1
|
van der Meijs NL, Travecedo MA, Marcelo F, van Vliet SJ. The pleiotropic CLEC10A: implications for harnessing this receptor in the tumor microenvironment. Expert Opin Ther Targets 2024; 28:601-612. [PMID: 38946482 DOI: 10.1080/14728222.2024.2374743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION CLEC10A is a C-type lectin receptor that specifically marks the conventional dendritic cell subsets two and three (cDC2 and DC3). It has a unique recognition profile of glycan antigens, with terminal N-Acetylgalactosamine residues that are frequently present in the tumor microenvironment. Even though CLEC10A expression allows for precise targeting of cDC2 and DC3 for the treatment of cancer, CLEC10A signaling has also been associated with anti-inflammatory responses that would promote tumor growth. AREAS COVERED Here, we review the potential benefits and drawbacks of CLEC10A engagement in the tumor microenvironment. We discuss the CLEC10A-mediated effects in different cell types and incorporate the pleiotropic effects of IL-10, the main anti-inflammatory response upon CLEC10A binding. EXPERT OPINION To translate this to a successful CLEC10A-mediated immunotherapy with limited tumor-promoting capacities, finding the right ligand presentation and adjuvant combination will be key.
Collapse
Affiliation(s)
- Nadia L van der Meijs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunology, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Alejandra Travecedo
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Filipa Marcelo
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunology, Inflammatory Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ayyalasomayajula R, Boneva I, Ormaza D, Whyte A, Farook K, Gorlin Z, Yancey E, André S, Kaltner H, Cudic M. Synthesis and Thermodynamic Evaluation of Sialyl-Tn MUC1 Glycopeptides Binding to Macrophage Galactose-Type Lectin. Chembiochem 2024:e202400391. [PMID: 38877657 DOI: 10.1002/cbic.202400391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Interactions between the tumor-associated carbohydrate antigens of Mucin 1 (MUC1) and the carbohydrate-binding proteins, lectins, often lead to the creation of a pro-tumor microenvironment favoring tumor initiation, progression, metastasis, and immune evasion. Macrophage galactose binding lectin (MGL) is a C-type lectin receptor found on antigen-presenting cells that facilitates the uptake of carbohydrate antigens for antigen presentation, modulating the immune response homeostasis, autoimmunity, and cancer. Considering the crucial role of tumor-associated forms of MUC1 and MGL in tumor immunology, a thorough understanding of their binding interaction is essential for it to be exploited for cancer vaccine strategies. The synthesis of MUC1 glycopeptide models carrying a single or multiple Tn and/or sialyl-Tn antigen(s) is described. A novel approach for the sialyl-Tn threonine building block suitable for the solid phase peptide synthesis was developed. The thermodynamic profile of the binding interaction between the human MGL and MUC1 glycopeptide models was analyzed using isothermal titration calorimetry. The measured dissociation constants for the sialyl-Tn-bearing peptide epitopes were consistently lower compared to the Tn antigen and ranged from 10 μM for mono- to 1 μM for triglycosylated MUC1 peptide, respectively. All studied interactions, regardless of the glycan's site of attachment or density, exhibited enthalpy-driven thermodynamics.
Collapse
Affiliation(s)
- Ramya Ayyalasomayajula
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Ivet Boneva
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - David Ormaza
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Andrew Whyte
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Kamran Farook
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Zachary Gorlin
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Evelyn Yancey
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Sabine André
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-Universität München, Lena-Christ-Str. 48, 82152, Planegg-Martinsried
| | - Herbert Kaltner
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-Universität München, Lena-Christ-Str. 48, 82152, Planegg-Martinsried
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| |
Collapse
|
3
|
Freitas R, Ferreira E, Miranda A, Ferreira D, Relvas-Santos M, Castro F, Santos B, Gonçalves M, Quintas S, Peixoto A, Palmeira C, Silva AMN, Santos LL, Oliveira MJ, Sarmento B, Ferreira JA. Targeted and Self-Adjuvated Nanoglycovaccine Candidate for Cancer Immunotherapy. ACS NANO 2024; 18:10088-10103. [PMID: 38535625 DOI: 10.1021/acsnano.3c12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Advanced-stage solid primary tumors and metastases often express mucin 16 (MUC16), carrying immature glycans such as the Tn antigen, resulting in specific glycoproteoforms not found in healthy human tissues. This presents a valuable approach for designing targeted therapeutics, including cancer glycovaccines, which could potentially promote antigen recognition and foster the immune response to control disease spread and prevent relapse. In this study, we describe an adjuvant-free poly(lactic-co-glycolic acid) (PLGA)-based nanoglycoantigen delivery approach that outperforms conventional methods by eliminating the need for protein carriers while exhibiting targeted and adjuvant properties. To achieve this, we synthesized a library of MUC16-Tn glycoepitopes through single-pot enzymatic glycosylation, which were then stably engrafted onto the surface of PLGA nanoparticles, generating multivalent constructs that better represent cancer molecular heterogeneity. These glycoconstructs demonstrated affinity for Macrophage Galactose-type Lectin (MGL) receptor, known to be highly expressed by immature antigen-presenting cells, enabling precise targeting of immune cells. Moreover, the glycopeptide-grafted nanovaccine candidate displayed minimal cytotoxicity and induced the activation of dendritic cells in vitro, even in the absence of an adjuvant. In vivo, the formulated nanovaccine candidate was also nontoxic and elicited the production of IgG specifically targeting MUC16 and MUC16-Tn glycoproteoforms in cancer cells and tumors, offering potential for precise cancer targeting, including targeted immunotherapies.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Flávia Castro
