1
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Lee TK, Kassees K, Chen CY, Viswanadhapalli S, Parra K, Vadlamudi RK, Ahn JM. Structure-Activity Relationship Study of Tris-Benzamides as Estrogen Receptor Coregulator Binding Modulators. ACS Pharmacol Transl Sci 2024; 7:2023-2043. [PMID: 39022350 PMCID: PMC11249634 DOI: 10.1021/acsptsci.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Estrogen receptor coregulator binding modulators (ERXs) are a novel class of molecules targeting the interaction between estrogen receptor α (ERα) and its coregulator proteins, which has proven to be an attractive strategy for overcoming endocrine resistance in breast cancer. We previously reported ERX-11, an orally bioavailable tris-benzamide, that demonstrated promising antitumor activity against ERα-positive breast cancer cells. To comprehend the significance of the substituents in ERX-11, we carried out structure-activity relationship studies. In addition, we introduced additional alkyl substituents at either the N- or C-terminus to improve binding affinity and biological activity. Further optimization guided by conformational restriction led to the identification of a trans-4-phenylcyclcohexyl group at the C-terminus (18h), resulting in a greater than 10-fold increase in binding affinity and cell growth inhibition potency compared to ERX-11. Tris-benzamide 18h disrupted the ERα-coregulator interaction and inhibited the ERα-mediated transcriptional activity. It demonstrated strong antiproliferative activity on ERα-positive breast cancer cells both in vitro and in vivo, offering a promising potential as a therapeutic candidate for treating ERα-positive breast cancer.
Collapse
Affiliation(s)
- Tae-Kyung Lee
- Department
of Chemistry and Biochemistry, University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Kara Kassees
- Department
of Chemistry and Biochemistry, University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chia-Yuan Chen
- Department
of Chemistry and Biochemistry, University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Suryavathi Viswanadhapalli
- Department
of Obstetrics and Gynecology, University
of Texas Health, San Antonio, Texas 78229, United States
| | - Karla Parra
- Departments
of Urology and Pharmacology, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ratna K. Vadlamudi
- Department
of Obstetrics and Gynecology, University
of Texas Health, San Antonio, Texas 78229, United States
| | - Jung-Mo Ahn
- Department
of Chemistry and Biochemistry, University
of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Shumi G, Demissie TB, Koobotse M, Kenasa G, Beas IN, Zachariah M, Desalegn T. Cytotoxic Cu(II) Complexes with a Novel Quinoline Derivative Ligand: Synthesis, Molecular Docking, and Biological Activity Analysis. ACS OMEGA 2024; 9:25014-25026. [PMID: 38882155 PMCID: PMC11171097 DOI: 10.1021/acsomega.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
The utilization of metallodrugs as a viable alternative to organic molecules has gained significant attention in modern medicine. We hereby report synthesis of new imine quinoline ligand (IQL)-based Cu(II) complexes and evaluation of their potential biological applications. Syntheses of the ligand and complexes were achieved by condensation of 7-chloro-2-hydroxyquinoline-3-carbaldehyde and 2,2'-thiodianiline, followed by complexation with Cu(II) metal ions. The synthesized ligand and complexes were characterized using UV-vis spectroscopy, TGA/DTA, FTIR spectroscopy, 1H and 13C NMR spectroscopy, and pXRD. The pXRD diffractogram analysis revealed that the synthesized ligand and its complexes were polycrystalline systems, with nanolevel average crystallite sizes of 13.28, 31.47, and 11.57 nm for IQL, CuL, and CuL 2 , respectively. The molar conductivity confirmed the nonelectrolyte nature of the Cu(II) complexes. The biological activity of the synthesized ligand and its Cu(II) complexes was evaluated with in vitro assays, to examine anticancer activity against the MCF-7 human breast cancer cell line and antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. The CuL complex had the highest cytotoxic potency against MCF-7 breast cancer cells, with an IC50 of 43.82 ± 2.351 μg/mL. At 100 μg/mL, CuL induced the largest reduction of cancer cell proliferation by 97%, whereas IQL reduced cell proliferation by 53% and CuL 2 by 28%. The minimum inhibitory concentration for CuL was found to be 12.5 μg/mL against the three tested pathogens. Evaluation of antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl revealed that CuL exhibited the highest antioxidant activity with IC50 of 153.3 ± 1.02 μg/mL. Molecular docking results showed strong binding affinities of CuL to active sites of S. aureus, E. coli, and estrogen receptor alpha, indicating its high biological activity compared to IQL and CuL 2 .
