1
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
2
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
3
|
Qiao Z, Nguyen LC, Yang D, Dann C, Thomas DM, Henn M, Valdespino A, Swenson CS, Oakes SA, Rosner MR, Moellering RE. Direct inhibition of tumor hypoxia response with synthetic transcriptional repressors. Nat Chem Biol 2024:10.1038/s41589-024-01716-z. [PMID: 39215099 DOI: 10.1038/s41589-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Many oncogenic transcription factors (TFs) are considered to be undruggable because of their reliance on large protein-protein and protein-DNA interfaces. TFs such as hypoxia-inducible factors (HIFs) and X-box-binding protein 1 (XBP1) are induced by hypoxia and other stressors in solid tumors and bind to unfolded protein response element (UPRE) and hypoxia-induced response element (HRE) motifs to control oncogenic gene programs. Here, we report a strategy to create synthetic transcriptional repressors (STRs) that mimic the basic leucine zipper domain of XBP1 and recognize UPRE and HRE motifs. A lead molecule, STR22, binds UPRE and HRE DNA sequences with high fidelity and competes with both TFs in cells. Under hypoxia, STR22 globally suppresses HIF1α binding to HRE-containing promoters and enhancers, inhibits hypoxia-induced gene expression and blocks protumorigenic phenotypes in triple-negative breast cancer (TNBC) cells. In vivo, intratumoral and systemic STR22 treatment inhibited hypoxia-dependent gene expression, primary tumor growth and metastasis of TNBC tumors. These data validate a novel strategy to target the tumor hypoxia response through coordinated inhibition of TF-DNA binding.
Collapse
Affiliation(s)
- Zeyu Qiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Long C Nguyen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Dongbo Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Christopher Dann
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Madeline Henn
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Andrea Valdespino
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Scott A Oakes
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Nazeer N, Kooner N, Ghimire A, Rainey JK, Lubell WD, Meneksedag-Erol D, Ahmed M. Secondary Structure Stabilization of Macrocyclic Antimicrobial Peptides via Cross-Link Swapping. J Med Chem 2024; 67:8693-8707. [PMID: 38771638 DOI: 10.1021/acs.jmedchem.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Lactam cross-links have been employed to stabilize the helical secondary structure and enhance the activity and physiological stability of antimicrobial peptides; however, stabilization of β-sheets via lactamization has not been observed. In the present study, lactams between the side chains of C- and N-terminal residues have been used to stabilize the β-sheet conformation in a short ten-residue analogue of chicken angiogenin-4. Designed using a combination of molecular dynamics simulations and Markov state models, the lactam cross-linked peptides are shown to adopt stabilized β-sheet conformations consistent with simulated structures. Replacement of the peptide side-chain Cys-Cys disulfide by a lactam cross-link enhanced the broad-spectrum antibacterial activity compared to the parent peptide and exhibited greater propensity to induce proinflammatory activity in macrophages. The combination of molecular simulations and conformational and biological analyses of the synthetic peptides provides a useful paradigm for the rational design of therapeutically active peptides with constrained β-sheet structures.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| | - Navjote Kooner
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| | - Deniz Meneksedag-Erol
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
- Department of Chemical and Materials Engineering, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| |
Collapse
|
5
|
Varas N, Grabowski R, Jarosinski MA, Tai N, Herzog RI, Ismail-Beigi F, Yang Y, Cherrington AD, Weiss MA. Ultra-stable insulin-glucagon fusion protein exploits an endogenous hepatic switch to mitigate hypoglycemic risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594997. [PMID: 38826486 PMCID: PMC11142066 DOI: 10.1101/2024.05.20.594997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The risk of hypoglycemia and its serious medical sequelae restrict insulin replacement therapy for diabetes mellitus. Such adverse clinical impact has motivated development of diverse glucose-responsive technologies, including algorithm-controlled insulin pumps linked to continuous glucose monitors ("closed-loop systems") and glucose-sensing ("smart") insulins. These technologies seek to optimize glycemic control while minimizing hypoglycemic risk. Here, we describe an alternative approach that exploits an endogenous glucose-dependent switch in hepatic physiology: preferential insulin signaling (under hyperglycemic conditions) versus preferential counter-regulatory glucagon signaling (during hypoglycemia). Motivated by prior reports of glucagon-insulin co-infusion, we designed and tested an ultra-stable glucagon-insulin fusion protein whose relative hormonal activities were calibrated by respective modifications; physical stability was concurrently augmented to facilitate formulation, enhance shelf life and expand access. An N-terminal glucagon moiety was stabilized by an α-helix-compatible Lys 13 -Glu 17 lactam bridge; A C-terminal insulin moiety was stabilized as a single chain with foreshortened C domain. Studies in vitro demonstrated (a) resistance to fibrillation on prolonged agitation at 37 °C and (b) dual hormonal signaling activities with appropriate balance. Glucodynamic responses were monitored in rats relative to control fusion proteins lacking one or the other hormonal activity, and continuous intravenous infusion emulated basal subcutaneous therapy. Whereas efficacy in mitigating hyperglycemia was unaffected by the glucagon moiety, the fusion protein enhanced endogenous glucose production under hypoglycemic conditions. Together, these findings provide proof of principle toward a basal glucose-responsive insulin biotechnology of striking simplicity. The fusion protein's augmented stability promises to circumvent the costly cold chain presently constraining global insulin access. Significance Statement The therapeutic goal of insulin replacement therapy in diabetes is normalization of blood-glucose concentration, which prevents or delays long-term complications. A critical barrier is posed by recurrent hypoglycemic events that results in short- and long-term morbidities. An innovative approach envisions co-injection of glucagon (a counter-regulatory hormone) to exploit a glycemia-dependent hepatic switch in relative hormone responsiveness. To provide an enabling technology, we describe an ultra-stable fusion protein containing insulin- and glucagon moieties. Proof of principle was obtained in rats. A single-chain insulin moiety provides glycemic control whereas a lactam-stabilized glucagon extension mitigates hypoglycemia. This dual-hormone fusion protein promises to provide a basal formulation with reduced risk of hypoglycemia. Resistance to fibrillation may circumvent the cold chain required for global access.
