407428 DOI: 10.3389/fphar.2019.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment is a pivotal process in the regulation and resolution of an inflammatory episode. It is vital for the protective responses to microbial infection and tissue damage, but is the unwanted reaction contributing to pathology in many immune mediated inflammatory diseases (IMIDs). Indeed, it is now recognized that patients with IMIDs have defects in at least one, if not multiple, check-points regulating the entry and exit of leukocytes from the inflamed site. In this review, we will explore our understanding of the imbalance in recruitment that permits the accumulation and persistence of leukocytes in IMIDs. We will highlight old and novel pharmacological tools targeting these processes in an attempt to trigger resolution of the inflammatory response. In this context, we will focus on cytokines, chemokines, known pro-resolving lipid mediators and potential novel lipids (e.g., sphingosine-1-phosphate), along with the actions of glucocorticoids mediated by 11-beta hydroxysteroid dehydrogenase 1 and 2.
Collapse
Affiliation(s)
- Sophie J. Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan W. Lewis
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M. McGettrick
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
36
|
Gilmore JL, Xiao HY, Dhar TGM, Yang MG, Xiao Z, Xie J, Lehman-McKeeman LD, Gong L, Sun H, Lecureux L, Chen C, Wu DR, Dabros M, Yang X, Taylor TL, Zhou XD, Heimrich EM, Thomas R, McIntyre KW, Borowski V, Warrack BM, Li Y, Shi H, Levesque PC, Yang Z, Marino AM, Cornelius G, D’Arienzo CJ, Mathur A, Rampulla R, Gupta A, Pragalathan B, Shen DR, Cvijic ME, Salter-Cid LM, Carter PH, Dyckman AJ. Identification and Preclinical Pharmacology of ((1R,3S)-1-Amino-3-((S)-6-(2-methoxyphenethyl)-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopentyl)methanol (BMS-986166): A Differentiated Sphingosine-1-phosphate Receptor 1 (S1P1) Modulator Advanced into Clinical Trials. J Med Chem 2019; 62:2265-2285. [DOI: 10.1021/acs.jmedchem.8b01695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- John L. Gilmore
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hai-Yun Xiao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - T. G. Murali Dhar
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Michael G. Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zili Xiao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jenny Xie
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lois D. Lehman-McKeeman
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lei Gong
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Huadong Sun
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lloyd Lecureux
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Cliff Chen
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Marta Dabros
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Xiaoxia Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Tracy L. Taylor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Xia D. Zhou
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Elizabeth M. Heimrich
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Rochelle Thomas
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Kim W. McIntyre
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Virna Borowski
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bethanne M. Warrack
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Yuwen Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hong Shi
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Paul C. Levesque
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zheng Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anthony M. Marino
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Celia J. D’Arienzo
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Richard Rampulla
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anuradha Gupta
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bala Pragalathan
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Ding Ren Shen
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Luisa M. Salter-Cid
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Percy H. Carter
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Alaric J. Dyckman
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
37
|
S1P 1 receptor phosphorylation, internalization, and interaction with Rab proteins: effects of sphingosine 1-phosphate, FTY720-P, phorbol esters, and paroxetine. Biosci Rep 2018; 38:BSR20181612. [PMID: 30366961 PMCID: PMC6294635 DOI: 10.1042/bsr20181612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) and FTY720-phosphate (FTYp) increased intracellular calcium in cells expressing S1P1 mCherry-tagged receptors; the synthetic agonist was considerably less potent. Activation of protein kinase C by phorbol myristate acetate (PMA) blocked these effects. The three agents induced receptor phosphorylation and internalization, with the action of FTYp being more intense. S1P1 receptor–Rab protein (GFP-tagged) interaction was studied using FRET. The three agents were able to induce S1P1 receptor–Rab5 interaction, although with different time courses. S1P1 receptor–Rab9 interaction was mainly increased by the phorbol ester, whereas S1P1 receptor–Rab7 interaction was only increased by FTYp and after a 30-min incubation. These actions were not observed using dominant negative (GDP-bound) Rab protein mutants. The data suggested that the three agents induce interaction with early endosomes, but that the natural agonist induced rapid receptor recycling, whereas activation of protein kinase C favored interaction with late endosome and slow recycling and FTYp triggered receptor interaction with vesicles associated with proteasomal/lysosomal degradation. The ability of bisindolylmaleimide I and paroxetine to block some of these actions suggested the activation of protein kinase C was associated mainly with the action of PMA, whereas G protein-coupled receptor kinase (GRK) 2 (GRK2) was involved in the action of the three agents.