Collapse
Affiliation(s)
- Gemechu Shumi
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Taye B Demissie
- Department of Chemistry, University of Botswana, Gaborone P/Bag 00704, Botswana
| | - Moses Koobotse
- School of Allied Health Professions, University of Botswana, Gaborone P/Bag UB 0022, Botswana
| | - Girmaye Kenasa
- Department of Biology, College of Natural and Computational Science, Wollega University, P.O. Box: 395, Nekemte 251, Ethiopia
| | - Isaac N Beas
- Botswana Institute for Technology Research and Innovation, Maranyane House, Plot No. 50654, Machel Drive, Gaborone Private Bag 0082, Botswana
- Department of Chemical Engineering, University of South Africa, P/Bag X6, Florida, Johannesburg 1710, South Africa
| | - Matshediso Zachariah
- School of Allied Health Professions, University of Botswana, Gaborone P/Bag UB 0022, Botswana
| | - Tegene Desalegn
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
4
|
Mi T, Nguyen D, Gao Z, Burgess K. Bioinformatics leading to conveniently accessible, helix enforcing, bicyclic ASX motif mimics (BAMMs). Nat Commun 2024; 15:4217. [PMID: 38760359 PMCID: PMC11101637 DOI: 10.1038/s41467-024-48323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Helix mimicry provides probes to perturb protein-protein interactions (PPIs). Helical conformations can be stabilized by joining side chains of non-terminal residues (stapling) or via capping fragments. Nature exclusively uses capping, but synthetic helical mimics are heavily biased towards stapling. This study comprises: (i) creation of a searchable database of unique helical N-caps (ASX motifs, a protein structural motif with two intramolecular hydrogen-bonds between aspartic acid/asparagine and following residues); (ii) testing trends observed in this database using linear peptides comprising only canonical L-amino acids; and, (iii) novel synthetic N-caps for helical interface mimicry. Here we show many natural ASX motifs comprise hydrophobic triangles, validate their effect in linear peptides, and further develop a biomimetic of them, Bicyclic ASX Motif Mimics (BAMMs). BAMMs are powerful helix inducing motifs. They are synthetically accessible, and potentially useful to a broad section of the community studying disruption of PPIs using secondary structure mimics.
Collapse
Affiliation(s)
- Tianxiong Mi
- Department of Chemistry, Texas A & M University, College Station, TX, 77842, USA
| | - Duyen Nguyen
- Department of Chemistry, Texas A & M University, College Station, TX, 77842, USA
| | - Zhe Gao
- Department of Chemistry, Texas A & M University, College Station, TX, 77842, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, College Station, TX, 77842, USA.
| |
Collapse
|
5
|
Siebenmorgen T, Menezes F, Benassou S, Merdivan E, Didi K, Mourão ASD, Kitel R, Liò P, Kesselheim S, Piraud M, Theis FJ, Sattler M, Popowicz GM. MISATO: machine learning dataset of protein-ligand complexes for structure-based drug discovery. NATURE COMPUTATIONAL SCIENCE 2024; 4:367-378. [PMID: 38730184 PMCID: PMC11136668 DOI: 10.1038/s43588-024-00627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Large language models have greatly enhanced our ability to understand biology and chemistry, yet robust methods for structure-based drug discovery, quantum chemistry and structural biology are still sparse. Precise biomolecule-ligand interaction datasets are urgently needed for large language models. To address this, we present MISATO, a dataset that combines quantum mechanical properties of small molecules and associated molecular dynamics simulations of ~20,000 experimental protein-ligand complexes with extensive validation of experimental data. Starting from the existing experimental structures, semi-empirical quantum mechanics was used to systematically refine these structures. A large collection of molecular dynamics traces of protein-ligand complexes in explicit water is included, accumulating over 170 μs. We give examples of machine learning (ML) baseline models proving an improvement of accuracy by employing our data. An easy entry point for ML experts is provided to enable the next generation of drug discovery artificial intelligence models.
Collapse
Affiliation(s)
- Till Siebenmorgen
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany
- TUM School of Natural Sciences, Department of Bioscience, Bayerisches NMR Zentrum, Technical University of Munich, Garching, Germany
| | - Filipe Menezes
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany
- TUM School of Natural Sciences, Department of Bioscience, Bayerisches NMR Zentrum, Technical University of Munich, Garching, Germany
| | - Sabrina Benassou
- Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
| | | | - Kieran Didi
- Computer Laboratory, Cambridge University, Cambridge, UK
| | - André Santos Dias Mourão
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany
- TUM School of Natural Sciences, Department of Bioscience, Bayerisches NMR Zentrum, Technical University of Munich, Garching, Germany
| | - Radosław Kitel
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Pietro Liò
- Computer Laboratory, Cambridge University, Cambridge, UK
| | - Stefan Kesselheim
- Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
| | - Marie Piraud
- Helmholtz AI, Helmholtz Munich, Neuherberg, Germany
| | - Fabian J Theis
- Helmholtz AI, Helmholtz Munich, Neuherberg, Germany
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Michael Sattler
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany
- TUM School of Natural Sciences, Department of Bioscience, Bayerisches NMR Zentrum, Technical University of Munich, Garching, Germany
| | - Grzegorz M Popowicz
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany.
- TUM School of Natural Sciences, Department of Bioscience, Bayerisches NMR Zentrum, Technical University of Munich, Garching, Germany.
| |
Collapse
|
6
|
Mi T, Gao Z, Mituta Z, Burgess K. Dual-Capped Helical Interface Mimics. J Am Chem Soc 2024; 146:10331-10341. [PMID: 38573124 PMCID: PMC11027154 DOI: 10.1021/jacs.3c11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Disruption of protein-protein interactions is medicinally important. Interface helices may be mimicked in helical probes featuring enhanced rigidities, binding to protein targets, stabilities in serum, and cell uptake. This form of mimicry is dominated by stapling between side chains of helical residues: there has been less progress on helical N-caps, and there were no generalizable C-caps. Conversely, in natural proteins, helicities are stabilized and terminated by C- and N-caps but not staples. Bicyclic caps previously introduced by us enable interface helical mimicry featuring rigid synthetic caps at both termini in this work. An unambiguously helical dual-capped system proved to be conformationally stable, binding cyclins A and E, and showed impressive cellular uptake. In addition, the dual-capped mimic was completely resistant to proteolysis in serum over an extended period when compared with "gold standard" hydrocarbon-stapled controls. Dual-capped peptidomimetics are a new, generalizable paradigm for helical interface probe design.