Collapse
|
6
|
Feng Y, Qirjollari A, Fawaz MV, Cancilla MT, Gonzalez RJ, Pearson K. Rapid and Definitive Identification of Cyclic Peptide Soft Spots by Isotope-Labeled Reductive Dimethylation and Mass Spectrometry Fragmentation. Anal Chem 2024; 96:7756-7762. [PMID: 38690743 DOI: 10.1021/acs.analchem.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Cyclic peptides are an emerging therapeutic modality over the past few decades. To identify drug candidates with sufficient proteolytic stability for oral administration, it is critical to pinpoint the amide bond hydrolysis sites, or soft spots, to better understand their metabolism and provide guidance on further structure optimization. However, the unambiguous characterization of cyclic peptide soft spots remains a significant challenge during early stage discovery studies, as amide bond hydrolysis forms a linearized isobaric sequence with the addition of a water molecule, regardless of the amide hydrolysis location. In this study, an innovative strategy was developed to enable the rapid and definitive identification of cyclic peptide soft spots by isotope-labeled reductive dimethylation and mass spectrometry fragmentation. The dimethylated immonium ion with enhanced MS signal at a distinctive m/z in MS/MS fragmentation spectra reveals the N-terminal amino acid on a linearized peptide sequence definitively and, thus, significantly simplifies the soft spot identification workflow. This approach has been evaluated to demonstrate the potential of isotope-labeled dimethylation to be a powerful analytical tool in cyclic peptide drug discovery and development.
Collapse
Affiliation(s)
- Yu Feng
- Nonclinical Drug Safety, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Athanasia Qirjollari
- Nonclinical Drug Safety, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Maria V Fawaz
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Mark T Cancilla
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Raymond J Gonzalez
- Nonclinical Drug Safety, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Kara Pearson
- Nonclinical Drug Safety, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
7
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
8
|
Gibadullin R, Cary BP, Gellman SH. Differential Responses of the GLP-1 and GLP-2 Receptors to N-Terminal Modification of a Dual Agonist. J Am Chem Soc 2023; 145:12105-12114. [PMID: 37235770 PMCID: PMC10335629 DOI: 10.1021/jacs.3c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Class B1 G protein-coupled receptors (GPCRs), collectively, respond to a diverse repertoire of extracellular polypeptide agonists and transmit the encoded messages to cytosolic partners. To fulfill these tasks, these highly mobile receptors must interconvert among conformational states in response to agonists. We recently showed that conformational mobility in polypeptide agonists themselves plays a role in activation of one class B1 GPCR, the receptor for glucagon-like peptide-1 (GLP-1). Exchange between helical and nonhelical conformations near the N-termini of agonists bound to the GLP-1R was revealed to be critical for receptor activation. Here, we ask whether agonist conformational mobility plays a role in the activation of a related receptor, the GLP-2R. Using variants of the hormone GLP-2 and the designed clinical agonist glepaglutide (GLE), we find that the GLP-2R is quite tolerant of variations in α-helical propensity near the agonist N-terminus, which contrasts with signaling at the GLP-1R. A fully α-helical conformation of the bound agonist may be sufficient for GLP-2R signal transduction. GLE is a GLP-2R/GLP-1R dual agonist, and the GLE system therefore enables direct comparison of the responses of these two GPCRs to a single set of agonist variants. This comparison supports the conclusion that the GLP-1R and GLP-2R differ in their response to variations in helical propensity near the agonist N-terminus. The data offer a basis for development of new hormone analogues with distinctive and potentially useful activity profiles; for example, one of the GLE analogues is a potent agonist of the GLP-2R but also a potent antagonist of the GLP-1R, a novel form of polypharmacology.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brian P. Cary
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Gadgaard S, Windeløv JA, Schiellerup SP, Holst JJ, Hartmann B, Rosenkilde MM. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed Pharmacother 2023; 160:114383. [PMID: 36780786 DOI: 10.1016/j.biopha.2023.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially from enteroendocrine Lcells and has anabolic action on gut and bone. Short-acting teduglutide is the only approved GLP-2 analog for the treatment of short-bowel syndrome (SBS). To improve the therapeutic effect, we created a series of lipidated GLP-2R agonists. EXPERIMENTAL APPROACH Six GLP-2 analogs were studied in vitro for cAMP accumulation, β-arrestin 1 and 2 recruitment, affinity, and internalization. The trophic actions on intestine and bone were examined in vivo in rodents. KEY RESULTS Lipidations at lysines introduced at position 12, 16, and 20 of hGLP-2(1-33) were well-tolerated with less than 2.2-fold impaired potency and full efficacy at the hGLP-2R in cAMP accumulation. In contrast, N- and C-terminal (His1 and Lys30) lipidations impaired potency by 4.2- and 45-fold and lowered efficacy to 77% and 85% of hGLP-2, respectively. All variants were similarly active on the rat and mouse GLP-2Rs and the three most active variants displayed increased selectivity for hGLP-2R over hGLP-1R activation, compared to native hGLP-2. Impact on arrestin recruitment and receptor internalization followed that of Gαs-coupling, except for lipidation in position 20, where internalization was more impaired, suggesting desensitization protection. A highly active variant (C16 at position 20) with low internalization and a half-life of 9.5 h in rats showed improved gut and bone tropism with increased weight of small intestine in mice and decreased CTX levels in rats. CONCLUSION AND IMPLICATION We present novel hGLP-2 agonists suitable for in vivo studies of the GLP-2 system to uncover its pharmacological potential.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Bainan Biotech, Copenhagen, Denmark
| | | | - Sine P Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
10
|
Speltz TE, Qiao Z, Swenson CS, Shangguan X, Coukos JS, Lee CW, Thomas DM, Santana J, Fanning SW, Greene GL, Moellering RE. Targeting MYC with modular synthetic transcriptional repressors derived from bHLH DNA-binding domains. Nat Biotechnol 2023; 41:541-551. [PMID: 36302987 PMCID: PMC10392954 DOI: 10.1038/s41587-022-01504-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/08/2022] [Indexed: 01/16/2023]
Abstract
Despite unequivocal roles in disease, transcription factors (TFs) remain largely untapped as pharmacologic targets due to the challenges in targeting protein-protein and protein-DNA interactions. Here we report a chemical strategy to generate modular synthetic transcriptional repressors (STRs) derived from the bHLH domain of MAX. Our synthetic approach yields chemically stabilized tertiary domain mimetics that cooperatively bind the MYC/MAX consensus E-box motif with nanomolar affinity, exhibit specificity that is equivalent to or beyond that of full-length TFs and directly compete with MYC/MAX protein for DNA binding. A lead STR directly inhibits MYC binding in cells, downregulates MYC-dependent expression programs at the proteome level and inhibits MYC-dependent cell proliferation. Co-crystallization and structure determination of a STR:E-box DNA complex confirms retention of DNA recognition in a near identical manner as full-length bHLH TFs. We additionally demonstrate structure-blind design of STRs derived from alternative bHLH-TFs, confirming that STRs can be used to develop highly specific mimetics of TFs targeting other gene regulatory elements.
