1
|
Jang JH, Kim JY, Lee TJ. Recent advances in anticancer mechanisms of molecular glue degraders: focus on RBM39-dgrading synthetic sulfonamide such as indisulam, E7820, tasisulam, and chloroquinoxaline sulfonamide. Genes Genomics 2024:10.1007/s13258-024-01565-z. [PMID: 39271535 DOI: 10.1007/s13258-024-01565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Synthetic sulfonamide anticancer drugs, including E7820, indisulam, tasisulam, and chloroquinoxaline sulfonamide, exhibit diverse mechanisms of action and therapeutic potential, functioning as molecular glue degraders. E7820 targets RBM39, affecting RNA splicing and angiogenesis by suppressing integrin α2. Phase I studies have demonstrated some stability in advanced solid malignancies; however, further efficacy studies are required. Indisulam causes G1 cell cycle arrest and delays the G1/S transition by modulating splicing through RBM39 degradation via DCAF15. Despite its limited initial efficacy, it shows promise in combination therapies, particularly for hematopoietic malignancies and gliomas. Tasisulam inhibits VEGF signaling, suppresses angiogenesis, and induces apoptosis. Although early trials indicated broad activity, safety concerns have halted its development. Chloroquinoxaline sulfonamide, initially investigated for cell cycle arrest and topoisomerase II inhibition, was discontinued owing to its limited efficacy and toxicity, despite promising initial results. Recent studies revealed the structural interaction of E7820 with DCAF15 and RBM39, although phase II trials on myeloid malignancies have shown limited efficacy. Indisulam is effective against glioblastoma and neuroblastoma, with potential synergy in combination therapies and metabolic disruption. Recent research on tasisulam reveals its potential in cancer therapy by targeting RBM39 degradation through DCAF15-mediated pathways. Understanding these mechanisms could lead to new treatments that affect alternative splicing and improve cancer therapies Overall, although these drugs exhibit promising mechanisms of action, further research is required to optimize their clinical efficacy and safety.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
2
|
Yu X, Zhao X, Li L, Huang Y, Cui C, Hu Q, Xu H, Yin B, Chen X, Zhao D, Qiu Y, Hou Y. Recent advances in small molecule Nav 1.7 inhibitors for cancer pain management. Bioorg Chem 2024; 150:107605. [PMID: 38971095 DOI: 10.1016/j.bioorg.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Xiaoquan Yu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lingjun Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yufeng Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chaoyang Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) Co., Ltd., 1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Bixi Yin
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
3
|
Liu SJ, Zhao Q, Liu XC, Gamble AB, Huang W, Yang QQ, Han B. Bioactive atropisomers: Unraveling design strategies and synthetic routes for drug discovery. Med Res Rev 2024; 44:1971-2014. [PMID: 38515232 DOI: 10.1002/med.22037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Atropisomerism, an expression of axial chirality caused by limited bond rotation, is a prominent aspect within the field of medicinal chemistry. It has been shown that atropisomers of a wide range of compounds, including established FDA-approved drugs and experimental molecules, display markedly different biological activities. The time-dependent reversal of chirality in atropisomers poses complexity and obstacles in the process of drug discovery and development. Nonetheless, recent progress in understanding atropisomerism and enhanced characterization methods have greatly assisted medicinal chemists in the effective development of atropisomeric drug molecules. This article provides a comprehensive review of their special design thoughts, synthetic routes, and biological activities, serving as a reference for the synthesis and biological evaluation of bioactive atropisomers in the future.
Collapse
Affiliation(s)
- Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Chen Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Le Franc A, Da Silva A, Lepetre-Mouelhi S. Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Deliv Transl Res 2024; 14:2112-2145. [PMID: 38861139 DOI: 10.1007/s13346-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.
Collapse
Affiliation(s)
- Adélaïde Le Franc
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alexandre Da Silva
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | |
Collapse
|
5
|
Maguire S, Strachan G, Norvaiša K, Donohoe C, Gomes-da-Silva LC, Senge MO. Porphyrin Atropisomerism as a Molecular Engineering Tool in Medicinal Chemistry, Molecular Recognition, Supramolecular Assembly, and Catalysis. Chemistry 2024; 30:e202401559. [PMID: 38787350 DOI: 10.1002/chem.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Porphyrin atropisomerism, which arises from restricted σ-bond rotation between the macrocycle and a sufficiently bulky substituent, was identified in 1969 by Gottwald and Ullman in 5,10,15,20-tetrakis(o-hydroxyphenyl)porphyrins. Henceforth, an entirely new field has emerged utilizing this transformative tool. This review strives to explain the consequences of atropisomerism in porphyrins, the methods which have been developed for their separation and analysis and present the diverse array of applications. Porphyrins alone possess intriguing properties and a structure which can be easily decorated and molded for a specific function. Therefore, atropisomerism serves as a transformative tool, making it possible to obtain even a specific molecular shape. Atropisomerism has been thoroughly exploited in catalysis and molecular recognition yet presents both challenges and opportunities in medicinal chemistry.
Collapse
Affiliation(s)
- Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Grant Strachan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- CQC, Coimbra Chemistry Centre, University of Coimbra, Coimbra, 3004-535, Portugal
| | | | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg Str. 2a, 85748, Garching, Germany
| |
Collapse
|
6
|
Silva Elipe MV, Ndukwe IE, Murray JI. Cryogen-free 400-MHz nuclear magnetic resonance spectrometer as a versatile tool for pharmaceutical process analytical technology. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:512-534. [PMID: 38369696 DOI: 10.1002/mrc.5434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
The discovery of new ceramic materials containing Ba-La-Cu oxides in 1986 that exhibited superconducting properties at high temperatures in the range of 35 K or higher, recognized with the Nobel Prize in Physics in 1987, opened a new world of opportunities for nuclear magnetic resonance (NMRs) and magnetic resonance imaging (MRIs) to move away from liquid cryogens. This discovery expands the application of high temperature superconducting (HTS) materials to fields beyond the chemical and medical industries, including electrical power grids, energy, and aerospace. The prototype 400-MHz cryofree HTS NMR spectrometer installed at Amgen's chemistry laboratory has been vital for a variety of applications such as structure analysis, reaction monitoring, and CASE-3D studies with RDCs. The spectrometer has been integrated with Amgen's chemistry and analytical workflows, providing pipeline project support in tandem with other Kinetic Analysis Platform technologies. The 400-MHz cryofree HTS NMR spectrometer, as the name implies, does not require liquid cryogens refills and has smaller footprint that facilitates installation into a chemistry laboratory fume hood, sharing the hood with a process chemistry reactor. Our evaluation of its performance for structural analysis with CASE-3D protocol and for reaction monitoring of Amgen's pipeline chemistry was successful. We envision that the HTS magnets would become part of the standard NMR and MRI spectrometers in the future. We believe that while the technology is being developed, there is room for all magnet options, including HTS, low temperature superconducting (LTS) magnets, and low field benchtop NMRs with permanent magnets, where utilization will be dependent on application type and costs.