Collapse
Affiliation(s)
- Tianxiong Mi
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Zhe Gao
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Zeynep Mituta
- ZentriForce
Pharma Research GmbH, Carl-Friedrich-Gauss-Ring 5, 69124 Heidelberg, Germany
| | - Kevin Burgess
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
7
|
Li Q, Wang L, Jia Y, Yang M, Zhang H, Hu J. Nontargeted Analysis Reveals a Broad Range of Bioactive Pollutants in Drinking Water by Estrogen Receptor Affinity-Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21327-21336. [PMID: 38059695 DOI: 10.1021/acs.est.3c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Exposure to environmental endocrine-disrupting chemicals (EDCs) can cause extensive health issues. However, specific EDCs remain elusive. This work aimed at performing nontargeted identification of estrogen receptor α (ERα)-active compounds using an ERα protein affinity assay combined with high-resolution mass spectrometry in the source and drinking water sampled from major rivers in China. Fifty-one potential ERα-active compounds across 13 categories were identified. For the first time, diisodecyl phenyl phosphate was found to have antiestrogenic activity, and three chemicals (galaxolidone, bensulfuron methyl, and UV234) were plausible ERα ligands. Among the 51 identified compounds, 12 were detected in the aquatic environment for the first time, and the concentration of N-phenyl-2-naphthylamine, a widely used antioxidant in rubber products, was up to 1469 and 1190 ng/L in source and drinking water, respectively. This study demonstrated the widespread presence of known and unknown ERα estrogenic and antiestrogenic pollutants in the major rivers that serve as key sources of drinking water in China and the low removal efficiency of these chemicals in drinking water treatment plants.
Collapse
Affiliation(s)
- Qiang Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yingting Jia
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Alem MB, Desalegn T, Damena T, Alemayehu Bayle E, Koobotse MO, Ngwira KJ, Ombito JO, Zachariah M, Demissie TB. Cytotoxicity and Antibacterial Potentials of Mixed Ligand Cu(II) and Zn(II) Complexes: A Combined Experimental and Computational Study. ACS OMEGA 2023; 8:13421-13434. [PMID: 37065050 PMCID: PMC10099420 DOI: 10.1021/acsomega.3c00916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
[Cu(C15H9O4)(C12H8N2)O2C2H3]·3H2O (1) and [Zn(C15H9O4)(C12H8N2)]O2C2H3 (2) have been synthesized and characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, mass spectrometry, thermogravimetric analysis/differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), and molar conductance, and supported by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. Square pyramidal and tetrahedral geometries are proposed for Cu(II) and Zn(II) complexes, respectively, and the XRD patterns showed the polycrystalline nature of the complexes. Furthermore, in vitro cytotoxic activity of the complexes was evaluated against the human breast cancer cell line (MCF-7). A Cu(II) centered complex with an IC50 value of 4.09 μM was more effective than the Zn(II) centered complex and positive control, cisplatin, which displayed IC50 values of 75.78 and 18.62 μM, respectively. In addition, the newly synthesized complexes experienced the innate antioxidant nature of the metal centers for scavenging the DPPH free radical (up to 81% at 400 ppm). The biological significance of the metal complexes was inferred from the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy band gap, which was found to be 2.784 and 3.333 eV, respectively for 1 and 2, compared to the ligands, 1,10-phenathroline (4.755 eV) and chrysin (4.403 eV). Moreover, the molecular docking simulations against estrogen receptor alpha (ERα; PDB: 5GS4) were strongly associated with the in vitro biological activity results (E B and K i are -8.35 kcal/mol and 0.76 μM for 1, -7.52 kcal/mol and 3.07 μM for 2, and -6.32 kcal/mol and 23.42 μM for cisplatin). However, more research on in vivo cytotoxicity is suggested to confirm the promising cytotoxicity results.
Collapse
Affiliation(s)
- Mamaru Bitew Alem
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 251, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 251, Ethiopia
| | - Tadewos Damena
- Department
of Chemistry, Wachemo University, P.O.Box 667, Hossana 667, Ethiopia
| | - Enyew Alemayehu Bayle
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607 Taipei, Taiwan
- Department
of Chemistry, Debre Markos University, P.O. Box 269, Debre Markos 269, Ethiopia
| | - Moses O. Koobotse
- School
of Allied Health Professions, University
of Botswana, P/bag UB, 0022 Gaborone, Botswana
| | - Kennedy J. Ngwira
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
| | - Japheth O. Ombito
- Department
of Chemistry, University of Botswana, P/bag UB, 0022 Gaborone, Botswana
| | - Matshediso Zachariah
- School
of Allied Health Professions, University
of Botswana, P/bag UB, 0022 Gaborone, Botswana
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, P/bag UB, 0022 Gaborone, Botswana
| |
Collapse
|
9
|
Alem MB, Desalegn T, Damena T, Bayle EA, Koobotse MO, Ngwira KJ, Ombito JO, Zachariah M, Demissie TB. Organic-inorganic hybrid salt and mixed ligand Cr(III) complexes containing the natural flavonoid chrysin: Synthesis, characterization, computational, and biological studies. Front Chem 2023; 11:1173604. [PMID: 37123873 PMCID: PMC10130586 DOI: 10.3389/fchem.2023.1173604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Organic-inorganic hybrid salt and mixed ligand Cr(III) complexes (Cr1 and Cr2) containing the natural flavonoid chrysin were synthesized. The metal complexes were characterized using UV-Vis, Fourier-transform infrared, MS, SEM-EDX, XRD, and molar conductance measurements. Based on experimental and DFT/TD-DFT calculations, octahedral geometries for the synthesized complexes were suggested. The powder XRD analysis confirms that the synthesized complexes were polycrystalline, with orthorhombic and monoclinic crystal systems having average crystallite sizes of 21.453 and 19.600 nm, percent crystallinities of 51% and 31.37%, and dislocation densities of 2.324 × 10-3 and 2.603 × 10-3 nm-2 for Cr1 and Cr2, respectively. The complexes were subjected to cytotoxicity, antibacterial, and antioxidant studies. The in vitro biological studies were supported with quantum chemical and molecular docking computational studies. Cr1 showed significant cytotoxicity to the MCF-7 cell line, with an IC50 value of 8.08 μM compared to 30.85 μM for Cr2 and 18.62 μM for cisplatin. Cr2 showed better antibacterial activity than Cr1. The higher E HOMO (-5.959 eV) and dipole moment (10.838 Debye) values of Cr2 obtained from the quantum chemical calculations support the observed in vitro antibacterial activities. The overall results indicated that Cr1 is a promising cytotoxic drug candidate.