Collapse
Affiliation(s)
- Thomas E Speltz
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Zeyu Qiao
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Colin S Swenson
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Xianghang Shangguan
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - John S Coukos
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Christopher W Lee
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Deborah M Thomas
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Jesse Santana
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Sean W Fanning
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Cancer Biology, Loyola University Chicago, Chicago, IL, USA
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Shinzaki S, Sato T, Fukui H. Antidiabetic drugs for IBD: a long but promising road ahead for drug repositioning to target intestinal inflammation. J Gastroenterol 2023; 58:598-599. [PMID: 36961556 DOI: 10.1007/s00535-023-01983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Affiliation(s)
- Shinichiro Shinzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan.
| | - Toshiyuki Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| |
Collapse
|
12
|
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023; 40:617-632. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
13
|
Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:4454. [PMID: 36901885 PMCID: PMC10003013 DOI: 10.3390/ijms24054454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic non-specific inflammation in the gastrointestinal (GI) tract, primarily affecting the ileum and colon. The incidence of IBD has risen sharply in recent years. Despite continuous research efforts over the past decades, the aetiology of IBD is still not fully understood and only a limited number of drugs are available for its treatment. Flavonoids, a ubiquitous class of natural chemicals found in plants, have been widely used in the prevention and treatment of IBD. However, their therapeutic efficacy is unsatisfactory due to poor solubility, instability, rapid metabolism, and rapid systemic elimination. With the development of nanomedicine, nanocarriers can efficiently encapsulate various flavonoids and subsequently form nanoparticles (NPs), which greatly improves the stability and bioavailability of flavonoids. Recently, progress has also been made in the methodology of biodegradable polymers that can be used to fabricate NPs. As a result, NPs can significantly enhance the preventive or therapeutic effects of flavonoids on IBD. In this review, we aim to evaluate the therapeutic effect of flavonoid NPs on IBD. Furthermore, we discuss possible challenges and future perspectives.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ying Liu
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
14
|
Bartling CRO, Alexopoulou F, Kuschert S, Chin YKY, Jia X, Sereikaite V, Özcelik D, Jensen TM, Jain P, Nygaard MM, Harpsøe K, Gloriam DE, Mobli M, Strømgaard K. Comprehensive Peptide Cyclization Examination Yields Optimized APP Scaffolds with Improved Affinity toward Mint2. J Med Chem 2023; 66:3045-3057. [PMID: 36749163 DOI: 10.1021/acs.jmedchem.2c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peptides targeting disease-relevant protein-protein interactions are an attractive class of therapeutics covering the otherwise undruggable space between small molecules and therapeutic proteins. However, peptides generally suffer from poor metabolic stability and low membrane permeability. Hence, peptide cyclization has become a valuable approach to develop linear peptide motifs into metabolically stable and potentially cell-permeable cyclic leads. Furthermore, cyclization of side chains, also known as "stapling", can stabilize particular secondary peptide structures. Here, we demonstrate that a comprehensive examination of cyclization strategies in terms of position, chemistry, and length is a prerequisite for the selection of optimal cyclic peptide scaffolds. Our systematic approach identifies cyclic APP dodecamer peptides targeting the phosphotyrosine binding domain of Mint2 with substantially improved affinity. We show that especially all-hydrocarbon stapling provides improved metabolic stability, a significantly stabilized secondary structure and membrane permeability.
Collapse
Affiliation(s)
- Christian R O Bartling
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - Flora Alexopoulou
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - Sarah Kuschert
- Center for Advanced Imaging, University of Queensland, St. Lucia, 4072Queensland, Australia
| | - Yanni K-Y Chin
- Center for Advanced Imaging, University of Queensland, St. Lucia, 4072Queensland, Australia
| | - Xinying Jia
- Center for Advanced Imaging, University of Queensland, St. Lucia, 4072Queensland, Australia
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - Thomas M Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - Palash Jain
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - Mads M Nygaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| | - Mehdi Mobli
- Center for Advanced Imaging, University of Queensland, St. Lucia, 4072Queensland, Australia
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100Copenhagen, Denmark
| |
Collapse
|
15
|
S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules 2022; 27:molecules27196640. [PMID: 36235175 PMCID: PMC9572071 DOI: 10.3390/molecules27196640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Psoriasis is one of the most common inflammatory skin diseases affecting about 1-3% of the population. One of the characteristic abnormalities in psoriasis is the excessive production of antimicrobial peptides and proteins, which play an essential role in the pathogenesis of the disease. Antimicrobial peptides and proteins can be expressed differently in normal and diseased skin, reflecting their usefulness as diagnostic biomarkers. Moreover, due to their very important functions in innate immunity, members of host defense peptides and proteins are currently considered to be promising new therapeutic targets for many inflammatory diseases. Koebnerisin (S100A15) belongs to an S100 family of antimicrobial proteins, which constitute the multigenetic group of calcium-binding proteins involved in ion-dependent cellular functions and regulation of immune mechanisms. S100A15 was first discovered to be overexpressed in 'koebnerized' psoriatic skin, indicating its involvement in the disease phenotype and the same promising potential as a new therapeutic target. This review describes the involvement of antimicrobial peptides and proteins in inflammatory diseases' development and therapy. The discussion focuses on S100 proteins, especially koebnerisin, which may be involved in the underlying mechanism of the Köebner phenomenon in psoriasis, as well as other immune-mediated inflammatory diseases described in the last decade.