Collapse
Affiliation(s)
| | - Ikenna Edward Ndukwe
- Department of Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, California, USA
| | - James I Murray
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
7
|
Becker J, Effraim PR, Dib-Hajj S, Rittner HL. Lessons learned in translating pain knowledge into practice. Pain Rep 2023; 8:e1100. [PMID: 37928204 PMCID: PMC10624476 DOI: 10.1097/pr9.0000000000001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/05/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction During the past 2 decades, basic research deciphering the underlying mechanisms of nociception and chronic pain was thought to finally step beyond opioids and nonsteroidals and provide patients with new analgesics. But apart from calcitonin gene-related peptide antagonists, nothing arrived in hands of clinicians. Objectives To present existing evidence of 3 representative target molecules in the development of novel pain treatment that, so far, did not result in approved drugs. Methods This Clinical Update aligns with the 2022 IASP Global Year Translating Pain Knowledge into Practice and selectively reviews best available evidence and practice. Results We highlight 3 targets: a ion channel, a neuronal growth factor, and a neuropeptide to explore why these drug targets have been dropped in clinical phase II-III trials. Antibodies to nerve growth factor had very good effects in musculoskeletal pain but resulted into more patients requiring joint replacements. Blockers of NaV1.7 were often not effective enough-at least if patients were not stratified. Blockers of neurokinin receptor were similarly not successful enough. In general, failure was most often to the result of a lack of effect and to a lesser extend because of unexpected severe side effects. However, all studies and trials lead to an enormous move in the scientific community to better preclinical models and testing as well as revised methods to molecularly phenotype and stratify patients. Conclusion All stakeholders in the process can help in the future: better preclinical studies, phenotyping and stratifying patients, and participation in clinical trials to move the discovery of analgesics forward.
Collapse
Affiliation(s)
- Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philip R. Effraim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Arunachalampillai A, Chandrappa P, Cherney A, Crockett R, Doerfler J, Johnson G, Kommuri VC, Kyad A, McManus J, Murray J, Myren T, Fine Nathel N, Ndukwe I, Ortiz A, Reed M, Rui H, Silva Elipe MV, Tedrow J, Wells S, Yacoob S, Yamamoto K. Atroposelective Brønsted Acid-Catalyzed Photocyclization to Access Chiral N-Aryl Quinolones with Low Rotational Barriers. Org Lett 2023; 25:5856-5861. [PMID: 37499637 DOI: 10.1021/acs.orglett.3c02117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein, a novel route to atropisomeric N-aryl quinolones with low rotational barriers is demonstrated, leveraging a dual photochemical/organocatalytic approach to the required ring closure in up to 94% yield and up to >99% ee. The use of a continuous flow system allows for impurity suppression and enables rapid scale-up to a decagram scale.
Collapse
Affiliation(s)
| | | | - Alan Cherney
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Richard Crockett
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jaika Doerfler
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Gregory Johnson
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | - Ali Kyad
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Joshua McManus
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - James Murray
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Tessa Myren
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Noah Fine Nathel
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ikenna Ndukwe
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Adrian Ortiz
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Margaret Reed
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Huan Rui
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | - Jason Tedrow
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Shane Wells
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Suha Yacoob
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kumiko Yamamoto
- Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
9
|
Vander Does A, Ju T, Mohsin N, Chopra D, Yosipovitch G. How to get rid of itching. Pharmacol Ther 2023; 243:108355. [PMID: 36739914 DOI: 10.1016/j.pharmthera.2023.108355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Itch is an unpleasant sensation arising from a variety of dermatologic, neuropathic, systemic, and psychogenic etiologies. Various itch pathways are implicated according to the underlying etiology. A variety of pruritogens, or itch mediators, as well as receptors have been identified and provide potential therapeutic targets. Recent research has primarily focused on targeting inflammatory cytokines and Janus kinase signaling, protease-activated receptors, substance P and neurokinin, transient receptor potential-vanilloid ion channels, Mas-related G-protein-coupled receptors (MRGPRX2 and MRGPRX4), the endogenous opioid and cannabinoid balance, and phosphodiesterase 4. Periostin, a newly identified pruritogen, should be further explored with clinical trials. Drugs targeting neural sensitization including the gabergic system and P2X3 are other potential drugs for chronic itch. There is a need for more targeted therapies to improve clinical outcomes and reduce side effects.
Collapse
Affiliation(s)
- Ashley Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Teresa Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Noreen Mohsin
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Divya Chopra
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
10
|
Chen Q, Zhou X, Rehmel J, Steele JP, Svensson KA, Beck JP, Hembre EJ, Hao J. Ensemble Docking Approach to Mitigate Pregnane X Receptor-Mediated CYP3A4 Induction Risk. J Chem Inf Model 2023; 63:173-186. [PMID: 36473234 DOI: 10.1021/acs.jcim.2c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three structurally closely related dopamine D1 receptor positive allosteric modulators (D1 PAMs) based on a tetrahydroisoquinoline (THIQ) scaffold were profiled for their CYP3A4 induction potentials. It was found that the length of the linker at the C5 position greatly affected the potentials of these D1 PAMs as CYP3A4 inducers, and the level of induction correlated well with the activation of the pregnane X receptor (PXR). Based on the published PXR X-ray crystal structures, we built a binding model specifically for these THIQ-scaffold-based D1 PAMs in the PXR ligand-binding pocket via an ensemble docking approach and found the model could explain the observed CYP induction disparity. Combined with our previously reported D1 receptor homology model, which identified the C5 position as pointing toward the solvent-exposed space, our PXR-binding model coincidentally suggested that structural modifications at the C5 position could productively modulate the CYP induction potential while maintaining the D1 PAM potency of these THIQ-based PAMs.
Collapse
Affiliation(s)
- Qi Chen
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Xin Zhou
- Drug Disposition, Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, California92121, United States
| | - Jessica Rehmel
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - James P Steele
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Kjell A Svensson
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - James P Beck
- Discovery Chemistry Research and Technologies, Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, California92121, United States
| | - Erik J Hembre
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Junliang Hao
- Discovery Chemistry Research and Technologies, Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, California92121, United States
| |
Collapse
|
11
|
Xu M, Lu Z, Wu Z, Gui M, Liu G, Tang Y, Li W. Development of In Silico Models for Predicting Potential Time-Dependent Inhibitors of Cytochrome P450 3A4. Mol Pharm 2023; 20:194-205. [PMID: 36458739 DOI: 10.1021/acs.molpharmaceut.2c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is one of the major drug metabolizing enzymes in the human body and metabolizes ∼30-50% of clinically used drugs. Inhibition of CYP3A4 must always be considered in the development of new drugs. Time-dependent inhibition (TDI) is an important P450 inhibition type that could cause undesired drug-drug interactions. Therefore, identification of CYP3A4 TDI by a rapid convenient way is of great importance to any new drug discovery effort. Here, we report the development of in silico classification models for prediction of potential CYP3A4 time-dependent inhibitors. On the basis of the CYP3A4 TDI data set that we manually collected from literature and databases, both conventional machine learning and deep learning models were constructed. The comparisons of different sampling strategies, molecular representations, and machine-learning algorithms showed the benefits of a balanced data set and the deep-learning model featured by GraphConv. The generalization ability of the best model was tested by screening an external data set, and the prediction results were validated by biological experiments. In addition, several structural alerts that are relevant to CYP3A4 time-dependent inhibitors were identified via information gain and frequency analysis. We anticipate that our effort would be useful for identification of potential CYP3A4 time-dependent inhibitors in drug discovery and design.
Collapse
Affiliation(s)
- Minjie Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zhou Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Minyan Gui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| |
Collapse
|
12
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
13
|
Elleman AV, Du Bois J. Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception. Chembiochem 2022; 23:e202100625. [PMID: 35315190 PMCID: PMC9359671 DOI: 10.1002/cbic.202100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
The malfunction and misregulation of voltage-gated sodium channels (NaV s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaV s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.