Collapse
Affiliation(s)
- Mamaru Bitew Alem
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
- *Correspondence: Mamaru Bitew Alem, , Tegene Desalegn, , Taye B. Demissie,
| | - Tegene Desalegn
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
- *Correspondence: Mamaru Bitew Alem, , Tegene Desalegn, , Taye B. Demissie,
| | - Tadewos Damena
- Department of Chemistry, Wachemo University, Hossana, Ethiopia
| | - Enyew Alemayehu Bayle
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
- Department of Chemistry, Debre Markos University, Debre Markos, Ethiopia
| | - Moses O. Koobotse
- School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | - Kennedy J. Ngwira
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Taye B. Demissie
- Department of Chemistry, University of Botswana, Gaborone, Botswana
- *Correspondence: Mamaru Bitew Alem, , Tegene Desalegn, , Taye B. Demissie,
| |
Collapse
|
10
|
Wang D, Liu J, Li T, Wang Y, Liu X, Bai Y, Wang C, Ju S, Huang S, Yang C, Zhou C, Zhang Y, Xiong B. A VEGFR targeting peptide-drug conjugate (PDC) suppresses tumor angiogenesis in a TACE model for hepatocellular carcinoma therapy. Cell Death Dis 2022; 8:411. [PMID: 36202781 PMCID: PMC9537177 DOI: 10.1038/s41420-022-01198-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022]
Abstract
Transcatheter arterial chemoembolization (TACE) has become the preferred therapy for unresectable advanced hepatocellular carcinoma (HCC). However, the embolization of tumor-feeding arteries by TACE always leads to hypoxia-related tumor angiogenesis, which limited the therapeutic effect for HCC. In this paper, we used a VEGFR targeting peptide VEGF125 − 136 (QKRKRKKSRYKS) to conjugate with a lytic peptide (KLUKLUKKLUKLUK) to form a peptide-drug conjugate (PDC). We used cell affinity assay to detect the peptide binding ability to VEGFR highly expressed cell lines, and CCK8, cell apoptosis to confirm the cellular toxicity for different cell lines. Meanwhile, we created a VX2 tumor-bearing rabbit model to assess the in vivo anti-tumor effect of the peptide conjugate in combination with TAE. HE staining was used to verify the in vivo safety of the peptide conjugate. IHC was used to assess the anti-angiogenesis and cell toxicity of the peptide conjugate in tumor tissues. The peptide conjugate could not only target VEGFR in cell surface and inhibit VEGFR function, but also have potent anti-cancer effect. We luckily found the peptide conjugate showed potent cytotoxicity for liver cancer cell Huh7 (IC50 7.3 ± 0.74 μM) and endothelial cell HUVEC (IC50 10.7 ± 0.292 μM) and induced cell apoptosis of these two cell lines. We also found the peptide conjugate inhibited cell migration of HUVEC through wound healing assay. Besides, these peptides also showed better in vivo anti-tumor effect than traditional drug DOX through TACE in VX2 rabbit tumor model, and efficiently inhibit angiogenesis in tumor tissues with good safety. In conclusion, our work may provide an alternative option for clinical HCC therapy via TACE combination. Schematic presentation of the design of VEGFR targeting peptide conjugate (QR-KLU) and the antineoplastic efficacy of peptide QR-KLU in vitro and in vivo. ![]()
Collapse
Affiliation(s)
- Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Songjiang Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chongtu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
11
|
Alem MB, Damena T, Desalegn T, Koobotse M, Eswaramoorthy R, Ngwira KJ, Ombito JO, Zachariah M, Demissie TB. Cytotoxic mixed-ligand complexes of Cu(II): A combined experimental and computational study. Front Chem 2022; 10:1028957. [PMID: 36247670 PMCID: PMC9557196 DOI: 10.3389/fchem.2022.1028957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023] Open
Abstract
Herein, we report the synthesis of mixed-ligand Cu(II) complexes of metformin and ciprofloxacin drugs together with 1,10-phenanthroline as a co-ligand. The synthesized complexes were characterized using different spectroscopic and spectrometric techniques. In vitro cytotoxic activity against human breast adenocarcinoma cancer cell line (MCF-7) as well as antibacterial activity against two gram-negative and two gram-positive bacterial strains were also investigated. The analyses of the experimental results were supported using quantum chemical calculations and molecular docking studies against estrogen receptor alpha (ERα; PDB: 5GS4). The cytotoxicity of the [Cu(II) (metformin) (1,10-phenanthroline)] complex (1), with IC50 of 4.29 µM, and the [Cu(II) (ciprofloxacin) (1,10-phenanthroline)] complex (2), with IC50 of 7.58 µM, were found to be more effective than the referenced drug, cisplatin which has IC50 of 18.62 µM against MCF-7 cell line. The molecular docking analysis is also in good agreement with the experimental results, with binding affinities of –7.35, –8.76 and –6.32 kcal/mol, respectively, for complexes 1, 2 and cisplatin against ERα. Moreover, complex 2 showed significant antibacterial activity against E. coli (inhibition diameter zone, IDZ, = 17.3 mm), P. aeruginosa (IDZ = 17.08 mm), and S. pyogen (IDZ = 17.33 mm), at 25 μg/ml compared to ciprofloxacin (IDZ = 20.0, 20.3, and 21.3 mm), respectively. Our BOILED-egg model indicated that the synthesized metal complexes have potentially minimal neurotoxicity than that of cisplatin.