Collapse
|
16
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2022. [PMID: 35440774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? Nat Rev Gastroenterol Hepatol 2022; 19:493-507. [PMID: 35440774 DOI: 10.1038/s41575-022-00604-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
19
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 630] [Impact Index Per Article: 210.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
20
|
A Novel Pathway of Flavonoids Protecting against Inflammatory Bowel Disease: Modulating Enteroendocrine System. Metabolites 2022; 12:metabo12010031. [PMID: 35050153 PMCID: PMC8777795 DOI: 10.3390/metabo12010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables. Recent studies have demonstrated impressively that flavonoids have anti-IBD effects through multiple mechanisms. These include anti-inflammatory and antioxidant actions; the preservation of the epithelial barrier integrity, the intestinal immunomodulatory property, and the shaping microbiota composition and function. In addition, a few studies have shown the impact of flavonoids on enterohormones release; nonetheless, there is hardly any work showing the link between flavonoids, enterohormones release and IBD. So far, the interaction between flavonoids, enterohormones and IBD is elucidated for the first time in this review. Furthermore, the inference can be drawn that flavonoids may protect against IBD through modulating enterohormones, such as glucagon-like peptide 1 (GLP-1), GLP-2, dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), ghrelin and cholecystokinin (CCK). In conclusion, this manuscript explores a possible mechanism of flavonoids protecting against IBD.
Collapse
|
21
|
Honig G, Larkin PB, Heller C, Hurtado-Lorenzo A. Research-Based Product Innovation to Address Critical Unmet Needs of Patients with Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S1-S16. [PMID: 34791292 PMCID: PMC8922161 DOI: 10.1093/ibd/izab230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/09/2022]
Abstract
Despite progress in recent decades, patients with inflammatory bowel diseases face many critical unmet needs, demonstrating the limitations of available treatment options. Addressing these unmet needs will require interventions targeting multiple aspects of inflammatory bowel disease pathology, including disease drivers that are not targeted by available therapies. The vast majority of late-stage investigational therapies also focus primarily on a narrow range of fundamental mechanisms. Thus, there is a pressing need to advance to clinical stage differentiated investigational therapies directly targeting a broader range of key mechanistic drivers of inflammatory bowel diseases. In addition, innovations are critically needed to enable treatments to be tailored to the specific underlying abnormal biological pathways of patients; interventions with improved safety profiles; biomarkers to develop prognostic, predictive, and monitoring tests; novel devices for nonpharmacological approaches such as minimally invasive monitoring; and digital health technologies. To address these needs, the Crohn's & Colitis Foundation launched IBD Ventures, a venture philanthropy-funding mechanism, and IBD Innovate®, an innovative, product-focused scientific conference. This special IBD Innovate® supplement is a collection of articles reflecting the diverse and exciting research and development that is currently ongoing in the inflammatory bowel disease field to deliver innovative and differentiated products addressing critical unmet needs of patients. Here, we highlight the pipeline of new product opportunities currently advancing at the preclinical and early clinical development stages. We categorize and describe novel and differentiated potential product opportunities based on their potential to address the following critical unmet patient needs: (1) biomarkers for prognosis of disease course and prediction/monitoring of treatment response; (2) restoration of eubiosis; (3) restoration of barrier function and mucosal healing; (4) more effective and safer anti-inflammatories; (5) neuromodulatory and behavioral therapies; (6) management of disease complications; and (7) targeted drug delivery.
Collapse
|
22
|
Sang P, Zeng H, Lee C, Shi Y, Wang M, Pan C, Wei L, Huang C, Wu M, Shen W, Li X, Cai J. α/Sulfono-γ-AApeptide Hybrid Analogues of Glucagon with Enhanced Stability and Prolonged In Vivo Activity. J Med Chem 2021; 64:13893-13901. [PMID: 34506138 PMCID: PMC8903076 DOI: 10.1021/acs.jmedchem.1c01289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peptide drugs have the advantages of target specificity and good drugability and have become one of the most increasingly important hotspots in new drug research in biomedical sciences. However, peptide drugs generally have low bioavailability and metabolic stability, and therefore, the modification of existing peptide drugs for the purpose of improving stability and retaining activity is of viable importance. It is known that glucagon is an effective therapy for treating severe hypoglycemia, but its short half-life prevents its wide therapeutic use. Herein, we report that combined unnatural residues and long fatty acid conjugation afford potent α/sulfono-γ-AApeptide hybrid analogues of Glucagon with enhanced stability and prolonged in vivo activity. This strategy could be adopted to develop stabilized analogues of other short-acting bioactive peptides.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Hongxiang Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Candy Lee
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Yan Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Cong Pan
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chenglong Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Weijun Shen
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
23
|
Yang X, Li C, Zhang F, Qi C. An efficient domino strategy for synthesis of 3-substituted 4-oxo-4,5-dihydro-1H-pyrrolo[3,2-c]pyridine derivatives in water. Mol Divers 2021; 26:1663-1674. [PMID: 34414516 DOI: 10.1007/s11030-021-10294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
A strategy for catalyst-free domino reaction of 4-aminopyridin-2(1H)-ones, arylglyoxal hydrates and different 1,3-dicarbonyl compounds in water has been established. The mild and efficient procedure afforded pyrrolo[3,2-c]pyridine derivatives with 76-94% yields after simple crystallization. The present procedure shows promising characteristics, such as readily available starting materials, the use of water as reaction media, simple and efficient one-pot operation, and avoiding the need for any hazardous or expensive catalysts.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Chunmei Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Furen Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
24
|
Han C, Sun Y, Yang Q, Zhou F, Chen X, Wu L, Sun L, Han J. Stapled, Long-Acting Xenopus GLP-1-Based Dual GLP-1/Glucagon Receptor Agonists with Potent Therapeutic Efficacy for Metabolic Disease. Mol Pharm 2021; 18:2906-2923. [PMID: 34240881 DOI: 10.1021/acs.molpharmaceut.0c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel peptidic glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP-1R) dual agonists are reported to have increased efficacy over GLP-1R monoagonists for the treatment of diabetes and obesity. We identified a novel Xenopus GLP-1-based dual GLP-1R/GCGR agonist (xGLP/GCG-13) designed with a proper activity ratio favoring the GLP-1R versus the GCGR. However, the clinical utility of xGLP/GCG-13 is limited by its short in vivo half-life. Starting from xGLP/GCG-13, dual Cys mutation was performed, followed by covalent side-chain stapling and serum albumin binder incorporation, resulting in a stabilized secondary structure, enhanced agonist potency at GLP-1R and GCGR, and improved stability. The lead peptide 2c (stapled xGLP/GCG-13 analogue with a palmitic acid albumin binder) exhibits balanced GLP-1R and GCGR activations and potent, long-lasting effects on in vivo glucose control. 2c was further explored pharmacologically in diet-induced obesity and db/db rodent models. Chronic administration of 2c potently induced body weight loss and hypoglycemic effects, improved glucose tolerance, increased energy expenditure, and normalized lipid metabolism and adiposity in relevant animal models. These results indicated that 2c has potential for development as a novel antidiabetic and/or antiobesity drug. Furthermore, we propose that the incorporation of a proper serum protein-binding motif into a di-Cys staple is an effective method for improving the stabilities and bioactivities of peptides. This approach is likely applicable to other therapeutic peptides, such as glucose-dependent insulin-tropic peptide receptor (GIPR) and GLP-1R dual agonists or GLP-1R/GCGR/GIPR triagonists.