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Beatriz Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Martina Gonçalves
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sofia Quintas
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Immunology Department, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Health School of University Fernando Pessoa, 4249-004 Porto, Portugal
| | - André M N Silva
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Maria José Oliveira
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- IUCS-CESPU, 4585-116 Gandra, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| |
Collapse
|
4
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
5
|
Wijfjes Z, van Dalen FJ, Le Gall CM, Verdoes M. Controlling Antigen Fate in Therapeutic Cancer Vaccines by Targeting Dendritic Cell Receptors. Mol Pharm 2023; 20:4826-4847. [PMID: 37721387 PMCID: PMC10548474 DOI: 10.1021/acs.molpharmaceut.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Antigen-presenting cells (APCs) orchestrate immune responses and are therefore of interest for the targeted delivery of therapeutic vaccines. Dendritic cells (DCs) are professional APCs that excel in presentation of exogenous antigens toward CD4+ T helper cells, as well as cytotoxic CD8+ T cells. DCs are highly heterogeneous and can be divided into subpopulations that differ in abundance, function, and phenotype, such as differential expression of endocytic receptor molecules. It is firmly established that targeting antigens to DC receptors enhances the efficacy of therapeutic vaccines. While most studies emphasize the importance of targeting a specific DC subset, we argue that the differential intracellular routing downstream of the targeted receptors within the DC subset should also be considered. Here, we review the mouse and human receptors studied as target for therapeutic vaccines, focusing on antibody and ligand conjugates and how their targeting affects antigen presentation. We aim to delineate how targeting distinct receptors affects antigen presentation and vaccine efficacy, which will guide target selection for future therapeutic vaccine development.
Collapse
Affiliation(s)
- Zacharias Wijfjes
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Floris J. van Dalen
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Camille M. Le Gall
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Detwiler RE, Kramer JR. Preparation and applications of artificial mucins in biomedicine. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2022; 26:101031. [PMID: 37283850 PMCID: PMC10243510 DOI: 10.1016/j.cossms.2022.101031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Mucus is an essential barrier material that separates organisms from the outside world. This slippery material regulates the transport of nutrients, drugs, gases, and pathogens toward the cell surface. The surface of the cell itself is coated in a mucus-like barrier of glycoproteins and glycolipids. Mucin glycoproteins are the primary component of mucus and the epithelial glycocalyx. Aberrant mucin production is implicated in diverse disease states from cancer and inflammation to pre-term birth and infection. Biological mucins are inherently heterogenous in structure, which has challenged understanding their molecular functions as a barrier and as biochemically active proteins. Therefore, many synthetic materials have been developed as artificial mucins with precisely tunable structures. This review highlights advances in design and synthesis of artificial mucins and their application in biomedical studies of mucin chemistry, biology, and physics.
Collapse
Affiliation(s)
- Rachel E. Detwiler
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch
Dr., Salt Lake City, UT 84112, USA
| | - Jessica R. Kramer
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch
Dr., Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Kohout VR, Wardzala CL, Kramer JR. Synthesis and biomedical applications of mucin mimic materials. Adv Drug Deliv Rev 2022; 191:114540. [PMID: 36228896 PMCID: PMC10066857 DOI: 10.1016/j.addr.2022.114540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023]
Abstract
Mucin glycoproteins are the major component of mucus and coat epithelial cell surfaces forming the glycocalyx. The glycocalyx and mucus are involved in the transport of nutrients, drugs, gases, and pathogens toward the cell surface. Mucins are also involved in diverse diseases such as cystic fibrosis and cancer. Due to inherent heterogeneity in native mucin structure, many synthetic materials have been designed to probe mucin chemistry, biology, and physics. Such materials include various glycopolymers, low molecular weight glycopeptides, glycopolypeptides, polysaccharides, and polysaccharide-protein conjugates. This review highlights advances in the area of design and synthesis of mucin mimic materials, and their biomedical applications in glycan binding, epithelial models of infection, therapeutic delivery, vaccine formulation, and beyond.