Collapse
Affiliation(s)
- Mamaru Bitew Alem
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia,*Correspondence: Mamaru Bitew Alem, ; Tegene Desalegn, ; Taye B. Demissie,
| | - Tadewos Damena
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
| | - Tegene Desalegn
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia,*Correspondence: Mamaru Bitew Alem, ; Tegene Desalegn, ; Taye B. Demissie,
| | - Moses Koobotse
- School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kennedy J. Ngwira
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Taye B. Demissie
- Department of Chemistry, University of Botswana, Gaborone, Botswana,*Correspondence: Mamaru Bitew Alem, ; Tegene Desalegn, ; Taye B. Demissie,
| |
Collapse
|
12
|
Chen H, Zhan M, Liu J, Liu Z, Shen M, Yang F, Kang Y, Yin F, Li Z. Structure-Based Design, Optimization, and Evaluation of Potent Stabilized Peptide Inhibitors Disrupting MTDH and SND1 Interaction. J Med Chem 2022; 65:12188-12199. [PMID: 36044768 DOI: 10.1021/acs.jmedchem.2c00862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blocking the interaction of MTDH/SND1 complex is an attractive strategy for cancer therapeutics. In this work, we designed and obtained a novel class of potent stabilized peptide inhibitors derived from MTDH sequence to disrupt MTDH/SND1 interaction. Through structure-based optimization and biological evaluation, stabilized peptides were obtained with tight binding affinity, improved cell penetration, and antitumor effects in the triple-negative breast cancer (TNBC) cells without nonspecific toxicity. To date, our study was the first report to demonstrate that stabilized peptides truncated from MTDH could serve as promising candidates to disrupt the MTDH/SND1 interaction for potential breast cancer treatment.
Collapse
Affiliation(s)
- Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Meimiao Zhan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Minhong Shen
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, United States
| | - Fenfang Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
13
|
Whisenant J, Burgess K. Synthetic helical peptide capping strategies. Chem Soc Rev 2022; 51:5795-5804. [PMID: 35786712 DOI: 10.1039/d1cs01175h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relatively small mimics of interface secondary structures can be used to disrupt protein-protein interactions (PPIs). This strategy is valuable because many PPIs are pivotal in cell biology and contemporary medicinal chemistry. Small peptides tend to have random coil conformations in solution, so the entropy costs are high for them to order into states binding protein receptors. Consequently, peptides constrained in conformations resembling interface secondary structures are favored for enhanced affinities to PPI components. Helices are commonly found at PPI interfaces. The two general strategies that have emerged for imposing helical constraints in probes, capping and stapling, are often confused because both involve formation of macrocyclic rings. This review considers parameters that distinguish capping from stapling. Capping motifs terminate helices and project the adjacent peptide units in non-helical orientations, but stapling enforces helical motifs in ways that enable adjacent peptide fragments to extend helices. There is no evidence that stapling is more effective than capping for helix mimicry, but stapling is used more frequently. This imbalance may be because no strategies have emerged for synthetic C-capping with compact unit; if convenient and effective C-capping strategies were available then capping strategies should be more widely used.
Collapse
Affiliation(s)
- Jonathan Whisenant
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, USA.
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, USA.
| |
Collapse
|
14
|
Dai C, Lian C, Fang H, Luo Q, Huang J, Yang M, Yang H, Zhu L, Zhang J, Yin F, Li Z. Diversity-Oriented Synthesis of ERα Modulators via Mitsunobu Macrocyclization. Org Lett 2022; 24:3532-3537. [PMID: 35546524 DOI: 10.1021/acs.orglett.2c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diversity of cyclic peptides was expanded by elaborating Mitsunobu macrocyclization, tethering various hydroxy acid building blocks with different Nε-amine substituents. This new strategy was then applied in synthesizing peptidomimetic estrogen receptor modulator (PERM) analogs on the solid support. The PERM analogs exhibited increased serum peptidase stability, cell penetration, and estrogen receptor α binding affinity. Studying diversity-oriented methods for preparing azacyclopeptides provides a new tool for macrocycle construction and further structural information for optimizing ERα modulators for ER positive breast cancers.