Collapse
Affiliation(s)
- Anna V Elleman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Patel MV, Peltier HM, Matulenko MA, Koenig JR, C Scanio MJ, Gum RJ, El-Kouhen OF, Fricano MM, Lundgaard GL, Neelands T, Zhang XF, Zhan C, Pai M, Ghoreishi-Haack N, Hudzik T, Gintant G, Martin R, McGaraughty S, Xu J, Bow D, Kalvass JC, Kym PR, DeGoey DA, Kort ME. Discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) and analogs as small molecule Na v1.7/ Nav1.8 blockers for the treatment of pain. Bioorg Med Chem 2022; 63:116743. [PMID: 35436748 DOI: 10.1016/j.bmc.2022.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
The voltage-gated sodium channel Nav1.7 is an attractive target for the treatment of pain based on the high level of target validation with genetic evidence linking Nav1.7 to pain in humans. Our effort to identify selective, CNS-penetrant Nav1.7 blockers with oral activity, improved selectivity, good drug-like properties, and safety led to the discovery of 2-substituted quinolines and quinolones as potent small molecule Nav1.7 blockers. The design of these molecules focused on maintaining potency at Nav1.7, improving selectivity over the hERG channel, and overcoming phospholipidosis observed with the initial leads. The structure-activity relationship (SAR) studies leading to the discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) are described herein. ABBV-318 displayed robust in vivo efficacy in both inflammatory and neuropathic rodent models of pain. ABBV-318 also inhibited Nav1.8, another sodium channel isoform that is an active target for the development of new pain treatments.
Collapse
Affiliation(s)
- Meena V Patel
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | - Hillary M Peltier
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Mark A Matulenko
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - John R Koenig
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Marc J C Scanio
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Rebecca J Gum
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Odile F El-Kouhen
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Meagan M Fricano
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Greta L Lundgaard
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Torben Neelands
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Xu-Feng Zhang
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Cenchen Zhan
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Madhavi Pai
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | | | - Thomas Hudzik
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Gary Gintant
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Ruth Martin
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Steve McGaraughty
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Jun Xu
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Daniel Bow
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - John C Kalvass
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Philip R Kym
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - David A DeGoey
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Michael E Kort
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
15
|
Torabi M, Yarie M, Zolfigol MA, Azizian S, Gu Y. A magnetic porous organic polymer: catalytic application in the synthesis of hybrid pyridines with indole, triazole and sulfonamide moieties. RSC Adv 2022; 12:8804-8814. [PMID: 35424833 PMCID: PMC8984949 DOI: 10.1039/d2ra00451h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Herein, the synthesis and characterization of a triazine-based magnetic ionic porous organic polymer are reported. The structure, morphology, and components of the prepared structure have been investigated with several spectroscopic and microscopic techniques such as FT-IR, EDX, elemental mapping, TGA/DTA, SEM, TEM, VSM, and BET analysis. Also, catalytic application of the prepared triazine-based magnetic ionic porous organic polymer was investigated for the synthesis of hybrid pyridine derivatives bearing indole, triazole and sulfonamide groups. Furthermore, the prepared hybrid pyridine systems were characterized by FT-IR, 1H NMR, 13C NMR and mass analysis. A cooperative vinylogous anomeric-based oxidation pathway was suggested for the synthesis of target molecules.
Collapse
Affiliation(s)
- Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran +988138380709 +988138282807
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran +988138380709 +988138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran +988138380709 +988138282807
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 China
| |
Collapse
|
16
|
Li S, Ding M, Wu Y, Xue S, Ji Y, Zhang P, Zhang Z, Cao Z, Zhang F. Histamine Sensitization of the Voltage-Gated Sodium Channel Nav1.7 Contributes to Histaminergic Itch in Mice. ACS Chem Neurosci 2022; 13:700-710. [PMID: 35157443 DOI: 10.1021/acschemneuro.2c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Itch, a common clinical symptom of many skin diseases, severely impairs the life quality of patients. Nav1.7, a subtype of voltage-gated sodium channels mainly expressed in primary sensory neurons, is responsible for the amplification of threshold currents that trigger action potential (AP) generation. Gain-of-function mutation of Nav1.7 leads to paroxysmal itch, while pharmacological inhibition of Nav1.7 alleviates histamine-dependent itch. However, the crosstalk between histamine and Nav1.7 that leads to itch is unclear. In the present study, we demonstrated that in the dorsal root ganglion (DRG) neurons from histamine-dependent itch model mice induced by compound 48/80, tetrodotoxin-sensitive (TTX-S) but not TTX-resistant Na+ currents were activated at more hyperpolarized membrane potentials compared to those on DRG neurons from vehicle-treated mice. Meanwhile, bath application of histamine shifted the activation voltages of TTX-S Na+ currents to the hyperpolarized direction, increased the AP frequency, and reduced the current threshold required to elicit APs. Further mechanistic studies demonstrated that selective activation of H1 but not H2 and H4 receptors mimicked histamine effect on TTX-S Na+ channels in DRG neurons. The protein kinase C (PKC) inhibitor GO 8963, but not the PKA inhibitor H89, normalized histamine-sensitized TTX-S Na+ channels. We also demonstrated that histamine shifted the activation voltages of Na+ currents to the hyperpolarized direction in Chinese hamster ovary (CHO) cells expressing Nav1.7. Importantly, selective inhibition of Nav1.7 by PF-05089771 significantly relieved the scratching frequency in a histamine-dependent itch model induced by compound 48/80. Taken together, these data suggest that activation of H1 receptors by histamine sensitizes Nav1.7 channels through the PKC pathway in DRG neurons that contributes to histamine-dependent itch.
Collapse
Affiliation(s)
- Shaoheng Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunyun Ji
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Pinhui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhuang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
17
|
Liu T, Beck JP, Hao J. A concise review on hPXR ligand-recognizing residues and structure-based strategies to alleviate hPXR transactivation risk. RSC Med Chem 2022; 13:129-137. [PMID: 35308029 PMCID: PMC8864553 DOI: 10.1039/d1md00348h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023] Open
Abstract
The human pregnane X receptor (hPXR) regulates the expression of major drug metabolizing enzymes. A wide range of drug candidates bind and activate hPXR, and hence are at risk of increasing drug-drug interactions and reducing clinical efficacy. hPXR structural features that function as hot spots for ligand binding are identified and highlighted in this concise review. Based on literature structure-activity relationship data as case studies, structure-based strategies to mitigate hPXR transactivation are summarized for medicinal chemists.
Collapse
Affiliation(s)
- Tao Liu
- Discovery Chemistry Research & Technologies, Eli Lilly and Company, Lilly Biotechnology Center 10290 Campus Point Drive San Diego CA 92121 USA
| | - James P Beck
- Discovery Chemistry Research & Technologies, Eli Lilly and Company, Lilly Biotechnology Center 10290 Campus Point Drive San Diego CA 92121 USA
| | - Junliang Hao
- Discovery Chemistry Research & Technologies, Eli Lilly and Company, Lilly Biotechnology Center 10290 Campus Point Drive San Diego CA 92121 USA
| |
Collapse
|
18
|
Wang Y, Xiang S, Tan B. Application in Drugs and Materials. AXIALLY CHIRAL COMPOUNDS 2021:297-315. [DOI: 10.1002/9783527825172.ch11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Ligand binding at the protein-lipid interface: strategic considerations for drug design. Nat Rev Drug Discov 2021; 20:710-722. [PMID: 34257432 DOI: 10.1038/s41573-021-00240-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Many drug targets are embedded within the phospholipid bilayer of cellular membranes, including G protein-coupled receptors, ion channels, transporters and membrane-bound enzymes. Increasing evidence from biophysical and structural studies suggests that many small-molecule drugs commonly associate with these targets at binding sites at the protein-phospholipid interface. Without a direct path from bulk solvent to a binding site, a drug must first partition in the phospholipid membrane before interacting with the protein target. This membrane access mechanism necessarily affects the interpretation of potency data, structure-activity relationships, pharmacokinetics and physicochemical properties for drugs that target these sites. With an increasing number of small-molecule intramembrane binding sites revealed through X-ray crystallography and cryogenic electron microscopy, we suggest that ligand-lipid interactions likely play a larger role in small-molecule drug action than commonly appreciated. This Perspective introduces key concepts and drug design considerations to aid discovery teams operating within this target space, and discusses challenges and future opportunities in the field.