Collapse
Affiliation(s)
- Victoria R Kohout
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Shiratori K, Yokoi Y, Wakui H, Hirane N, Otaki M, Hinou H, Yoneyama T, Hatakeyama S, Kimura S, Ohyama C, Nishimura SI. Selective reaction monitoring approach using structure-defined synthetic glycopeptides for validating glycopeptide biomarkers pre-determined by bottom-up glycoproteomics. RSC Adv 2022; 12:21385-21393. [PMID: 35975084 PMCID: PMC9347767 DOI: 10.1039/d2ra02903k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Clusterin is a heavily glycosylated protein that is upregulated in various cancer and neurological diseases. The findings by the Hancock and Iliopoulos group that levels of the tryptic glycopeptide derived from plasma clusterin, 372Leu-Ala-Asn-Leu-Thr-Gln-Gly-Glu-Asp-Gln-Tyr-Tyr-Leu-Arg385 with a biantennary disialyl N-glycan (A2G2S2 or FA2G2S2) at Asn374 differed significantly prior to and after curative nephrectomy for clear cell renal cell carcinoma (RCC) patients motivated us to verify the feasibility of this glycopeptide as a novel biomarker of RCC. To determine the precise N-glycan structure attached to Asn374, whether A2G2S2 is composed of the Neu5Acα2,3Gal or/and the Neu5Acα2,6Gal moiety, we synthesized key glycopeptides having one of the two putative isomers. Selective reaction monitoring assay using synthetic glycopeptides as calibration standards allowed "top-down glycopeptidomics" for the absolute quantitation of targeted label-free glycopeptides in a range from 313.3 to 697.5 nM in the complex tryptic digests derived from serum samples of RCC patients and healthy controls. Our results provided evidence that the Asn374 residue of human clusterin is modified dominantly with the Neu5Acα2,6Gal structure and the levels of clusterin bearing an A2G2S2 with homo Neu5Acα2,6Gal terminals at Asn374 decrease significantly in RCC patients as compared with healthy controls. The present study elicits that a new strategy integrating the bottom-up glycoproteomics with top-down glycopeptidomics using structure-defined synthetic glycopeptides enables the confident identification and quantitation of the glycopeptide targets pre-determined by the existing methods for intact glycopeptide profiling.
Collapse
Affiliation(s)
- Kouta Shiratori
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yasuhiro Yokoi
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| | - Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Nozomi Hirane
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Michiru Otaki
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Tohru Yoneyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shingo Hatakeyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Satoshi Kimura
- Department of Laboratory Medicine and Central Clinical Laboratory, Showa University, Northern Yokohama Hospital Yokohama 224-8503 Japan
| | - Chikara Ohyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| |
Collapse
|
9
|
Tong L, Sun W, Wu S, Han Y. Characterization of Caerulomycin A as a dual-targeting anticancer agent. Eur J Pharmacol 2022; 922:174914. [PMID: 35337812 PMCID: PMC9077901 DOI: 10.1016/j.ejphar.2022.174914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/19/2022]
Abstract
Caerulomycin A (CaeA), isolated from actinomycetes, has a featured 2,2'-bipyridine core structure. Based on the results of in silico drug-protein docking analysis, CaeA shows potential ligands for interacting with both tubulin and DNA topoisomerase I (Topo-1). The result was confirmed by cell-free tubulin polymerization assay and Topo-1 activity assay. In vitro assays also demonstrated that CaeA increases the polymerization of tubulin and increases cell size. In addition, CaeA inhibits cell viability and growth of various cancer cells, yet exhibits low cytotoxicity. CaeA also affects paclitaxel-resistant cancer cells and synergizes the effect with paclitaxel in reducing cancer cell colony formation rate. In vivo experiments confirm the effect of CaeA on reducing tumor size and weight in nude mouse inoculated with tumor cells with no noticeable side effects. Taken together, our data demonstrate that CaeA is a potential potent agent for cancer treatment through tubulin and Topo-1 dual-targeting with little side effects.
Collapse
Affiliation(s)
- Lingying Tong
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Weichao Sun
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Yong Han
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
10
|
Tsouka A, Hoetzel K, Mende M, Heidepriem J, Paris G, Eickelmann S, Seeberger PH, Lepenies B, Loeffler FF. Probing Multivalent Carbohydrate-Protein Interactions With On-Chip Synthesized Glycopeptides Using Different Functionalized Surfaces. Front Chem 2021; 9:766932. [PMID: 34778215 PMCID: PMC8589469 DOI: 10.3389/fchem.2021.766932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Multivalent ligand-protein interactions are a commonly employed approach by nature in many biological processes. Single glycan-protein interactions are often weak, but their affinity and specificity can be drastically enhanced by engaging multiple binding sites. Microarray technology allows for quick, parallel screening of such interactions. Yet, current glycan microarray methodologies usually neglect defined multivalent presentation. Our laser-based array technology allows for a flexible, cost-efficient, and rapid in situ chemical synthesis of peptide scaffolds directly on functionalized glass slides. Using copper(I)-catalyzed azide-alkyne cycloaddition, different monomer sugar azides were attached to the scaffolds, resulting in spatially defined multivalent glycopeptides on the solid support. Studying their interaction with several different lectins showed that not only the spatially defined sugar presentation, but also the surface functionalization and wettability, as well as accessibility and flexibility, play an essential role in such interactions. Therefore, different commercially available functionalized glass slides were equipped with a polyethylene glycol (PEG) linker to demonstrate its effect on glycan-lectin interactions. Moreover, different monomer sugar azides with and without an additional PEG-spacer were attached to the peptide scaffold to increase flexibility and thereby improve binding affinity. A variety of fluorescently labeled lectins were probed, indicating that different lectin-glycan pairs require different surface functionalization and spacers for enhanced binding. This approach allows for rapid screening and evaluation of spacing-, density-, ligand and surface-dependent parameters, to find optimal lectin binders.