Collapse
|
38
|
Lee DK, Min YS, Yoo SS, Shim HS, Park SY, Sohn UD. Effect of Sphingosine-1-Phosphate on Intracellular Free Ca²⁺ in Cat Esophageal Smooth Muscle Cells. Biomol Ther (Seoul) 2018; 26:546-552. [PMID: 29915165 PMCID: PMC6254643 DOI: 10.4062/biomolther.2018.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
A comprehensive collection of proteins senses local changes in intracellular Ca²⁺ concentrations ([Ca²⁺]i) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular Ca²⁺ concentrations in cat esophageal smooth muscle cells. To measure [Ca²⁺]i levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in [Ca²⁺]i in the cells. Pretreatment with EGTA, an extracellular Ca²⁺ chelator, decreased the S1P-induced increase in [Ca²⁺]i, and an L-type Ca²⁺-channel blocker, nimodipine, decreased the effect of S1P. This indicates that Ca²⁺ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an InsP3 receptor blocker, the S1P-evoked increase in [Ca²⁺]i was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of Gi-protein, suppressed the increase in [Ca²⁺]i evoked by S1P. These results suggest that the S1P-induced increase in [Ca²⁺]i in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of Ca²⁺ from the InsP3-sensitive Ca²⁺ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular Ca²⁺ via the L type Ca²⁺ channel, which was dependent on activation of the S1P4 receptor coupled to PTX-sensitive Gi protein, via phospholipase C-mediated Ca²⁺ release from the InsP3-sensitive Ca²⁺ pool in cat esophageal smooth muscle cells.
Collapse
Affiliation(s)
- Dong Kyu Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Young Sil Min
- Department of Pharmaceutical Engineering, College of Convergence Science and Technology, Jung Won University, Goesan 28054, Republic of Korea
| | - Seong Su Yoo
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Hyun Sub Shim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Sun Young Park
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06911, Republic of Korea
| |
Collapse
|
39
|
Rusconi B, Jiang X, Sidhu R, Ory DS, Warner BB, Tarr PI. Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Sci Rep 2018; 8:10984. [PMID: 30030452 PMCID: PMC6054655 DOI: 10.1038/s41598-018-28862-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
Necrotizing enterocolitis (NEC) remains a major challenge in neonatology. Little is known about NEC pathophysiology apart from the presence of pre-event gut dysbiosis. Here, we applied broad range metabolomics to stools obtained 1-5 days before NEC developed from 9 cases (9 samples) and 19 (32 samples) controls matched for gestational age at birth and birth weight. The 764 identified metabolites identified six pathways that differ between cases and controls. We pursued sphingolipid metabolism because cases had decreased ceramides and increased sphingomyelins compared to controls, and because of the relevance of sphingolipids to human inflammatory disorders. Targeted analysis of samples from 23 cases and 46 controls confirmed the initial broad range observations. While metabolites provided only 73% accuracy of classification by machine learning, hierarchical clustering defined a sphingolipid associated grouping that contained 60% of the cases but only 13% of the controls, possibly identifying a pathophysiologically distinct subset of NEC. The clustering did not associate with any of the analyzed clinical and sample variables. We conclude that there are significant changes in sphingolipid metabolism components in pre-NEC stools compared to controls, but our data urge circumspection before using sphingolipids as broadly applicable predictive biomarkers.