Collapse
|
20
|
Roecker AJ, Layton ME, Pero JE, Kelly MJ, Greshock TJ, Kraus RL, Li Y, Klein R, Clements M, Daley C, Jovanovska A, Ballard JE, Wang D, Zhao F, Brunskill APJ, Peng X, Wang X, Sun H, Houghton AK, Burgey CS. Discovery of Arylsulfonamide Na v1.7 Inhibitors: IVIVC, MPO Methods, and Optimization of Selectivity Profile. ACS Med Chem Lett 2021; 12:1038-1049. [PMID: 34141090 PMCID: PMC8201757 DOI: 10.1021/acsmedchemlett.1c00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023] Open
Abstract
The voltage-gated sodium channel Nav1.7 continues to be a high-profile target for the treatment of various pain afflictions due to its strong human genetic validation. While isoform selective molecules have been discovered and advanced into the clinic, to date, this target has yet to bear fruit in the form of marketed therapeutics for the treatment of pain. Lead optimization efforts over the past decade have focused on selectivity over Nav1.5 due to its link to cardiac side effects as well as the translation of preclinical efficacy to man. Inhibition of Nav1.6 was recently reported to yield potential respiratory side effects preclinically, and this finding necessitated a modified target selectivity profile. Herein, we report the continued optimization of a novel series of arylsulfonamide Nav1.7 inhibitors to afford improved selectivity over Nav1.6 while maintaining rodent oral bioavailability through the use of a novel multiparameter optimization (MPO) paradigm. We also report in vitro-in vivo correlations from Nav1.7 electrophysiology protocols to preclinical models of efficacy to assist in projecting clinical doses. These efforts produced inhibitors such as compound 19 with potency against Nav1.7, selectivity over Nav1.5 and Nav1.6, and efficacy in behavioral models of pain in rodents as well as inhibition of rhesus olfactory response indicative of target modulation.
Collapse
Affiliation(s)
- Anthony J. Roecker
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mark E. Layton
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joseph E. Pero
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Michael J. Kelly
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Thomas J. Greshock
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Richard L. Kraus
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yuxing Li
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rebecca Klein
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Michelle Clements
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher Daley
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Aneta Jovanovska
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeanine E. Ballard
- Pharmacokinetic,
Pharmacodynamics, and Drug Metabolism, Merck
& Co., Inc., West Point, Pennsylvania 19486, United States
| | - Deping Wang
- Computational
and Structural Chemistry, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Fuqiang Zhao
- Translational
Imaging and Biomarkers, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Andrew P. J. Brunskill
- Molecular
and Materials Characterization, Merck &
Co., Inc., Rahway, New Jersey 07065, United States
| | - Xuanjia Peng
- HitS
Unite, WuXi AppTec Co., Ltd. (Shanghai), Shanghai 200131, China
| | - Xiu Wang
- IDSU, WuXi AppTec
Co., Ltd. (Shanghai), Shanghai 200131, China
| | - Haiyan Sun
- IDSU, WuXi AppTec
Co., Ltd. (Shanghai), Shanghai 200131, China
| | - Andrea K. Houghton
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher S. Burgey
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
21
|
Hall A, Chanteux H, Ménochet K, Ledecq M, Schulze MSED. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J Med Chem 2021; 64:6413-6522. [PMID: 34003642 DOI: 10.1021/acs.jmedchem.0c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | | | | - Marie Ledecq
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | |
Collapse
|
22
|
In silico development of potential therapeutic for the pain treatment by inhibiting voltage-gated sodium channel 1.7. Comput Biol Med 2021; 132:104346. [PMID: 33774271 DOI: 10.1016/j.compbiomed.2021.104346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 01/27/2023]
Abstract
The voltage-gated sodium channel Nav1.7 can be considered as a promising target for the treatment of pain. This research presents conformational-independent and 3D field-based QSAR modeling for a series of aryl sulfonamide acting as Nav1.7 inhibitors. As descriptors used for building conformation-independent QSAR models, SMILES notation and local invariants of the molecular graph were used with the Monte Carlo optimization method as a model developer. Different statistical methods, including the index of ideality of correlation, were used to test the quality of the developed models, robustness and predictability and obtained results were good. Obtained results indicate that there is a very good correlation between 3D QSAR and conformation-independent models. Molecular fragments that account for the increase/decrease of a studied activity were defined and used for the computer-aided design of new compounds as potential analgesics. The final evaluation of the developed QSAR models and designed inhibitors were carried out using molecular docking studies, bringing to light an excellent correlation with the QSAR modeling results.
Collapse
|
23
|
FGF13 Is Required for Histamine-Induced Itch Sensation by Interaction with Na V1.7. J Neurosci 2020; 40:9589-9601. [PMID: 33172979 DOI: 10.1523/jneurosci.0599-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
Itch can be induced by activation of small-diameter DRG neurons, which express abundant intracellular fibroblast growth factor 13 (FGF13). Although FGF13 is revealed to be essential for heat nociception, its role in mediating itch remains to be investigated. Here, we reported that loss of FGF13 in mouse DRG neurons impaired the histamine-induced scratching behavior. Calcium imaging showed that the percentage of histamine-responsive DRG neurons was largely decreased in FGF13-deficient mice; and consistently, electrophysiological recording exhibited that histamine failed to evoke action potential firing in most DRG neurons from these mice. Given that the reduced histamine-evoked neuronal response was caused by knockdown of FGF13 but not by FGF13A deficiency, FGF13B was supposed to mediate this process. Furthermore, overexpression of histamine Type 1 receptor H1R, but not H2R, H3R, nor H4R, increased the percentage of histamine-responsive DRG neurons, and the scratching behavior in FGF13-deficient mice was highly reduced by selective activation of H1R, suggesting that H1R is mainly required for FGF13-mediated neuronal response and scratching behavior induced by histamine. However, overexpression of H1R failed to rescue the histamine-evoked neuronal response in FGF13-deficient mice. Histamine enhanced the FGF13 interaction with NaV1.7. Disruption of this interaction by a membrane-permeable competitive peptide, GST-Flag-NaV1.7CT-TAT, reduced the percentage of histamine-responsive DRG neurons, and impaired the histamine-induced scratching, indicating that the FGF13/NaV1.7 interaction is a key molecular determinant in the histamine-induced itch sensation. Therefore, our study reveals a novel role of FGF13 in mediating itch sensation via the interaction of NaV1.7 in the peripheral nervous system.SIGNIFICANCE STATEMENT Scratching induced by itch brings serious tissue damage in chronic itchy diseases, and targeting itch-sensing molecules is crucial for its therapeutic intervention. Here, we reveal that FGF13 is required for the neuronal excitation and scratching behavior induced by histamine. We further provide the evidence that the histamine-evoked neuronal response is mainly mediated by histamine Type 1 receptor H1R, and is largely attenuated in FGF13-deficent mice. Importantly, we identify that histamine enhances the FGF13/NaV1.7 interaction, and disruption of this interaction reduces histamine-evoked neuronal excitation and highly impairs histamine-induced scratching behavior. Additionally, we also find that FGF13 is involved in 5-hydroxytryptamine-induced scratching behavior and hapten 1-fluoro-2,4-dinitrobenzene-induced chronic itch.