Collapse
Affiliation(s)
- Alexandra Tsouka
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Kassandra Hoetzel
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Marco Mende
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jasmin Heidepriem
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Grigori Paris
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of System Dynamics and Friction Physics, Institute of Mechanics, Technical University of Berlin, Berlin, Germany
| | - Stephan Eickelmann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bernd Lepenies
- Institute for Immunology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix F. Loeffler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
11
|
Beckwith DM, FitzGerald FG, Rodriguez Benavente MC, Mercer ER, Ludwig AK, Michalak M, Kaltner H, Kopitz J, Gabius HJ, Cudic M. Calorimetric Analysis of the Interplay between Synthetic Tn Antigen-Presenting MUC1 Glycopeptides and Human Macrophage Galactose-Type Lectin. Biochemistry 2021; 60:547-558. [PMID: 33560106 PMCID: PMC8269692 DOI: 10.1021/acs.biochem.0c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Indexed: 12/25/2022]
Abstract
Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 μM for monoglycosylated peptides to 0.6 μM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.
Collapse
Affiliation(s)
- Donella M. Beckwith
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Forrest G. FitzGerald
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Maria C. Rodriguez Benavente
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Elizabeth R. Mercer
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Anna-Kristin Ludwig
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of
Pathology, Medical School of the Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg,
Germany
| | - Herbert Kaltner
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of
Pathology, Medical School of the Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg,
Germany
| | - Hans-Joachim Gabius
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| |
Collapse
|
12
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
13
|
Napoletano C, Steentoff C, Battisti F, Ye Z, Rahimi H, Zizzari IG, Dionisi M, Cerbelli B, Tomao F, French D, d’Amati G, Panici PB, Vakhrushev S, Clausen H, Nuti M, Rughetti A. Investigating Patterns of Immune Interaction in Ovarian Cancer: Probing the O-glycoproteome by the Macrophage Galactose-Like C-type Lectin (MGL). Cancers (Basel) 2020; 12:cancers12102841. [PMID: 33019700 PMCID: PMC7600217 DOI: 10.3390/cancers12102841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022] Open
Abstract
Glycosylation, the posttranslational linking of sugar molecules to proteins, is notoriously altered during tumor transformation. More specifically in carcinomas, GalNAc-type O-glycosylation, is characterized by biosynthetically immature truncated glycans present on the cancer cell surface, which profoundly impact anti-tumor immune recognition. The tumor-associated glycan pattern may thus be regarded as a biomarker of immune modulation. In epithelial ovarian cancer (EOC) there is a particular lack of specific biomarkers and molecular targets to aid early diagnosis and develop novel therapeutic interventions. The aim of this study was to investigate the ovarian cancer O-glycoproteome and identify tumor-associated glycoproteins relevant in tumor-dendritic cell (DC) interactions, mediated by macrophage galactose-like C type lectin (MGL), which recognizes the tumor-associated Tn O-glycan. Lectin weak affinity chromatography (LWAC) was employed to probe the O-glycopeptidome by MGL and Vicia villosa agglutinin (VVA) lectin using glycoengineered ovarian cancer cell lines and ovarian cancer tissues as input material. Biochemical and bioinformatics analysis gave information on the glycan arrangement recognized by MGL in tumor cells. The potential MGL binders identified were located, as expected, at the cell membrane, but also within the intracellular compartment and the matrisome, suggesting that MGL in vivo may play a complex role in sensing microenvironmental cues. The tumor glycoproteins binders for MGL may become relevant to characterize the interaction between the immune system and tumor progression and contribute to the design of glycan targeting-based strategies for EOC immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chiara Napoletano
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Catharina Steentoff
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Federico Battisti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Hassan Rahimi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Ilaria Grazia Zizzari
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Marco Dionisi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Bruna Cerbelli
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (B.C.); (G.d.)
| | - Federica Tomao
- Department of Gynecology-Obstetrics and Urology, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; (F.T.); (P.B.P.)
| | - Deborah French
- Department of Clinical and Molecular Medicine, “Sapienza” University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Giulia d’Amati
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (B.C.); (G.d.)
| | - Pierluigi Benedetti Panici
- Department of Gynecology-Obstetrics and Urology, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; (F.T.); (P.B.P.)
| | - Sergey Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Marianna Nuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
- Correspondence: (M.N.); (A.R.); Tel.: +39-06-4997-3029 (M.N.); +39-06-4997-3025 (A.R.)
| | - Aurelia Rughetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
- Correspondence: (M.N.); (A.R.); Tel.: +39-06-4997-3029 (M.N.); +39-06-4997-3025 (A.R.)