Collapse
Affiliation(s)
- Chun Han
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China
| | - Yuqing Sun
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Qimeng Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Feng Zhou
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xinyu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China
| | - Lidan Sun
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
25
|
Lucotti P, Lovati E, Lenti MV, Valvo B, Sprio E, Aronico N, Giuffrida P, Dell'Aera D, Pasini A, Ubezio C, Delliponti M, Tinelli C, Corazza GR, Di Sabatino A. Abnormal post-prandial glucagon-like peptide release in patients with Crohn's disease. Clin Res Hepatol Gastroenterol 2021; 45:101533. [PMID: 33036955 DOI: 10.1016/j.clinre.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Glucagon-like peptide GLP-1 and -2 have been shown to regulate immune responses in immune-mediated disorders, including Crohn's disease (CD). Our aim was to investigate post-prandial GLP release and its potential link to chronic inflammation, insulin secretion/sensitivity and body composition changes in CD patients. METHODS Fifteen patients with CD, 15 healthy controls (HC) and 15 patients with metabolic syndrome (MS) were recruited. All patients underwent assessment of body composition by means of bio-impedance followed by a meal tolerance test (MTT). Only one CD patient did not tolerate the MTT and was excluded. RESULTS Basal GLP-1 levels were up-regulated in CD, however, as compared to HC, stimulated GLP-1 secretion was significantly reduced in CD (-31 %, p < 0.05) as in MS (-52 %, p < 0.003). Similarly, basal GLP-2 levels were comparable to that of HC, while response to MTT in CD was virtually absent (p < 0.05). Similar fasting insulin sensitivity, estimated 1st and 2nd phase insulin secretion and insulinogenic index were found in CD and in HC. Post-prandial GLP secretion was positively correlated to insulin secretion indices, both in CD and MS. In CD, high-sensitive C reactive protein levels (hsCRP) and extra-cellular to intra-cellular water ratio (ECW/ICW), an index of cellular inflammation, were inversely correlated with stimulated GLP-1 (p < 0.05 and p < 0.01, respectively) levels. CONCLUSION CD is characterized by abnormal fasting and post-prandial GLP levels. Circulating GLP influences subclinical inflammation and glucose metabolism in CD patients, but not their body composition parameters.
Collapse
Affiliation(s)
- Pietro Lucotti
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Elisabetta Lovati
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Beatrice Valvo
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Elisa Sprio
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Nicola Aronico
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Paolo Giuffrida
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Dominica Dell'Aera
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Alessandra Pasini
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Cristina Ubezio
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Mariangela Delliponti
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Carmine Tinelli
- Clinical Epidemiology and Biometric Unit, San Matteo Hospital Foundation, Pavia, Italy
| | - Gino Roberto Corazza
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy.
| |
Collapse
|
26
|
Melo FJ, Pinto-Lopes P, Estevinho MM, Magro F. The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review. Inflamm Bowel Dis 2021; 27:1153-1165. [PMID: 33295607 DOI: 10.1093/ibd/izaa324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The roles dipeptidyl peptidase 4 (DPP4), aminopeptidase N (APN), and their substrates in autoimmune diseases are being increasingly recognized. However, their significance in inflammatory bowel diseases (IBD) is not entirely understood. This systematic review aims to discuss the pathophysiological processes related to these ectopeptidases while comparing findings from preclinical and clinical settings. METHODS This review was conducted according to the PRISMA guidelines. We performed a literature search in PubMed, SCOPUS, and Web of Science to identify all reports from inception until February 2020. The search included validated animal models of intestinal inflammation and studies in IBD patients. Quality assessment was performed using SYRCLE's risk of bias tool and CASP qualitative and cohort checklists. RESULTS From the 45 included studies, 36 were performed in animal models and 12 in humans (3 reports included both). Overall, the methodological quality of preclinical studies was acceptable. In animal models, DPP4 and APN inhibition significantly improved intestinal inflammation.Glucagon-like peptide (GLP)-1 and GLP-2 analogs and GLP-2-relase-inducing drugs also showed significant benefits in recovery from inflammatory damage. A nonsignificant trend toward disease remission with the GLP-2 analog teduglutide was observed in the sole interventional human study. All human studies reported an inverse correlation between soluble DPP4/CD26 levels and disease severity, in accordance with the proposal of DPP4 as a biomarker for IBD. CONCLUSIONS The use of DPP4 inhibitors and analogs of its substrates has clear benefits in the treatment of experimentally induced intestinal inflammation. Further research is warranted to validate their potential diagnostic and therapeutic applications in IBD patients.
Collapse
Affiliation(s)
- Francisco Jorge Melo
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Pinto-Lopes
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Internal Medicine, Tâmega e Sousa Hospital Center, Padre Américo Hospital, Penafiel, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal
| | - Fernando Magro
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Unit of Clinical Pharmacology, São João Hospital Center, Porto, Portugal
| |
Collapse
|
27
|
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6:7. [PMID: 33414387 PMCID: PMC7790836 DOI: 10.1038/s41392-020-00435-w] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.