Collapse
|
24
|
Pajouhesh H, Beckley JT, Delwig A, Hajare HS, Luu G, Monteleone D, Zhou X, Ligutti J, Amagasu S, Moyer BD, Yeomans DC, Du Bois J, Mulcahy JV. Discovery of a selective, state-independent inhibitor of Na V1.7 by modification of guanidinium toxins. Sci Rep 2020; 10:14791. [PMID: 32908170 PMCID: PMC7481244 DOI: 10.1038/s41598-020-71135-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.
Collapse
Affiliation(s)
- H Pajouhesh
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J T Beckley
- SiteOne Therapeutics, Bozeman, MT, 59715, USA
| | - A Delwig
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - H S Hajare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - G Luu
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - D Monteleone
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - X Zhou
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J Ligutti
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - S Amagasu
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - B D Moyer
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - D C Yeomans
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - J V Mulcahy
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA.
| |
Collapse
|
25
|
Robles-Gómez E, Benítez-Villalobos F, Soriano-García M, Antúnez-Argüelles E. Non-peptide molecules in the pedicellariae of Toxopneustes roseus. Toxicon 2020; 184:143-151. [DOI: 10.1016/j.toxicon.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022]
|
26
|
Ramdas V, Talwar R, Kanoje V, Loriya RM, Banerjee M, Patil P, Joshi AA, Datrange L, Das AK, Walke DS, Kalhapure V, Khan T, Gote G, Dhayagude U, Deshpande S, Shaikh J, Chaure G, Pal RR, Parkale S, Suravase S, Bhoskar S, Gupta RV, Kalia A, Yeshodharan R, Azhar M, Daler J, Mali V, Sharma G, Kishore A, Vyawahare R, Agarwal G, Pareek H, Budhe S, Nayak A, Warude D, Gupta PK, Joshi P, Joshi S, Darekar S, Pandey D, Wagh A, Nigade PB, Mehta M, Patil V, Modi D, Pawar S, Verma M, Singh M, Das S, Gundu J, Nemmani K, Bock MG, Sharma S, Bakhle D, Kamboj RK, Palle VP. Discovery of Potent, Selective, and State-Dependent Na V1.7 Inhibitors with Robust Oral Efficacy in Pain Models: Structure-Activity Relationship and Optimization of Chroman and Indane Aryl Sulfonamides. J Med Chem 2020; 63:6107-6133. [PMID: 32368909 DOI: 10.1021/acs.jmedchem.0c00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltage-gated sodium channel NaV1.7 is a genetically validated target for pain. Identification of NaV1.7 inhibitors with all of the desired properties to develop as an oral therapeutic for pain has been a major challenge. Herein, we report systematic structure-activity relationship (SAR) studies carried out to identify novel sulfonamide derivatives as potent, selective, and state-dependent NaV1.7 inhibitors for pain. Scaffold hopping from benzoxazine to chroman and indane bicyclic system followed by thiazole replacement on sulfonamide led to identification of lead molecules with significant improvement in solubility, selectivity over NaV1.5, and CYP2C9 inhibition. The lead molecules 13, 29, 32, 43, and 51 showed a favorable pharmacokinetics (PK) profile across different species and robust efficacy in veratridine and formalin-induced inflammatory pain models in mice. Compound 51 also showed significant effects on the CCI-induced neuropathic pain model. The profile of 51 indicated that it has the potential for further evaluation as a therapeutic for pain.
Collapse
Affiliation(s)
- Vidya Ramdas
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rashmi Talwar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vijay Kanoje
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh M Loriya
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Moloy Banerjee
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Pradeep Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Advait Arun Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Laxmikant Datrange
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amit Kumar Das
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Deepak Sahebrao Walke
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vaibhav Kalhapure
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Talha Khan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ganesh Gote
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Usha Dhayagude
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shreyas Deshpande
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Javed Shaikh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ganesh Chaure
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ravindra R Pal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Santosh Parkale
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sachin Suravase
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Smita Bhoskar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh V Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Anil Kalia
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh Yeshodharan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahammad Azhar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jagadeesh Daler
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Mali
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Geetika Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amitesh Kishore
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rupali Vyawahare
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Gautam Agarwal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Himani Pareek
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Budhe
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Arun Nayak
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dnyaneshwar Warude
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Praveen Kumar Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Parag Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sneha Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Darekar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dilip Pandey
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Akshaya Wagh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prashant B Nigade
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Maneesh Mehta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dipak Modi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shashikant Pawar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahip Verma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Minakshi Singh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sudipto Das
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jayasagar Gundu
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kumar Nemmani
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mark G Bock
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sharad Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dhananjay Bakhle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajender Kumar Kamboj
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Venkata P Palle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| |
Collapse
|
27
|
Shinozuka T, Kobayashi H, Suzuki S, Tanaka K, Karanjule N, Hayashi N, Tsuda T, Tokumaru E, Inoue M, Ueda K, Kimoto H, Domon Y, Takahashi S, Kubota K, Yokoyama T, Shimizugawa A, Koishi R, Fujiwara C, Asano D, Sakakura T, Takasuna K, Abe Y, Watanabe T, Kitano Y. Discovery of DS-1971a, a Potent, Selective NaV1.7 Inhibitor. J Med Chem 2020; 63:10204-10220. [DOI: 10.1021/acs.jmedchem.0c00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Kobayashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Sayaka Suzuki
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kyosuke Tanaka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Narayan Karanjule
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriyuki Hayashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Toshifumi Tsuda
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eri Tokumaru
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masahiro Inoue
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyono Ueda
- R&D Division, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Hiroko Kimoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yuki Domon
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Sakiko Takahashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazufumi Kubota
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomihisa Yokoyama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Akiko Shimizugawa
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ryuta Koishi
- R&D Division, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Chie Fujiwara
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Daigo Asano
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomoko Sakakura
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Takasuna
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yasuyuki Abe
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Toshiyuki Watanabe
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
28
|
Wang JT, Zheng YM, Chen YT, Gu M, Gao ZB, Nan FJ. Discovery of aryl sulfonamide-selective Nav1.7 inhibitors with a highly hydrophobic ethanoanthracene core. Acta Pharmacol Sin 2020; 41:293-302. [PMID: 31316182 PMCID: PMC7471454 DOI: 10.1038/s41401-019-0267-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/30/2019] [Indexed: 01/19/2023] Open
Abstract
Nav1.7 channels are mainly distributed in the peripheral nervous system. Blockade of Nav1.7 channels with small-molecule inhibitors in humans might provide pain relief without affecting the central nervous system. Based on the facts that many reported Nav1.7-selective inhibitors contain aryl sulfonamide fragments, as well as a tricyclic antidepressant, maprotiline, has been found to inhibit Nav1.7 channels, we designed and synthesized a series of compounds with ethanoanthracene and aryl sulfonamide moieties. Their inhibitory activity on sodium channels were detected with electrophysiological techniques. We found that compound 10o potently inhibited Nav1.7 channels stably expressed in HEK293 cells (IC50 = 0.64 ± 0.30 nmol/L) and displayed a high Nav1.7/Nav1.5 selectivity. In mouse small-sized dorsal root ganglion neurons, compound 10o (10, 100 nmol/L) dose-dependently decreased the sodium currents and dramatically suppressed depolarizing current-elicited neuronal discharge. Preliminary in vivo experiments showed that compound 10o possessed good analgesic activity: in a mouse visceral pain model, administration of compound 10o (30−100 mg/kg, i.p.) effectively and dose-dependently suppressed acetic acid-induced writhing.