| |
Collapse
|
14
|
Silva MC, Fernandes Â, Oliveira M, Resende C, Correia A, de-Freitas-Junior JC, Lavelle A, Andrade-da-Costa J, Leander M, Xavier-Ferreira H, Bessa J, Pereira C, Henrique RM, Carneiro F, Dinis-Ribeiro M, Marcos-Pinto R, Lima M, Lepenies B, Sokol H, Machado JC, Vilanova M, Pinho SS. Glycans as Immune Checkpoints: Removal of Branched N-glycans Enhances Immune Recognition Preventing Cancer Progression. Cancer Immunol Res 2020; 8:1407-1425. [PMID: 32933968 DOI: 10.1158/2326-6066.cir-20-0264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Tumor growth is accompanied with dramatic changes in the cellular glycome, such as the aberrant expression of complex branched N-glycans. However, the role of this protumoral N-glycan in immune evasion and whether its removal contributes to enhancement of immune recognition and to unleashing an antitumor immune response remain elusive. We demonstrated that branched N-glycans are used by colorectal cancer cells to escape immune recognition, instructing the creation of immunosuppressive networks through inhibition of IFNγ. The removal of this "glycan-mask" exposed immunogenic mannose glycans that potentiated immune recognition by DC-SIGN-expressing immune cells, resulting in an effective antitumor immune response. We revealed a glycoimmune checkpoint in colorectal cancer, highlighting the therapeutic efficacy of its deglycosylation to potentiate immune recognition and, thus, improving cancer immunotherapy.
Collapse
Affiliation(s)
- Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Maria Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Carlos Resende
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Alexandra Correia
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Julio C de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Aonghus Lavelle
- Sorbonne Université, INSERM, Saint-Antoine Research Center (CRSA), Paris, France
| | - Jéssica Andrade-da-Costa
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Magdalena Leander
- Department of Hematology, Hospital Center of Porto, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Helena Xavier-Ferreira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - José Bessa
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Carina Pereira
- CINTESIS - Centre for Health Technology and Services Research, University of Porto, Porto, Portugal.,Molecular Oncology and Viral Pathology Group, IPO Porto Research Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui M Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Fátima Carneiro
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Department of Pathology, Hospital Center of São João, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mário Dinis-Ribeiro
- CINTESIS - Centre for Health Technology and Services Research, University of Porto, Porto, Portugal.,Department of Gastroenterology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Ricardo Marcos-Pinto
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Department of Gastroenterology, Hospital Center of Porto, Porto, Portugal.,Medical Faculty, Centre for Research in Health Technologies and Information Systems, Porto, Portugal
| | - Margarida Lima
- Department of Hematology, Hospital Center of Porto, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harry Sokol
- Sorbonne Université, INSERM, Saint-Antoine Research Center (CRSA), Paris, France.,INRA, UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, Sorbonne Universités, Paris, France
| | - José C Machado
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Vilanova
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Guillen-Poza PA, Sánchez-Fernández EM, Artigas G, García Fernández JM, Hinou H, Ortiz Mellet C, Nishimura SI, Garcia-Martin F. Amplified Detection of Breast Cancer Autoantibodies Using MUC1-Based Tn Antigen Mimics. J Med Chem 2020; 63:8524-8533. [PMID: 32672464 DOI: 10.1021/acs.jmedchem.0c00908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In many human carcinomas, mucin-1 (MUC1) is overexpressed and aberrantly glycosylated, resulting in the exposure of previously hidden antigens. This generates new patient antibody profiles that can be used in cancer diagnosis. In the present study, we focused on the MUC1-associated Tn antigen (α-O-GalNAc-Ser/Thr) and substituted the GalNAc monosaccharide by a glycomimic to identify MUC1-based glycopeptides with increased antigenicity. Two different glycopeptide libraries presenting the natural Tn antigen or the sp2-iminosugar analogue were synthesized and evaluated with anti-MUC1 monoclonal antibodies in a microarray platform. The most promising candidates were tested with healthy and breast cancer sera aiming for potential autoantibody-based biomarkers. The suitability of sp2-iminosugar glycopeptides to detect anti-MUC1 antibodies was demonstrated, and serological experiments showed stage I breast cancer autoantibodies binding with a specific unnatural glycopeptide with almost no healthy serum interaction. These results will promote further studies on their capabilities as early cancer biomarkers.