Collapse
Affiliation(s)
- Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanshan Qin
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Elita Yuliantie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
28
|
Chen X, Fu J, Zhou F, Yang Q, Wang J, Feng H, Jiang W, Jin L, Tang X, Jiang N, Yin J, Han J. Stapled and Xenopus Glucagon-Like Peptide 1 (GLP-1)-Based Dual GLP-1/Gastrin Receptor Agonists with Improved Metabolic Benefits in Rodent Models of Obesity and Diabetes. J Med Chem 2020; 63:12595-12613. [PMID: 33125843 DOI: 10.1021/acs.jmedchem.0c00736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes is characterized by pancreas dysfunction and is commonly associated with obesity. Hypoglycemic agents capable of improving β-cell function and reducing body weight therefore are gaining increasing interest. Though glucagon-like peptide 1 receptor (GLP-1R)/cholecystokinin 2 receptor (CCK-2R) dual agonist ZP3022 potently increases β-cell mass and improves glycemic control in diabetic db/db mice, the in vivo half-life (t1/2) is short, and its body weight reducing activity is limited. Here, we report the discovery of a series of novel GLP-1R/CCK-2R dual agonists. Starting from Xenopus GLP-1, dual cysteine mutation was conducted followed by covalent side chain stapling and albumin binder incorporation, resulting in a stabilized secondary structure, increased agonist potency, and improved stability. Further C-terminal conjugation of gastrin-6 generated GLP-1R/CCK-2R dual agonists, among which 6a and 6b showed higher stability and hypoglycemic activity than liraglutide and ZP3022. Desirably, 6a and 6b exhibited prominent metabolic benefits in diet-induced obesity mice without causing nausea responses and exerted considerable effects on β-cell restoration in db/db mice. These preclinical studies suggest the potential role of GLP-1R/CCK-2R dual agonists as effective agents for treating diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Xinyu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Feng Zhou
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qimeng Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Jialing Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Hui Feng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wen Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Luofan Jin
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xuelin Tang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Neng Jiang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
29
|
Lear S, Pflimlin E, Zhou Z, Huang D, Weng S, Nguyen-Tran V, Joseph SB, Roller S, Peterson S, Li J, Tremblay M, Schultz PG, Shen W. Engineering of a Potent, Long-Acting NPY2R Agonist for Combination with a GLP-1R Agonist as a Multi-Hormonal Treatment for Obesity. J Med Chem 2020; 63:9660-9671. [PMID: 32844654 DOI: 10.1021/acs.jmedchem.0c00740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bariatric surgery results in increased intestinal secretion of hormones GLP-1 and anorexigenic PYY, which is believed to contribute to the clinical efficacy associated with the procedure. This observation raises the question whether combination treatment with gut hormone analogs might recapitulate the efficacy and mitigate the significant risks associated with surgery. Despite PYY demonstrating excellent efficacy and safety profiles with regard to food intake reduction, weight loss, and glucose control in preclinical animal models, PYY-based therapeutic development remains challenging given a low serum stability and half-life for the native peptide. Here, combined peptide stapling and PEG-fatty acid conjugation affords potent PYY analogs with >14 h rat half-lives, which are expected to translate into a human half-life suitable for once-weekly dosing. Excellent efficacy in glucose control, food intake reduction, and weight loss for lead candidate 22 in combination with our previously reported long-acting GLP-1 analog is demonstrated in a diet-induced obesity mouse model.
Collapse
Affiliation(s)
- Sam Lear
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Elsa Pflimlin
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Zhihong Zhou
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - David Huang
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sharon Weng
- Intarcia Therapeutics, Inc., Research Triangle Park, 6 Davis Drive, Durham, North Carolina 27709, United States
| | - Van Nguyen-Tran
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sean B Joseph
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Shane Roller
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Scott Peterson
- Intarcia Therapeutics, Inc., Research Triangle Park, 6 Davis Drive, Durham, North Carolina 27709, United States
| | - Jing Li
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Matthew Tremblay
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Peter G Schultz
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Weijun Shen
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| |
Collapse
|
30
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Bird GH, Fu A, Escudero S, Godes M, Opoku-Nsiah K, Wales TE, Cameron MD, Engen JR, Danial NN, Walensky LD. Hydrocarbon-Stitched Peptide Agonists of Glucagon-Like Peptide-1 Receptor. ACS Chem Biol 2020; 15:1340-1348. [PMID: 32348108 DOI: 10.1021/acschembio.0c00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a natural peptide agonist of the GLP-1 receptor (GLP-1R) found on pancreatic β-cells. Engagement of the receptor stimulates insulin release in a glucose-dependent fashion and increases β-cell mass, two ideal features for pharmacologic management of type 2 diabetes. Thus, intensive efforts have focused on developing GLP-1-based peptide agonists of GLP-1R for therapeutic application. A primary challenge has been the naturally short half-life of GLP-1 due to its rapid proteolytic degradation in vivo. Whereas mutagenesis and lipidation strategies have yielded clinical agents, we developed an alternative approach to preserving the structure and function of GLP-1 by all-hydrocarbon i, i + 7 stitching. This particular "stitch" is especially well-suited for reinforcing and protecting the structural fidelity of GLP-1. Lead constructs demonstrate striking proteolytic stability and potent biological activity in vivo. Thus, we report a facile approach to generating alternative GLP-1R agonists for glycemic control.