Collapse
|
29
|
Kushnarev M, Pirvulescu IP, Candido KD, Knezevic NN. Neuropathic pain: preclinical and early clinical progress with voltage-gated sodium channel blockers. Expert Opin Investig Drugs 2020; 29:259-271. [PMID: 32070160 DOI: 10.1080/13543784.2020.1728254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Neuropathic pain is a chronic condition that significantly affects the quality of life of millions of people globally. Most of the pharmacologic treatments currently in use demonstrate modest efficacy and over half of all patients do not respond to medical management. Hence, there is a need for new, efficacious drugs. Evidence points toward voltage-gated sodium channels as a key target for novel analgesics.Area covered: The role of voltage-gated sodium channels in pain pathophysiology is illuminated and the preclinical and clinical data for new sodium channel blockers and toxin-derived lead compounds are examined. The expansion of approved sodium channel blockers is discussed along with the limitations of current research, trends in drug development, and the potential of personalized medicine.Expert opinion: The transition from preclinical to clinical studies can be difficult because of the inherent inability of animal models to express the complexities of pain states. Pain pathways are notoriously intricate and may be pharmacologically modulated at a variety of targets; it is unlikely that action at a single target could completely abolish a pain response because pain is rarely unifactorial. Combination therapy may be necessary and this could further confound the discovery of novel agents.
Collapse
Affiliation(s)
- Mikhail Kushnarev
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Iulia Paula Pirvulescu
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL, USA.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL, USA.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, USA
| |
Collapse
|
30
|
Complementary roles of murine Na V1.7, Na V1.8 and Na V1.9 in acute itch signalling. Sci Rep 2020; 10:2326. [PMID: 32047194 PMCID: PMC7012836 DOI: 10.1038/s41598-020-59092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, β-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7−/− showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8−/− impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy.
Collapse
|
31
|
Li ZM, Chen LX, Li H. Voltage-gated Sodium Channels and Blockers: An Overview and Where Will They Go? Curr Med Sci 2019; 39:863-873. [PMID: 31845216 DOI: 10.1007/s11596-019-2117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/02/2019] [Indexed: 11/27/2022]
Abstract
Voltage-gated sodium (Nav) channels are critical players in the generation and propagation of action potentials by triggering membrane depolarization. Mutations in Nav channels are associated with a variety of channelopathies, which makes them relevant targets for pharmaceutical intervention. So far, the cryoelectron microscopic structure of the human Nav1.2, Nav1.4, and Nav1.7 has been reported, which sheds light on the molecular basis of functional mechanism of Nav channels and provides a path toward structure-based drug discovery. In this review, we focus on the recent advances in the structure, molecular mechanism and modulation of Nav channels, and state updated sodium channel blockers for the treatment of pathophysiology disorders and briefly discuss where the blockers may be developed in the future.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
32
|
Focken T, Burford K, Grimwood ME, Zenova A, Andrez JC, Gong W, Wilson M, Taron M, Decker S, Lofstrand V, Chowdhury S, Shuart N, Lin S, Goodchild SJ, Young C, Soriano M, Tari PK, Waldbrook M, Nelkenbrecher K, Kwan R, Lindgren A, de Boer G, Lee S, Sojo L, DeVita RJ, Cohen CJ, Wesolowski SS, Johnson JP, Dehnhardt CM, Empfield JR. Identification of CNS-Penetrant Aryl Sulfonamides as Isoform-Selective Na V1.6 Inhibitors with Efficacy in Mouse Models of Epilepsy. J Med Chem 2019; 62:9618-9641. [PMID: 31525968 DOI: 10.1021/acs.jmedchem.9b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.
Collapse
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Kristen Burford
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael E Grimwood
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Alla Zenova
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Wei Gong
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael Wilson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matt Taron
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Shannon Decker
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Verner Lofstrand
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Noah Shuart
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Samuel J Goodchild
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Maegan Soriano
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Parisa K Tari
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Gina de Boer
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Stephanie Lee
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Luis Sojo
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Robert J DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC , Westfield , New Jersey 07090 , United States
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Steven S Wesolowski
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - J P Johnson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Christoph M Dehnhardt
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - James R Empfield
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| |
Collapse
|
33
|
Kong DJ, Wang Y, Wang HX, Wang MX, Wang J, Cheng MS. Molecular determinants for ligand binding at Nav1.4 and Nav1.7 channels: Experimental affinity results analyzed by molecular modeling. Comput Biol Chem 2019; 83:107132. [PMID: 31563636 DOI: 10.1016/j.compbiolchem.2019.107132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
Here, we focused on exploring the selectivity mechanism against Nav1.7 over Nav1.4 due to different binding modes of two selected inhibitors. By the superposition of Nav1.7 and Nav1.4 proteins, we selected the most homologous chain of Nav1.7 with Nav1.4, defining the active site of Nav1.4-VSD4 based on the aryl sulfonamide binding site of Nav1.7-VSD4. Comparison of the conformations exhibited by Tyr1386 (Nav1.4) and Tyr1537 (Nav1.7) suggested that the steric hindrance caused by Tyr1386 owned primary influence on inhibition selectivity, which was further verified through molecular docking and MD simulation of two representative inhibitors. Our finding would be helpful for discovery of selective Nav1.7 inhibitors over Nav1.4.
Collapse
Affiliation(s)
- De-Jiang Kong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Han-Xun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ming-Xing Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
34
|
Yosipovitch G, Rosen JD, Hashimoto T. Itch: From mechanism to (novel) therapeutic approaches. J Allergy Clin Immunol 2019; 142:1375-1390. [PMID: 30409247 DOI: 10.1016/j.jaci.2018.09.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Itch is a common sensory experience that is prevalent in patients with inflammatory skin diseases, as well as in those with systemic and neuropathic conditions. In patients with these conditions, itch is often severe and significantly affects quality of life. Itch is encoded by 2 major neuronal pathways: histaminergic (in acute itch) and nonhistaminergic (in chronic itch). In the majority of cases, crosstalk existing between keratinocytes, the immune system, and nonhistaminergic sensory nerves is responsible for the pathophysiology of chronic itch. This review provides an overview of the current understanding of the molecular, neural, and immune mechanisms of itch: beginning in the skin, proceeding to the spinal cord, and eventually ascending to the brain, where itch is processed. A growing understanding of the mechanisms of chronic itch is expanding, as is our pipeline of more targeted topical and systemic therapies. Our therapeutic armamentarium for treating chronic itch has expanded in the last 5 years, with developments of topical and systemic treatments targeting the neural and immune systems.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla.
| | - Jordan Daniel Rosen
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla
| | - Takashi Hashimoto
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla
| |
Collapse
|
35
|
Stumpf A, Cheng ZK, Beaudry D, Angelaud R, Gosselin F. Improved Synthesis of the Nav1.7 Inhibitor GDC-0276 via a Highly Regioselective SNAr Reaction. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Andreas Stumpf
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zhigang Ken Cheng
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Danial Beaudry
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Remy Angelaud
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
36
|
Nicolas S, Zoukimian C, Bosmans F, Montnach J, Diochot S, Cuypers E, De Waard S, Béroud R, Mebs D, Craik D, Boturyn D, Lazdunski M, Tytgat J, De Waard M. Chemical Synthesis, Proper Folding, Na v Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1. Toxins (Basel) 2019; 11:toxins11060367. [PMID: 31234412 PMCID: PMC6628435 DOI: 10.3390/toxins11060367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/19/2022] Open
Abstract
Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.
Collapse
Affiliation(s)
- Sébastien Nicolas
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Claude Zoukimian
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Frank Bosmans
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, 9000 Gent, Belgium.