Collapse
Affiliation(s)
- Pablo A Guillen-Poza
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| | - Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012 Seville, Spain
| | - Gerard Artigas
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| | | | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012 Seville, Spain
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
16
|
ASGR1 and Its Enigmatic Relative, CLEC10A. Int J Mol Sci 2020; 21:ijms21144818. [PMID: 32650396 PMCID: PMC7404283 DOI: 10.3390/ijms21144818] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
The large family of C-type lectin (CLEC) receptors comprises carbohydrate-binding proteins that require Ca2+ to bind a ligand. The prototypic receptor is the asialoglycoprotein receptor-1 (ASGR1, CLEC4H1) that is expressed primarily by hepatocytes. The early work on ASGR1, which is highly specific for N-acetylgalactosamine (GalNAc), established the foundation for understanding the overall function of CLEC receptors. Cells of the immune system generally express more than one CLEC receptor that serve diverse functions such as pathogen-recognition, initiation of cellular signaling, cellular adhesion, glycoprotein turnover, inflammation and immune responses. The receptor CLEC10A (C-type lectin domain family 10 member A, CD301; also called the macrophage galactose-type lectin, MGL) contains a carbohydrate-recognition domain (CRD) that is homologous to the CRD of ASGR1, and thus, is also specific for GalNAc. CLEC10A is most highly expressed on immature DCs, monocyte-derived DCs, and alternatively activated macrophages (subtype M2a) as well as oocytes and progenitor cells at several stages of embryonic development. This receptor is involved in initiation of TH1, TH2, and TH17 immune responses and induction of tolerance in naïve T cells. Ligand-mediated endocytosis of CLEC receptors initiates a Ca2+ signal that interestingly has different outcomes depending on ligand properties, concentration, and frequency of administration. This review summarizes studies that have been carried out on these receptors.
Collapse
|
17
|
Wakui H, Tanaka Y, Ose T, Matsumoto I, Kato K, Min Y, Tachibana T, Sato M, Naruchi K, Martin FG, Hinou H, Nishimura SI. A straightforward approach to antibodies recognising cancer specific glycopeptidic neoepitopes. Chem Sci 2020; 11:4999-5006. [PMID: 34122956 PMCID: PMC8159228 DOI: 10.1039/d0sc00317d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/18/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of "dynamic neoepitopes" elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.
Collapse
Affiliation(s)
- Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Toyoyuki Ose
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Isamu Matsumoto
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Yao Min
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Masaharu Sato
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Fayna Garcia Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| |
Collapse
|
18
|
Impaired O-Glycosylation at Consecutive Threonine TTX Motifs in Mucins Generates Conformationally Restricted Cancer Neoepitopes. Biochemistry 2020; 59:1221-1241. [PMID: 32155332 DOI: 10.1021/acs.biochem.0c00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoantibody signatures of circulating mucin fragments stem from cancer tissues, and microenvironments are promising biomarkers for cancer diagnosis and therapy. This study highlights dynamic epitopes generated by aberrantly truncated immature O-glycosylation at consecutive threonine motifs (TTX) found in mucins and intrinsically disordered proteins (IDPs). NMR analysis of synthetic mucin models having glycosylated TTX motifs and colonic MUC2 tandem repeats (TRs) containing TTP and TTL moieties unveils a general principle that O-glycosylation at TTX motifs generates a highly extended and rigid conformation in IDPs. We demonstrate that the specific conformation of glycosylated TTX motifs in MUC2 TRs is rationally rearranged by concerted motions of multiple dihedral angles and noncovalent interactions between the carbohydrate and peptide region. Importantly, this canonical conformation of glycosylated TTX motifs minimizes steric crowding of glycans attached to threonine residues, in which O-glycans possess restricted orientations permitting further sugar extension. An antiadhesive microarray displaying synthetic MUC2 derivatives elicited the presence of natural autoantibodies to MUC2 with impaired O-glycosylation at TTX motifs in sera of healthy volunteers and patients diagnosed with early stage colorectal cancer (CRC). Interestingly, autoantibody levels in sera of the late stage CRC patients were distinctly lower than those of early stage CRC and normal individuals, indicating that the anti-MUC2 humoral response to MUC2 neoepitopes correlates inversely with the CRC stage of patients. Our results uncovered the structural basis of the creation of dynamic epitopes by immature O-glycosylation at TTX motifs in mucins that facilitates the identification of high-potential targets for cancer diagnosis and therapy.
Collapse
|
19
|
Liu J, Wu C, Jin H, Du K, Zheng H. Design and synthesis of novel sugar‐based nitrogen‐containing heterocycles as potential anticancer agents under microwave in water. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jian Liu
- School of Chemistry and Chemical EngineeringShaoxing University Shaoxing China
| | - Chunlei Wu
- School of Chemistry and Chemical EngineeringShaoxing University Shaoxing China
| | - Huimin Jin
- School of Chemistry and Chemical EngineeringShaoxing University Shaoxing China
| | - Kui Du
- School of Chemistry and Chemical EngineeringShaoxing University Shaoxing China
| | - Hui Zheng
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou China
| |
Collapse
|
20
|
Monteiro JT, Schön K, Ebbecke T, Goethe R, Ruland J, Baumgärtner W, Becker SC, Lepenies B. The CARD9-Associated C-Type Lectin, Mincle, Recognizes La Crosse Virus (LACV) but Plays a Limited Role in Early Antiviral Responses against LACV. Viruses 2019; 11:v11030303. [PMID: 30917612 PMCID: PMC6466035 DOI: 10.3390/v11030303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
La Crosse virus (LACV) is a mosquito-transmitted arbovirus and the main cause of virus-mediated neurological diseases in children. To date, little is known about the role of C-type lectin receptors (CLRs)—an important class of pattern recognition receptors—in LACV recognition. DC-SIGN remains the only well-described CLR that recognizes LACV. In this study, we investigated the role of additional CLR/LACV interactions. To this end, we applied a flow-through chromatography method for the purification of LACV to perform an unbiased high-throughput screening of LACV with a CLR-hFc fusion protein library. Interestingly, the CARD9-associated CLRs Mincle, Dectin-1, and Dectin-2 were identified to strongly interact with LACV. Since CARD9 is a common adaptor protein for signaling via Mincle, Dectin-1, and Dectin-2, we performed LACV infection of Mincle−/− and CARD9−/− DCs. Mincle−/− and CARD9−/− DCs produced less amounts of proinflammatory cytokines, namely IL-6 and TNF-α, albeit no reduction of the LACV titer was observed. Together, novel CLR/LACV interactions were identified; however, the Mincle/CARD9 axis plays a limited role in early antiviral responses against LACV.