Collapse
Affiliation(s)
- Chuan Dai
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China.,Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chenshan Lian
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Huilong Fang
- Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Qinhong Luo
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Junrong Huang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China
| | - Min Yang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China
| | - Heng Yang
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Lizhi Zhu
- Department of Pharmacy, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen 518035, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou 423043, China
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Feng Yin
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zigang Li
- Pingshan translational medicine centre, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
15
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
16
|
Wan C, Feng Y, Hou Z, Lian C, Zhang L, An Y, Sun J, Yang D, Jiang C, Yin F, Wang R, Li Z. Electrophilic Sulfonium-Promoted Peptide and Protein Amidation in Aqueous Media. Org Lett 2021; 24:581-586. [PMID: 34968069 DOI: 10.1021/acs.orglett.1c04017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel amidation strategy using electrophilic sulfonium, which is soluble and stable in aqueous conditions, was developed. The sulfoniums could activate thioacid and carboxyl acid to efficiently react with amines to afford amides. This method enables applications in amidation in both aqueous media and solid-phase peptide synthesis, peptide/protein modifications, and reactive lysines of a proteome at pH 10 with activity-based protein profiling. A peptide ligand-directed labeling of the USP7-UBL2 domain was also performed using this method.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yuan Feng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Jinming Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Chenran Jiang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| |
Collapse
|
17
|
Akkapeddi P, Teng KW, Koide S. Monobodies as tool biologics for accelerating target validation and druggable site discovery. RSC Med Chem 2021; 12:1839-1853. [PMID: 34820623 PMCID: PMC8597423 DOI: 10.1039/d1md00188d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Despite increased investment and technological advancement, new drug approvals have not proportionally increased. Low drug approval rates, particularly for new targets, are linked to insufficient target validation at early stages. Thus, there remains a strong need for effective target validation techniques. Here, we review the use of synthetic binding proteins as tools for drug target validation, with focus on the monobody platform among several advanced synthetic binding protein platforms. Monobodies with high affinity and high selectivity can be rapidly developed against challenging targets, such as KRAS mutants, using protein engineering technologies. They have strong tendency to bind to functional sites and thus serve as drug-like molecules, and they can serve as targeting ligands for constructing bio-PROTACs. Genetically encoded monobodies are effective "tool biologics" for validating intracellular targets. They promote crystallization and help reveal the atomic structures of the monobody-target interface, which can inform drug design. Using case studies, we illustrate the potential of the monobody technology in accelerating target validation and small-molecule drug discovery.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine New York NY USA
| |
Collapse
|
18
|
Qin X, Chen H, Tu L, Ma Y, Liu N, Zhang H, Li D, Riedl B, Bierer D, Yin F, Li Z. Potent Inhibition of HIF1α and p300 Interaction by a Constrained Peptide Derived from CITED2. J Med Chem 2021; 64:13693-13703. [PMID: 34472840 DOI: 10.1021/acs.jmedchem.1c01043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disrupting the interaction between HIF1α and p300 is a promising strategy to modulate the hypoxia response of tumor cells. Herein, we designed a constrained peptide inhibitor derived from the CITED2/p300 complex to disturb the HIF1α/p300 interaction. Through truncation/mutation screening and a terminal aspartic acid-stabilized strategy, a constrained peptide was constructed with outstanding biochemical/biophysical properties, especially in binding affinity, cell penetration, and serum stability. To date, our study was the first one to showcase that stabilized peptides derived from CITED2 using helix-stabilizing methods acted as a promising candidate for modulating hypoxia-inducible signaling.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Haowei Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Shenzhen Graduate School of Tsinghua University, Shenzhen 518055, China
| | - Di Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bernd Riedl
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
19
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Kannan S, Aronica PGA, Ng S, Gek Lian DT, Frosi Y, Chee S, Shimin J, Yuen TY, Sadruddin A, Kaan HYK, Chandramohan A, Wong JH, Tan YS, Chang ZW, Ferrer-Gago FJ, Arumugam P, Han Y, Chen S, Rénia L, Brown CJ, Johannes CW, Henry B, Lane DP, Sawyer TK, Verma CS, Partridge AW. Macrocyclization of an all-d linear α-helical peptide imparts cellular permeability. Chem Sci 2020; 11:5577-5591. [PMID: 32874502 PMCID: PMC7441689 DOI: 10.1039/c9sc06383h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Peptide-based molecules hold great potential as targeted inhibitors of intracellular protein-protein interactions (PPIs). Indeed, the vast diversity of chemical space conferred through their primary, secondary and tertiary structures allows these molecules to be applied to targets that are typically deemed intractable via small molecules. However, the development of peptide therapeutics has been hindered by their limited conformational stability, proteolytic sensitivity and cell permeability. Several contemporary peptide design strategies are aimed at addressing these issues. Strategic macrocyclization through optimally placed chemical braces such as olefinic hydrocarbon crosslinks, commonly referred to as staples, may improve peptide properties by (i) restricting conformational freedom to improve target affinities, (ii) improving proteolytic resistance, and (iii) enhancing cell permeability. As a second strategy, molecules constructed entirely from d-amino acids are hyper-resistant to proteolytic cleavage, but generally lack conformational stability and membrane permeability. Since neither approach is a complete solution, we have combined these strategies to identify the first examples of all-d α-helical stapled and stitched peptides. As a template, we used a recently reported all d-linear peptide that is a potent inhibitor of the p53-Mdm2 interaction, but is devoid of cellular activity. To design both stapled and stitched all-d-peptide analogues, we used computational modelling to predict optimal staple placement. The resultant novel macrocyclic all d-peptide was determined to exhibit increased α-helicity, improved target binding, complete proteolytic stability and, most notably, cellular activity.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Pietro G A Aronica
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Simon Ng
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Dawn Thean Gek Lian
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Yuri Frosi
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Sharon Chee