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Jérôme Montnach
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Sylvie Diochot
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Eva Cuypers
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Stephan De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Rémy Béroud
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| | - Dietrich Mebs
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, Frankfurt, Germany.
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia.
| | - Didier Boturyn
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Michel Lazdunski
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Michel De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| |
Collapse
|
37
|
Magné V, Ball LT. Synthesis of Air-stable, Odorless Thiophenol Surrogates via Ni-Catalyzed C-S Cross-Coupling. Chemistry 2019; 25:8903-8910. [PMID: 31067346 DOI: 10.1002/chem.201901874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/07/2019] [Indexed: 11/09/2022]
Abstract
Thiophenols are versatile synthetic intermediates whose practical appeal is marred by their air sensitivity, toxicity and extreme malodor. Herein we report an efficient catalytic method for the preparation of S-aryl isothiouronium salts, and demonstrate that these air-stable, odorless solids serve as user-friendly sources of thiophenols in synthesis. Diverse isothiouronium salts featuring synthetically useful functionality are readily accessible by nickel-catalyzed C-S cross-coupling of (hetero)aryl iodides and thiourea. Convenient, chromatography-free isolation of these salts is achieved by precipitation, allowing the methodology to be applied directly to large scales. Thiophenols are liberated from the corresponding isothiouronium salts upon treatment with a weak base, enabling an in situ release/S-functionalization strategy that entirely negates the need to isolate, purify or manipulate these noxious reagents.
Collapse
Affiliation(s)
- Valentin Magné
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham, NG7 2TU, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Liam T Ball
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham, NG7 2TU, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| |
Collapse
|
38
|
Xu L, Ding X, Wang T, Mou S, Sun H, Hou T. Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today 2019; 24:1389-1397. [PMID: 31129313 DOI: 10.1016/j.drudis.2019.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Voltage-gated sodium channels (VGSCs), formed by 24 transmembrane segments arranged into four domains, have a key role in the initiation and propagation of electrical signaling in excitable cells. VGSCs are involved in a variety of diseases, including epilepsy, cardiac arrhythmias, and neuropathic pain, and therefore have been regarded as appealing therapeutic targets for the development of anticonvulsant, antiarrhythmic, and local anesthetic drugs. In this review, we discuss recent advances in understanding the structures and biological functions of VGSCs. In addition, we systematically summarize eight pharmacologically distinct ligand-binding sites in VGSCs and representative isoform-selective VGSC modulators in clinical trials. Finally, we review studies on molecular modeling and computer-aided drug design (CADD) for VGSCs to help understanding of biological processes involving VGSCs.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaoqin Ding
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China
| | - Tianhu Wang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shanzhi Mou
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Luo G, Chen L, Easton A, Newton A, Bourin C, Shields E, Mosure K, Soars MG, Knox RJ, Matchett M, Pieschl RL, Post-Munson DJ, Wang S, Herrington J, Graef J, Newberry K, Sivarao DV, Senapati A, Bristow LJ, Meanwell NA, Thompson LA, Dzierba C. Discovery of Indole- and Indazole-acylsulfonamides as Potent and Selective Na V1.7 Inhibitors for the Treatment of Pain. J Med Chem 2019; 62:831-856. [PMID: 30576602 DOI: 10.1021/acs.jmedchem.8b01550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3-Aryl-indole and 3-aryl-indazole derivatives were identified as potent and selective Nav1.7 inhibitors. Compound 29 was shown to be efficacious in the mouse formalin assay and also reduced complete Freund's adjuvant (CFA)-induced thermal hyperalgesia and chronic constriction injury (CCI) induced cold allodynia and models of inflammatory and neuropathic pain, respectively, following intraperitoneal (IP) doses of 30 mg/kg. The observed efficacy could be correlated with the mouse dorsal root ganglion exposure and NaV1.7 potency associated with 29.
Collapse
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Ling Chen
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Amy Easton
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Amy Newton
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Clotilde Bourin
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Eric Shields
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Kathy Mosure
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Matthew G Soars
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Ronald J Knox
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Michele Matchett
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Rick L Pieschl
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Debra J Post-Munson
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Shuya Wang
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - James Herrington
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - John Graef
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Kimberly Newberry
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Digavalli V Sivarao
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Arun Senapati
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Linda J Bristow
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Nicholas A Meanwell
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Lorin A Thompson
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Carolyn Dzierba
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|
40
|
Wu YJ, Venables B, Guernon J, Chen J, Sit SY, Rajamani R, Knox RJ, Matchett M, Pieschl RL, Herrington J, Bristow LJ, Meanwell NA, Thompson LA, Dzierba C. Discovery of new indole-based acylsulfonamide Na v1.7 inhibitors. Bioorg Med Chem Lett 2018; 29:659-663. [PMID: 30638874 DOI: 10.1016/j.bmcl.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/05/2023]
Abstract
Screening of 100 acylsulfonamides from the Bristol-Myers Squibb compound collection identified the C3-cyclohexyl indole 6 as a potent Nav1.7 inhibitor. Replacement of the C2 furanyl ring of 6 with a heteroaryl moiety or truncation of this group led to the identification of 4 analogs with hNav1.7 IC50 values under 50 nM. Fluorine substitution of the truncated compound 12 led to 34 with improved potency and isoform selectivity. The inverted indole 36 also maintained good activity. Both 34 and 36 exhibited favorable CYP inhibition profiles, good membrane permeability and a low efflux ratio and, therefore, represent new leads in the search for potent and selective Nav1.7 inhibitors to treat pain.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA.
| | - Brian Venables
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Jason Guernon
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Jie Chen
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Sing-Yuen Sit
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Ramkumar Rajamani
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Ronald J Knox
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Michele Matchett
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Rick L Pieschl
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - James Herrington
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Linda J Bristow
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Nicholas A Meanwell
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Lorin A Thompson
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Carolyn Dzierba
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| |
Collapse
|
41
|
Sun S, Jia Q, Zenova AY, Wilson MS, Chowdhury S, Focken T, Li J, Decker S, Grimwood ME, Andrez JC, Hemeon I, Sheng T, Chen CA, White A, Hackos DH, Deng L, Bankar G, Khakh K, Chang E, Kwan R, Lin S, Nelkenbrecher K, Sellers BD, DiPasquale AG, Chang J, Pang J, Sojo L, Lindgren A, Waldbrook M, Xie Z, Young C, Johnson JP, Robinette CL, Cohen CJ, Safina BS, Sutherlin DP, Ortwine DF, Dehnhardt CM. Identification of Selective Acyl Sulfonamide–Cycloalkylether Inhibitors of the Voltage-Gated Sodium Channel (NaV) 1.7 with Potent Analgesic Activity. J Med Chem 2018; 62:908-927. [DOI: 10.1021/acs.jmedchem.8b01621] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Alla Y. Zenova
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael S. Wilson
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Thilo Focken
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jun Li
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Shannon Decker
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Tao Sheng
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Chien-An Chen
- ChemPartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P. R. China
| | - Andy White
- ChemPartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P. R. China
| | - David H. Hackos
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Lunbin Deng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Girish Bankar
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Elaine Chang
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Benjamin D. Sellers
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Antonio G. DiPasquale
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Jae Chang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Jodie Pang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Luis Sojo
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - James P. Johnson
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Brian S. Safina
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Daniel P. Sutherlin
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Daniel F. Ortwine
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Christoph M. Dehnhardt
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| |
Collapse
|
42
|
Wang M, Wang Y, Kong D, Jiang H, Wang J, Cheng M. In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations. Comput Biol Chem 2018; 77:214-225. [PMID: 30359866 DOI: 10.1016/j.compbiolchem.2018.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
It has been demonstrated by human genetics that the voltage-gated sodium channel Nav1.7 is currently a promising target for the treatment of pain. In this research, we performed molecular simulation works on a series of classic aryl sulfonamide Nav1.7 inhibitors using three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for the first time to explore the correlation between their structures and activities. The results of the relevant statistical parameters of comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analyses (CoMSIA) had been verified to be reasonable, and the deep relationship between the structures and activities of these inhibitors was obtained by analyzing the contour maps. The generated 3D-QSAR model showed a good predictive ability and provided valuable clues for the rational modification of molecules. The interactions between compounds and proteins were modeled by molecular docking studies. Finally, accuracy of the docking results and stability of the complexes were verified by 100 ns MD simulations. Detailed information on the key residues at the binding site and the types of interactions they participate in involved was obtained. The van der Waals energy contributed the most in the molecular binding process according to the calculation of binding free energy. All research results provided a good basis for further research on novel and effective Nav1.7 inhibitors.