Collapse
Affiliation(s)
- João T Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Kathleen Schön
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Institute for Parasitology and & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Tim Ebbecke
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany.
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Stefanie C Becker
- Institute for Parasitology and & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
21
|
Marcelo F, Supekar N, Corzana F, van der Horst JC, Vuist IM, Live D, Boons GJPH, Smith DF, van Vliet SJ. Identification of a secondary binding site in human macrophage galactose-type lectin by microarray studies: Implications for the molecular recognition of its ligands. J Biol Chem 2018; 294:1300-1311. [PMID: 30504228 DOI: 10.1074/jbc.ra118.004957] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
The human macrophage galactose-type lectin (MGL) is a C-type lectin characterized by a unique specificity for terminal GalNAc residues present in the tumor-associated Tn antigen (αGalNAc-Ser/Thr) and its sialylated form, the sialyl-Tn antigen. However, human MGL has multiple splice variants, and whether these variants have distinct ligand-binding properties is unknown. Here, using glycan microarrays, we compared the binding properties of the short MGL 6C (MGLshort) and the long MGL 6B (MGLlong) splice variants, as well as of a histidine-to-threonine mutant (MGLshort H259T). Although the MGLshort and MGLlong variants displayed similar binding properties on the glycan array, the MGLshort H259T mutant failed to interact with the sialyl-Tn epitope. As the MGLshort H259T variant could still bind a single GalNAc monosaccharide on this array, we next investigated its binding characteristics to Tn-containing glycopeptides derived from the MGL ligands mucin 1 (MUC1), MUC2, and CD45. Strikingly, in the glycopeptide microarray, the MGLshort H259T variant lost high-affinity binding toward Tn-containing glycopeptides, especially at low probing concentrations. Moreover, MGLshort H259T was unable to recognize cancer-associated Tn epitopes on tumor cell lines. Molecular dynamics simulations indicated that in WT MGLshort, His259 mediates H bonds directly or engages the Tn-glycopeptide backbone through water molecules. These bonds were lost in MGLshort H259T, thus explaining its lower binding affinity. Together, our results suggest that MGL not only connects to the Tn carbohydrate epitope, but also engages the underlying peptide via a secondary binding pocket within the MGL carbohydrate recognition domain containing the His259 residue.
Collapse
Affiliation(s)
- Filipa Marcelo
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, 2829-516 Caparica, Portugal
| | - Nitin Supekar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Joost C van der Horst
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ilona M Vuist
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - David Live
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Geert-Jan P H Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - David F Smith
- Department of Biochemistry, Emory Comprehensive Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Heger L, Balk S, Lühr JJ, Heidkamp GF, Lehmann CHK, Hatscher L, Purbojo A, Hartmann A, Garcia-Martin F, Nishimura SI, Cesnjevar R, Nimmerjahn F, Dudziak D. CLEC10A Is a Specific Marker for Human CD1c + Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion. Front Immunol 2018; 9:744. [PMID: 29755453 PMCID: PMC5934495 DOI: 10.3389/fimmu.2018.00744] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are major players for the induction of immune responses. Apart from plasmacytoid DCs (pDCs), human DCs can be categorized into two types of conventional DCs: CD141+ DCs (cDC1) and CD1c+ DCs (cDC2). Defining uniquely expressed surface markers on human immune cells is not only important for the identification of DC subpopulations but also a prerequisite for harnessing the DC subset-specific potential in immunomodulatory approaches, such as antibody-mediated antigen targeting. Although others identified CLEC9A as a specific endocytic receptor for CD141+ DCs, such a receptor for CD1c+ DCs has not been discovered, yet. By performing transcriptomic and flow cytometric analyses on human DC subpopulations from different lymphohematopoietic tissues, we identified CLEC10A (CD301, macrophage galactose-type C-type lectin) as a specific marker for human CD1c+ DCs. We further demonstrate that CLEC10A rapidly internalizes into human CD1c+ DCs upon binding of a monoclonal antibody directed against CLEC10A. The binding of a CLEC10A-specific bivalent ligand (the MUC-1 peptide glycosylated with N-acetylgalactosamine) is limited to CD1c+ DCs and enhances the cytokine secretion (namely TNFα, IL-8, and IL-10) induced by TLR 7/8 stimulation. Thus, CLEC10A represents not only a candidate to better define CD1c+ DCs—due to its high endocytic potential—CLEC10A also exhibits an interesting candidate receptor for future antigen-targeting approaches.