Collapse
Affiliation(s)
- B Rusconi
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - X Jiang
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - R Sidhu
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - D S Ory
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - B B Warner
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - P I Tarr
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Kurata H, Kusumi K, Otsuki K, Suzuki R, Kurono M, Komiya T, Hagiya H, Mizuno H, Shioya H, Ono T, Takada Y, Maeda T, Matsunaga N, Kondo T, Tominaga S, Nunoya KI, Kiyoshi H, Komeno M, Nakade S, Habashita H. Discovery of a 1-Methyl-3,4-dihydronaphthalene-Based Sphingosine-1-Phosphate (S1P) Receptor Agonist Ceralifimod (ONO-4641). A S1P1 and S1P5 Selective Agonist for the Treatment of Autoimmune Diseases. J Med Chem 2017; 60:9508-9530. [DOI: 10.1021/acs.jmedchem.7b00785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haruto Kurata
- Medicinal
Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Kensuke Kusumi
- Medicinal
Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Kazuhiro Otsuki
- Medicinal
Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Ryo Suzuki
- Medicinal
Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Masakuni Kurono
- Medicinal
Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | - Hidekazu Kiyoshi
- Safety
Research Laboratories, Ono Pharmaceutical Co., Ltd., 50-10 Yamagishi, Mikuni, Sakai, Fukui 913-8538, Japan
| | - Masaharu Komeno
- Safety
Research Laboratories, Ono Pharmaceutical Co., Ltd., 50-10 Yamagishi, Mikuni, Sakai, Fukui 913-8538, Japan
| | | | - Hiromu Habashita
- Medicinal
Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| |
Collapse
|
41
|
González-Fernández B, Sánchez DI, González-Gallego J, Tuñón MJ. Sphingosine 1-Phosphate Signaling as a Target in Hepatic Fibrosis Therapy. Front Pharmacol 2017; 8:579. [PMID: 28890699 PMCID: PMC5574909 DOI: 10.3389/fphar.2017.00579] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is an excess production of extracellular matrix proteins as a result of chronic liver disease which leads to cell death and organ dysfunction. The key cells involved in fibrogenesis are resident hepatic stellate cells (HSCs) which are termed myofibroblasts after activation, acquiring contractile, proliferative, migratory and secretory capability. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with well-established effects on angiogenesis, carcinogenesis and immunity. Accumulating evidence demonstrates that this metabolite is involved in the profibrotic inflammatory process through the regulation of pleiotropic cell responses, such as vascular permeability, leukocyte infiltration, cell survival, migration, proliferation and HSCs differentiation to myofibroblasts. S1P is synthesized by sphingosine kinases (SphKs) and many of its actions are mediated by S1P specific cell surface receptors (S1P1-5), although different intracellular targets of S1P have been identified. Modulation of SphKs/S1P/S1P receptors signaling is known to result in beneficial effects on various in vivo and in vitro models of liver fibrosis. Thus, a better knowledge of the molecular mechanisms involved in the modulation of the S1P pathway could help to improve liver fibrosis therapy. In this review, we analyze the effects of the S1P axis on the fibrogenic process, and the involvement of a range of inhibitors or approaches targeting enzymes related to S1P in the abrogation of pathological fibrogenesis. All in all, targeting this pathway offers therapeutic potential in the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
| | | | - Javier González-Gallego
- Institute of Biomedicine, University of LeónLeón, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)León, Spain
| | - María J Tuñón
- Institute of Biomedicine, University of LeónLeón, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)León, Spain
| |
Collapse
|
42
|
Childress ES, Kharel Y, Brown AM, Bevan DR, Lynch KR, Santos WL. Transforming Sphingosine Kinase 1 Inhibitors into Dual and Sphingosine Kinase 2 Selective Inhibitors: Design, Synthesis, and in Vivo Activity. J Med Chem 2017; 60:3933-3957. [PMID: 28406646 PMCID: PMC6047346 DOI: 10.1021/acs.jmedchem.7b00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that interacts with its five G-protein coupled receptors (S1P1-5) to regulate cell growth and survival and has been implicated in a variety of diseases including cancer and sickle cell disease. As the key mediators in the synthesis of S1P, sphingosine kinase (SphK) isoforms 1 and 2 have attracted attention as viable targets for pharmaceutical inhibition. In this article, we describe the design, synthesis, and biological evaluation of aminothiazole-based guanidine inhibitors of SphK. Surprisingly, combining features of reported SphK1 inhibitors generated SphK1/2 dual inhibitor 20l (SLC4011540) (hSphK1 Ki = 120 nM, hSphK2 Ki = 90 nM) and SphK2 inhibitor 20dd (SLC4101431) (Ki = 90 nM, 100-fold SphK2 selectivity). These compounds effectively decrease S1P levels in vitro. In vivo administration of 20dd validated that inhibition of SphK2 increases blood S1P levels.
Collapse
Affiliation(s)
- Elizabeth S. Childress
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M. Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|