Collapse
Affiliation(s)
- Gregory H. Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston Massachusetts 02215, United States
- Department of Cell Biology, Harvard Medical School, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Silvia Escudero
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Marina Godes
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Kwadwo Opoku-Nsiah
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Michael D. Cameron
- DMPK Core, Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Nika N. Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston Massachusetts 02215, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Department of Medicine, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Loren D. Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Yang PY, Zou H, Amso Z, Lee C, Huang D, Woods AK, Nguyen-Tran VTB, Schultz PG, Shen W. New Generation Oxyntomodulin Peptides with Improved Pharmacokinetic Profiles Exhibit Weight Reducing and Anti-Steatotic Properties in Mice. Bioconjug Chem 2020; 31:1167-1176. [DOI: 10.1021/acs.bioconjchem.0c00093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peng-Yu Yang
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Huafei Zou
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zaid Amso
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Candy Lee
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - David Huang
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ashley K. Woods
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Peter G. Schultz
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Weijun Shen
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
33
|
Ricardo MG, Ali AM, Plewka J, Surmiak E, Labuzek B, Neochoritis CG, Atmaj J, Skalniak L, Zhang R, Holak TA, Groves M, Rivera DG, Dömling A. Multicomponent Peptide Stapling as a Diversity‐Driven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel G. Ricardo
- Faculty of Chemistry, Center for Natural Product ResearchUniversity of Havana Cuba
| | - Ameena M. Ali
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Jacek Plewka
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Ewa Surmiak
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Beata Labuzek
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Constantinos G. Neochoritis
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
- Department of ChemistryUniversity of Crete Greece
| | - Jack Atmaj
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
- Faculty of ChemistryJagiellonian University Krakow Poland
| | | | - Ran Zhang
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Tad A. Holak
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Matthew Groves
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Daniel G. Rivera
- Faculty of Chemistry, Center for Natural Product ResearchUniversity of Havana Cuba
| | - Alexander Dömling
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| |
Collapse
|
34
|
Ricardo MG, Ali AM, Plewka J, Surmiak E, Labuzek B, Neochoritis CG, Atmaj J, Skalniak L, Zhang R, Holak TA, Groves M, Rivera DG, Dömling A. Multicomponent Peptide Stapling as a Diversity-Driven Tool for the Development of Inhibitors of Protein-Protein Interactions. Angew Chem Int Ed Engl 2020; 59:5235-5241. [PMID: 31944488 DOI: 10.1002/anie.201916257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Stapled peptides are chemical entities in-between biologics and small molecules, which have proven to be the solution to high affinity protein-protein interaction antagonism, while keeping control over pharmacological performance such as stability and membrane penetration. We demonstrate that the multicomponent reaction-based stapling is an effective strategy for the development of α-helical peptides with highly potent dual antagonistic action of MDM2 and MDMX binding p53. Such a potent inhibitory activity of p53-MDM2/X interactions was assessed by fluorescence polarization, microscale thermophoresis, and 2D NMR, while several cocrystal structures with MDM2 were obtained. This MCR stapling protocol proved efficient and versatile in terms of diversity generation at the staple, as evidenced by the incorporation of both exo- and endo-cyclic hydrophobic moieties at the side chain cross-linkers. The interaction of the Ugi-staple fragments with the target protein was demonstrated by crystallography.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Faculty of Chemistry, Center for Natural Product Research, University of Havana, Cuba
| | - Ameena M Ali
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ewa Surmiak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Beata Labuzek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Constantinos G Neochoritis
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands.,Department of Chemistry, University of, Crete, Greece
| | - Jack Atmaj
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands.,Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Lukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ran Zhang
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Matthew Groves
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Daniel G Rivera
- Faculty of Chemistry, Center for Natural Product Research, University of Havana, Cuba
| | - Alexander Dömling
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| |
Collapse
|
35
|
Pflimlin E, Zhou Z, Amso Z, Fu Q, Lee C, Muppiddi A, Joseph SB, Nguyen-Tran V, Shen W. Engineering a Potent, Long-Acting, and Periphery-Restricted Oxytocin Receptor Agonist with Anorexigenic and Body Weight Reducing Effects. J Med Chem 2019; 63:382-390. [PMID: 31850759 DOI: 10.1021/acs.jmedchem.9b01862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of oxytocin on food intake and body weight reduction have been demonstrated in both animal models and human clinical studies. Despite being efficacious, oxytocin is enzymatically unstable and thus considered to be unsuitable for long-term use in patients with obesity. Herein, a series of oxytocin derivatives were engineered through conjugation with fatty acid moieties that are known to exhibit high binding affinities to serum albumin. One analog (OT-12) in particular was shown to be a potent full agonist at the oxytocin receptor (OTR) in vitro with good selectivity and long half-life (24 h) in mice. Furthermore, OT-12 is peripherally restricted, with very limited brain exposure (1/190 of the plasma level). In a diet-induced obesity mouse model, daily subcutaneous administration of OT-12 exhibited more potent anorexigenic and body weight reducing effects than carbetocin. Thus, our results suggest that the long-acting, peripherally restricted OTR agonist may offer potential therapeutic benefits for obesity.
Collapse
Affiliation(s)
- Elsa Pflimlin
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Zhihong Zhou
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Zaid Amso
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Qiangwei Fu
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Candy Lee
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Avinash Muppiddi
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Sean B Joseph
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Vân Nguyen-Tran
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Weijun Shen
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
36
|
Suzuki R, Brown GA, Christopher JA, Scully CCG, Congreve M. Recent Developments in Therapeutic Peptides for the Glucagon-like Peptide 1 and 2 Receptors. J Med Chem 2019; 63:905-927. [PMID: 31577440 DOI: 10.1021/acs.jmedchem.9b00835] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2) are proglucagon derived peptides that are released from gut endocrine cells in response to nutrient intake. These molecules are rapidly inactivated by the action of dipeptidyl peptidase IV (DPP-4) which limits their use as therapeutic agents. The recent emergence of three-dimensional structures of GPCRs such as GLP-1R and glucagon receptor has helped to drive the rational design of innovative peptide molecules that hold promise as novel peptide therapeutics. One emerging area is the discovery of multifunctional molecules that act at two or more pharmacological systems to enhance therapeutic efficacy. In addition, drug discovery efforts are also focusing on strategies to improve patient convenience through alternative routes of peptide delivery. These novel strategies highlight the broad utility of peptide-based therapeutics in human disease settings where unmet needs still exist.
Collapse
Affiliation(s)
- Rie Suzuki
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| | - Giles A Brown
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| | - John A Christopher
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| | - Conor C G Scully
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| | - Miles Congreve
- Sosei Heptares , Steinmetz Building, Granta Park , Cambridge CB21 6DG , U.K
| |
Collapse
|
37
|
Pflimlin E, Lear S, Lee C, Yu S, Zou H, To A, Joseph S, Nguyen-Tran V, Tremblay MS, Shen W. Design of a Long-Acting and Selective MEG-Fatty Acid Stapled Prolactin-Releasing Peptide Analog. ACS Med Chem Lett 2019; 10:1166-1172. [PMID: 31413801 DOI: 10.1021/acsmedchemlett.9b00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023] Open
Abstract
Anorexigenic peptides offer promise as potential therapies targeting the escalating global obesity epidemic. Prolactin-releasing peptide (PrRP), a novel member of the RFamide family secreted by the hypothalamus, shows therapeutic potential by decreasing food intake and body weight in rodent models via GPR10 activation. Here we describe the design of a long-acting PrRP using our recently developed novel multiple ethylene glycol-fatty acid (MEG-FA) stapling platform. By incorporating serum albumin binding fatty acids onto a covalent side chain staple, we have generated a series of MEG-FA stapled PrRP analogs with enhanced serum stability and in vivo half-life. Our lead compound 18-S4 exhibits good in vitro potency and selectivity against GPR10, improved serum stability, and extended in vivo half-life (7.8 h) in mouse. Furthermore, 18-S4 demonstrates a potent body weight reduction effect in a diet-induced obesity (DIO) mouse model, representing a promising long-acting PrRP analog for further evaluation in the chronic obesity setting.