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Jiang Shimin
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Tsz Ying Yuen
- Institute of Chemical & Engineering Science , Agency for Science, Technology and Research (ASTAR) , 8 Biomedical Grove, #07, Neuros Building , Singapore 138665
| | - Ahmad Sadruddin
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Hung Yi Kristal Kaan
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Arun Chandramohan
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Jin Huei Wong
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Yaw Sing Tan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Zi Wei Chang
- Singapore Immunology Network (SIgN) , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #03-06, Immunos , Singapore 138648
| | - Fernando J Ferrer-Gago
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Prakash Arumugam
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Yi Han
- Merck & Co., Inc. , Kenilworth , New Jersey , USA
| | - Shiying Chen
- Merck & Co., Inc. , Kenilworth , New Jersey , USA
| | - Laurent Rénia
- Singapore Immunology Network (SIgN) , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #03-06, Immunos , Singapore 138648
| | - Christopher J Brown
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Charles W Johannes
- Institute of Chemical & Engineering Science , Agency for Science, Technology and Research (ASTAR) , 8 Biomedical Grove, #07, Neuros Building , Singapore 138665
| | - Brian Henry
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - David P Lane
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | | | - Chandra S Verma
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
- Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543
| | - Anthony W Partridge
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| |
Collapse
|
21
|
Yu E, Xu Y, Shi Y, Yu Q, Liu J, Xu L. Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy. J Mol Model 2019; 25:278. [PMID: 31463793 DOI: 10.1007/s00894-019-4156-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER) is a nuclear hormone receptor and plays an important role in mediating the cellular effects of estrogen. ER can be classified into two receptors: estrogen receptor alpha (ERα) and beta (ERβ), and the former is expressed in 50~80% of breast tumors and has been extensively investigated in breast cancer for decades. Excessive exposure to estrogen can obviously stimulate the growth of breast cancers primarily mediated by ERα, and thus anti-estrogen therapies by small molecules are of concern to clinicians and pharmaceutical industry in the treatment of ERα-positive breast cancers. Although a series of estrogen receptor modulators have been developed, these drugs can lead to resistance and side effects. Therefore, the development of small molecule inhibitors with high target specificity has been intensified. In this pursuit, an integrated computer-aided virtual screening technique, including molecular docking and pharmacophore model screening, was used to screen traditional Chinese medicine (TCM) databases. The compounds with high docking scores and fit values were subjected to ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction, and ten hits were identified as potential inhibitors targeting ERα. Molecular docking was used to investigate the binding modes between ERα and three most potent hits, and molecular dynamic simulations were chosen to explore the stability of these complexes. The rank of the predicted binding free energies evaluated by MM/GBSA is consistent with the docking score. These novel scaffolds discovered in the present study can be used as critical starting point in the drug discovery process for treating ERα-positive breast cancer. Graphical abstract .
Collapse
Affiliation(s)
- Enguang Yu
- Department of Chinese Surgery, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Yueping Xu
- Department of Nursing, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Qiuyan Yu
- Department of Breast Surgery, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Jie Liu
- Department of Traditional Chinese Medicine Oncology, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China.
| |
Collapse
|
22
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
23
|
Jiang Y, Jiang X, Shi X, Yang F, Cao Y, Qin X, Hou Z, Xie M, Liu N, Fang Q, Yin F, Han W, Li Z. α-Helical Motif as Inhibitors of Toxic Amyloid-β Oligomer Generation via Highly Specific Recognition of Amyloid Surface. iScience 2019; 17:87-100. [PMID: 31255986 PMCID: PMC6606958 DOI: 10.1016/j.isci.2019.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/10/2019] [Accepted: 06/12/2019] [Indexed: 11/15/2022] Open
Abstract
Amyloid fibril surfaces can convert soluble proteins into toxic oligomers and are attractive targets for intervention of protein aggregation diseases. Thus far, molecules identified with inhibitory activity are either large proteins or flat cyclic compounds lacking in specificity. The main design difficulty is flatness of amyloid surfaces and the lack of knowledge on binding interfaces. Here, we demonstrate, for the first time, a rational design of alpha-helical peptide inhibitors targeting the amyloid-beta 40 (Aβ40) fibril surfaces, based on our in silico finding that a helical fragment of Aβ40 interacts in a unique way with side-chain arrays on the fibril surface. We strengthen the fragment's binding capability through mutations and helicity enhancement with our Terminal Aspartic acid strategy. The resulting inhibitor shows micromolar affinity for the fibril surface, effectively impedes the surface-mediated oligomerization of Aβ40, and mitigates its cytotoxicity. This work opens up an avenue to designing aggregation modulators for amyloid diseases.
Collapse
Affiliation(s)
- Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xuehan Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xiaodong Shi
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yang Cao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Mingsheng Xie
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Na Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Qi Fang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
24
|
Yuan F, Tian Y, Qin W, Li J, Yang D, Zhao B, Yin F, Li Z. Evaluation of topologically distinct constrained antimicrobial peptides with broad-spectrum antimicrobial activity. Org Biomol Chem 2019; 16:5764-5770. [PMID: 30004546 DOI: 10.1039/c8ob00483h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antimicrobial peptides (AMPs) are short cationic peptides with a high affinity for membranes and emerged as a promising therapeutic approach with potential for treating infectious diseases. Chemical stabilization of short peptides proved to be a successful approach for enhancing their bio-physical properties. Herein, we designed and synthesized a panel of conformationally constrained antimicrobial peptides with either α-helical or β-hairpin conformation using templating strategies. These synthetic short constrained peptides possess different topological distributions of hydrophobic and hydrophilic residues and displayed distinct antimicrobial activity. Notably, the conformationally constrained α-helical peptides displayed a faster internalization into the bacteria cells compared to their β-hairpin analogues. These synthetic short constrained peptides showed killing effects on a broad spectrum of microorganisms mainly through pore formation and membrane damage which provided a potentially promising skeleton for the next generation of stabilized antimicrobial peptides.