Collapse
Affiliation(s)
- Mingxing Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Dejiang Kong
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Hailun Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
43
|
Pike A, Flanagan NJ, Storer RI, Swain NA, Tseng E. The role of organic anion-transporting polypeptides and formulation in the clearance and distribution of a novel Na v
1.7 channel blocker. Biopharm Drug Dispos 2018; 39:388-393. [DOI: 10.1002/bdd.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Andy Pike
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Ltd; The Portway, Granta Park Cambridge UK
| | - Neil J. Flanagan
- Pharmaceutical Sciences; Pfizer Ltd; The Portway, Granta Park Cambridge UK
| | - R. Ian Storer
- Worldwide Medicinal Chemistry Pfizer Ltd; The Portway, Granta Park Cambridge UK
| | - Nigel A. Swain
- Worldwide Medicinal Chemistry Pfizer Ltd; The Portway, Granta Park Cambridge UK
| | - Elaine Tseng
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Inc.; Groton CT USA
| |
Collapse
|
44
|
Chandrasekhar J, Dick R, Van Veldhuizen J, Koditek D, Lepist EI, McGrath ME, Patel L, Phillips G, Sedillo K, Somoza JR, Therrien J, Till NA, Treiberg J, Villaseñor AG, Zherebina Y, Perreault S. Atropisomerism by Design: Discovery of a Selective and Stable Phosphoinositide 3-Kinase (PI3K) β Inhibitor. J Med Chem 2018; 61:6858-6868. [PMID: 30015489 DOI: 10.1021/acs.jmedchem.8b00797] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atropisomerism is a type of axial chirality in which enantiomers or diastereoisomers arise due to hindered rotation around a bond axis. In this manuscript, we report a case in which torsional scan studies guided the thoughtful creation of a restricted axis of rotation between two heteroaromatic systems of a phosphoinositide 3-kinase (PI3K) β inhibitor, generating a pair of atropisomeric compounds with significantly different pharmacological and pharmacokinetic profiles. Emblematic of these differences, the metabolism of inactive ( M)-28 is primarily due to the cytosolic enzyme aldehyde oxidase, while active ( P)-28 has lower affinity for aldehyde oxidase, resulting in substantially better metabolic stability. Additionally, we report torsional scan and experimental studies used to determine the barriers of rotation of this novel PI3Kβ inhibitor.
Collapse
Affiliation(s)
| | - Ryan Dick
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Joshua Van Veldhuizen
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - David Koditek
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | | | - Mary E McGrath
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Leena Patel
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - Gary Phillips
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - Kassandra Sedillo
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - John R Somoza
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Joseph Therrien
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | | | - Jennifer Treiberg
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| | - Armando G Villaseñor
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Yelena Zherebina
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Stephane Perreault
- Gilead Sciences, Inc. , 199 East Blaine Street , Seattle , Washington 98102 , United States
| |
Collapse
|
45
|
Jurcakova D, Ru F, Kollarik M, Sun H, Krajewski J, Undem BJ. Voltage-Gated Sodium Channels Regulating Action Potential Generation in Itch-, Nociceptive-, and Low-Threshold Mechanosensitive Cutaneous C-Fibers. Mol Pharmacol 2018; 94:1047-1056. [DOI: 10.1124/mol.118.112839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/20/2018] [Indexed: 01/25/2023] Open
|
46
|
1,2,4-Triazolsulfone: A novel isosteric replacement of acylsulfonamides in the context of Na V 1.7 inhibition. Bioorg Med Chem Lett 2018; 28:2103-2108. [DOI: 10.1016/j.bmcl.2018.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/26/2022]
|
47
|
Sun X, Li M, Sun M, Li X, Xi BJ, Wu Y, Yao J, Zhan Z, Bai X, Xi N. Studies on structural requirements for atropisomerism in N -phenyl γ-lactams. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Focken T, Chowdhury S, Zenova A, Grimwood ME, Chabot C, Sheng T, Hemeon I, Decker SM, Wilson M, Bichler P, Jia Q, Sun S, Young C, Lin S, Goodchild SJ, Shuart NG, Chang E, Xie Z, Li B, Khakh K, Bankar G, Waldbrook M, Kwan R, Nelkenbrecher K, Karimi Tari P, Chahal N, Sojo L, Robinette CL, White AD, Chen CA, Zhang Y, Pang J, Chang JH, Hackos DH, Johnson JP, Cohen CJ, Ortwine DF, Sutherlin DP, Dehnhardt CM, Safina BS. Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of N-([1,2,4]Triazolo[4,3-a]pyridin-3-yl)methane-sulfonamides as Potent and Selective hNaV1.7 Inhibitors for the Treatment of Pain. J Med Chem 2018; 61:4810-4831. [DOI: 10.1021/acs.jmedchem.7b01826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alla Zenova
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Christine Chabot
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tao Sheng
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shannon M. Decker
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael Wilson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Paul Bichler
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shaoyi Sun
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Samuel J. Goodchild
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Noah G. Shuart
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Elaine Chang
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Bowen Li
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Parisa Karimi Tari
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Navjot Chahal
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Luis Sojo
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Andrew D. White
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Chien-An Chen
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Yi Zhang
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David H. Hackos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - J. P. Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Daniel F. Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P. Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Brian S. Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
49
|
Wu YJ, Guernon J, McClure A, Venables B, Rajamani R, Robbins KJ, Knox RJ, Matchett M, Pieschl RL, Herrington J, Bristow LJ, Meanwell NA, Olson R, Thompson LA, Dzierba C. Discovery of morpholine-based aryl sulfonamides as Na v1.7 inhibitors. Bioorg Med Chem Lett 2018; 28:958-962. [PMID: 29439904 DOI: 10.1016/j.bmcl.2018.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Replacement of the piperidine ring in the lead benzenesulfonamide Nav1.7 inhibitor 1 with a weakly basic morpholine core resulted in a significant reduction in Nav1.7 inhibitory activity, but the activity was restored by shortening the linkage from methyleneoxy to oxygen. These efforts led to a series of morpholine-based aryl sulfonamides as isoform-selective Nav1.7 inhibitors. This report describes the synthesis and SAR of these analogs.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA.
| | - Jason Guernon
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Andrea McClure
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Brian Venables
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Ramkumar Rajamani
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Kevin J Robbins
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Ronald J Knox
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Michele Matchett
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Rick L Pieschl
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - James Herrington
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Linda J Bristow
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Nicholas A Meanwell
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Richard Olson
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Lorin A Thompson
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Carolyn Dzierba
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| |
Collapse
|
50
|
Glunz PW. Recent encounters with atropisomerism in drug discovery. Bioorg Med Chem Lett 2018; 28:53-60. [DOI: 10.1016/j.bmcl.2017.11.050] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
|