Collapse
Affiliation(s)
- Elsa Pflimlin
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sam Lear
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Candy Lee
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Shan Yu
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Huafei Zou
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Andrew To
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sean Joseph
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Van Nguyen-Tran
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Matthew S. Tremblay
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Weijun Shen
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| |
Collapse
|
38
|
Role of glucagon-like peptides in inflammatory bowel diseases-current knowledge and future perspectives. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1321-1330. [PMID: 31359088 DOI: 10.1007/s00210-019-01698-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic, relapsing, intestinal inflammatory disorders with complex and yet unrevealed pathogenesis in which genetic, immunological, and environmental factors play a role. Nowadays, a higher proportion of elderly IBD patients with coexisting conditions, such as cardiovascular disease and/or diabetes is recorded, who require more complex treatment and became a great challenge for gastroenterologists. Furthermore, some patients do not respond to anti-IBD therapy. These facts, together with increasing comorbidities in patients with IBD, imply that urgent, more complex, novel therapeutic strategies in the treatment are needed. Glucagon-like peptides (GLPs) possess numerous functions in the human body such as lowering blood glucose level, controlling body weight, inhibiting gastric emptying, reducing food ingestion, increasing crypt cell proliferation, and improving intestinal growth and nutrient absorption. Thus, GLPs and dipeptidyl peptidase IV (DPP-IV) inhibitors have recently gained attention in IBD research. Several animal models showed that treatment with GLPs may lead to improvement of colitis. This review presents data on the multitude effects of GLPs in the inflammatory intestinal diseases and summarizes the current knowledge on GLPs, which have the potential to become a novel therapeutic option in IBD therapy.
Collapse
|
39
|
Engineering PEG-fatty acid stapled, long-acting peptide agonists for G protein-coupled receptors. Methods Enzymol 2019; 622:183-200. [DOI: 10.1016/bs.mie.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Tian Y, Zou H, An P, Zhou Z, Shen W, Lin Q. Design of Stapled Oxyntomodulin Analogs Containing Functionalized Biphenyl Cross-Linkers. Tetrahedron 2018; 75:286-295. [PMID: 30581241 DOI: 10.1016/j.tet.2018.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A panel of three lipid-modified, functionalized biphenyl cross-linkers (fBph) were synthesized and subsequently employed in the preparation of the stapled oxyntomodulin (OXM) analogs. In a luciferase-based reporter assay, these stapled OXM analogs showed varying degree of potency in activating GLP-1R and GCGR, presumably due to the disparate effect of the lipid chains on the local environment close to the ligand-receptor binding interface. In particular, the fBph-1 cross-linked peptide with the lipid chain attached to position-3 of the biphenyl cross-linker exhibited the highest dual agonist activity.
Collapse
Affiliation(s)
- Yulin Tian
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States.,Transira Therapeutics, 1576 Sweet Home Road, Baird Research Park, Amherst, New York 14228, United States
| | - Huafei Zou
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng An
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States.,Transira Therapeutics, 1576 Sweet Home Road, Baird Research Park, Amherst, New York 14228, United States
| | - Zhihong Zhou
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Weijun Shen
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States.,Transira Therapeutics, 1576 Sweet Home Road, Baird Research Park, Amherst, New York 14228, United States
| |
Collapse
|
41
|
Skowron KJ, Speltz TE, Moore TW. Recent structural advances in constrained helical peptides. Med Res Rev 2018; 39:749-770. [PMID: 30307621 DOI: 10.1002/med.21540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Given the ubiquity of the ⍺-helix in the proteome, there has been much research in developing mimics of ⍺-helices, and most of this study has been toward developing protein-protein interaction inhibitors. A common strategy for mimicking ⍺-helices has been through the use of constrained, helical peptides. The addition of a constraint typically provides for conformational and proteolytic stability and, in some cases, cell permeability. Some of the most well-known strategies included are lactam formation and hydrocarbon "stapling." Beyond those strategies, there have been many recent advances in developing constrained peptides. The purpose of this review is to highlight recent advances in the development of new helix-stabilizing technologies, constraint diversification strategies, tether diversification strategies, and combination strategies that create new bicyclic helical peptides.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.,Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
42
|
Guo Y, Zhou PP, Zhang SY, Fan XW, Dou YW, Shi XL. Generation of a long-acting fusion inhibitor against HIV-1. MEDCHEMCOMM 2018; 9:1226-1231. [PMID: 30109011 DOI: 10.1039/c8md00124c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/29/2018] [Indexed: 11/21/2022]
Abstract
AIDS has evolved from a fatal infectious disease to a manageable chronic disease under the treatment of anti-AIDS medications. HIV fusion inhibitors with high activity, low side effects and strong selectivity are promising drugs against HIV. Only one fusion inhibitor is currently approved, thereby highly active long-acting fusion inhibitors need to be developed for long-term AIDS treatment. Here, we synthesised MT-SC22EK (a small HIV fusion inhibitor) derivatives containing 1-2 staples to improve its stability. Antiviral activity studies showed that MT-SC22EK-2 with two staples exhibited potent inhibitory activity against HIV-1 standard strains and Chinese epidemic strains, and at the same time, MT-SC22EK-2 presented strong anti-T20 resistance. Surprisingly, MT-SC22EK-2 possessed excellent protease stability with a half-life of 3665 min. MT-SC22EK-2 is a potential HIV fusion inhibitor considered as a long-acting anti-HIV drug candidate.
Collapse
Affiliation(s)
- Ye Guo
- School of Pharmacy , Baotou Medical College , Baotou 014060 , China
| | - Pan-Pan Zhou
- Comprehensive AIDS Research Center , School of Medicine , Tsinghua University , Beijing 100084 , China .
| | - Sen-Yan Zhang
- Comprehensive AIDS Research Center , School of Medicine , Tsinghua University , Beijing 100084 , China .
| | - Xiao-Wen Fan
- School of Pharmacy , Baotou Medical College , Baotou 014060 , China
| | - Yu-Wei Dou
- School of Pharmacy , Baotou Medical College , Baotou 014060 , China
| | - Xuan-Ling Shi
- Comprehensive AIDS Research Center , School of Medicine , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|