Collapse
Affiliation(s)
- Fang Yuan
- Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Skowron KJ, Speltz TE, Moore TW. Recent structural advances in constrained helical peptides. Med Res Rev 2018; 39:749-770. [PMID: 30307621 DOI: 10.1002/med.21540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Given the ubiquity of the ⍺-helix in the proteome, there has been much research in developing mimics of ⍺-helices, and most of this study has been toward developing protein-protein interaction inhibitors. A common strategy for mimicking ⍺-helices has been through the use of constrained, helical peptides. The addition of a constraint typically provides for conformational and proteolytic stability and, in some cases, cell permeability. Some of the most well-known strategies included are lactam formation and hydrocarbon "stapling." Beyond those strategies, there have been many recent advances in developing constrained peptides. The purpose of this review is to highlight recent advances in the development of new helix-stabilizing technologies, constraint diversification strategies, tether diversification strategies, and combination strategies that create new bicyclic helical peptides.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.,Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
26
|
Qin W, Xie M, Qin X, Fang Q, Yin F, Li Z. Recent advances in peptidomimetics antagonists targeting estrogen receptor α-coactivator interaction in cancer therapy. Bioorg Med Chem Lett 2018; 28:2827-2836. [DOI: 10.1016/j.bmcl.2018.05.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
|
27
|
Qin X, Zhao H, Jiang Y, Yin F, Tian Y, Xie M, Ye X, Xu N, Li Z. Development of a potent peptide inhibitor of estrogen receptor α. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Speltz TE, Mayne CG, Fanning SW, Siddiqui Z, Tajkhorshid E, Greene GL, Moore TW. A "cross-stitched" peptide with improved helicity and proteolytic stability. Org Biomol Chem 2018; 16:3702-3706. [PMID: 29725689 PMCID: PMC5993042 DOI: 10.1039/c8ob00790j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new computational approach to obtain quantitative energy profiles for helix folding was used in the design of orthogonal hydrocarbon and lactam bicyclic peptides. The proteolytically stable, "cross-stitched" peptide SRC2-BCP1 shows nanomolar affinity for estrogen receptor α and X-ray crystallography confirms a helical binding pose.
Collapse
Affiliation(s)
- Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy and UI Cancer Center, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Shi X, Zhao R, Jiang Y, Zhao H, Tian Y, Jiang Y, Li J, Qin W, Yin F, Li Z. Reversible stapling of unprotected peptides via chemoselective methionine bis-alkylation/dealkylation. Chem Sci 2018; 9:3227-3232. [PMID: 29844896 PMCID: PMC5931191 DOI: 10.1039/c7sc05109c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022] Open
Abstract
We have developed a general peptide macrocyclization strategy that involves a facile and chemoselective methionine bis-alkylation/dealkylation process. This method provides a straightforward and easy approach to generate cyclic peptides with tolerances of all amino acids (including Cys), variable loop sizes, and different linkers. The Met bis-alkylation we apply in this strategy yields two additional on-tether positive charges that could assist in the cellular uptake of the peptides. Notably, the bis-alkylated peptide could be reduced to release the original peptide both in vitro and within cellular environments. This strategy provides an intriguing and facile traceless post-peptide-synthesis modification with enhanced cellular uptakes. Peptides constructed with this method could be utilized to zero in on various protein targets or to achieve other goals, such as drug delivery.
Collapse
Affiliation(s)
- Xiaodong Shi
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Rongtong Zhao
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Yixiang Jiang
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Hui Zhao
- Division of Life Sciences , Clarivate Analytics , Beijing , 100190 , China
| | - Yuan Tian
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , 611756 , China
| | - Yanhong Jiang
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Jingxu Li
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Weirong Qin
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Feng Yin
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Zigang Li
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| |
Collapse
|
30
|
Speltz TE, Danes JM, Stender JD, Frasor J, Moore TW. A Cell-Permeable Stapled Peptide Inhibitor of the Estrogen Receptor/Coactivator Interaction. ACS Chem Biol 2018; 13:676-684. [PMID: 29309722 DOI: 10.1021/acschembio.7b01016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We and others have proposed that coactivator binding inhibitors, which block the interaction of estrogen receptor and steroid receptor coactivators, may represent a potential class of new breast cancer therapeutics. The development of coactivator binding inhibitors has been limited, however, because many of the current molecules which are active in in vitro and biochemical assays are not active in cell-based assays. Our goal in this work was to prepare a coactivator binding inhibitor active in cellular models of breast cancer. To accomplish this, we used molecular dynamics simulations to convert a high-affinity stapled peptide with poor cell permeability into R4K1, a cell-penetrating stapled peptide. R4K1 displays high binding affinity for estrogen receptor α, inhibits the formation of estrogen receptor/coactivator complexes, and distributes throughout the cell with a high percentage of nuclear localization. R4K1 represses native gene transcription mediated by estrogen receptor α and inhibits proliferation of estradiol-stimulated MCF-7 cells. Using RNA-Seq, we demonstrate that almost all of the effects of R4K1 on global gene transcription are estrogen-receptor-associated. This chemical probe provides a significant proof-of-concept for preparing cell-permeable stapled peptide inhibitors of the estrogen receptor/coactivator interaction.
Collapse
Affiliation(s)
- Thomas E. Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Jeanne M. Danes
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1835 W Polk St, Chicago, Illinois 60612, United States
| | - Joshua D. Stender
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1835 W Polk St, Chicago, Illinois 60612, United States
- University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612, United States
| | - Terry W. Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, United States
- University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612, United States
| |
Collapse
|