Collapse
Affiliation(s)
- Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Silke Balk
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Jennifer J Lühr
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Gordon F Heidkamp
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Christian H K Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Lukas Hatscher
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Fayna Garcia-Martin
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Shanthamurthy CD, Jain P, Yehuda S, Monteiro JT, Leviatan Ben-Arye S, Subramani B, Lepenies B, Padler-Karavani V, Kikkeri R. ABO Antigens Active Tri- and Disaccharides Microarray to Evaluate C-type Lectin Receptor Binding Preferences. Sci Rep 2018; 8:6603. [PMID: 29700341 PMCID: PMC5920051 DOI: 10.1038/s41598-018-24333-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Understanding blood group antigen binding preferences for C-type lectin receptors holds promise for modulating immune responses, since several Gram-negative bacteria express blood group antigens as molecular mimicry to evade immune responses. Herein, we report the synthesis of ABO blood group antigen active tri and disaccharides to investigate the binding specificity with various C-type lectin receptors using glycan microarray. The results of binding preferences show that distinct glycosylation on the galactose and fucose motifs are key for C-type lectin receptor binding and that these interactions occur in a Ca2+-dependent fashion.
Collapse
Affiliation(s)
- Chethan D Shanthamurthy
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sharon Yehuda
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel
| | - João T Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Shani Leviatan Ben-Arye
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel
| | - Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany.
| | - Vered Padler-Karavani
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel.
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
24
|
Mayer S, Moeller R, Monteiro JT, Ellrott K, Josenhans C, Lepenies B. C-Type Lectin Receptor (CLR)-Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Campylobacter jejuni Isolates. Front Immunol 2018; 9:213. [PMID: 29487596 PMCID: PMC5816833 DOI: 10.3389/fimmu.2018.00213] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
C-type lectin receptors (CLRs) are carbohydrate-binding receptors that recognize their ligands often in a Ca2+-dependent manner. Upon ligand binding, myeloid CLRs in innate immunity trigger or inhibit a variety of signaling pathways, thus initiating or modulating effector functions such as cytokine production, phagocytosis, and antigen presentation. CLRs bind to various pathogens, including viruses, fungi, parasites, and bacteria. The bacterium Campylobacter jejuni (C. jejuni) is a very frequent Gram-negative zoonotic pathogen of humans, causing severe intestinal symptoms. Interestingly, C. jejuni expresses several glycosylated surface structures, for example, the capsular polysaccharide (CPS), lipooligosaccharide (LOS), and envelope proteins. This “Methods” paper describes applications of CLR–Fc fusion proteins to screen for yet unknown CLR/bacteria interactions using C. jejuni as an example. ELISA-based detection of CLR/bacteria interactions allows a first prescreening that is further confirmed by flow cytometry-based binding analysis and visualized using confocal microscopy. By applying these methods, we identified Dectin-1 as a novel CLR recognizing two selected C. jejuni isolates with different LOS and CPS genotypes. In conclusion, the here-described applications of CLR–Fc fusion proteins represent useful methods to screen for and identify novel CLR/bacteria interactions.
Collapse
Affiliation(s)
- Sabine Mayer
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Rebecca Moeller
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - João T Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Kerstin Ellrott
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Christine Josenhans
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Max von Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
25
|
Kaltner H, Manning JC, García Caballero G, Di Salvo C, Gabba A, Romero-Hernández LL, Knospe C, Wu D, Daly HC, O'Shea DF, Gabius HJ, Murphy PV. Revealing biomedically relevant cell and lectin type-dependent structure–activity profiles for glycoclusters by using tissue sections as an assay platform. RSC Adv 2018; 8:28716-28735. [PMID: 35542469 PMCID: PMC9084366 DOI: 10.1039/c8ra05382k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022] Open
Abstract
The increasing realization of the involvement of lectin-glycan recognition in (patho)physiological processes inspires envisioning therapeutic intervention by high-avidity/specificity blocking reagents. Synthetic glycoclusters are proving to have potential for becoming such inhibitors but the commonly used assays have their drawbacks to predict in vivo efficacy. They do not represent the natural complexity of (i) cell types and (ii) spatial and structural complexity of glycoconjugate representation. Moreover, testing lectins in mixtures, as present in situ, remains a major challenge, giving direction to this work. Using a toolbox with four lectins and six bi- to tetravalent glycoclusters bearing the cognate sugar in a model study, we here document the efficient and versatile application of tissue sections (from murine jejunum as the model) as a platform for routine and systematic glycocluster testing without commonly encountered limitations. The nature of glycocluster structure, especially core and valency, and of protein features, i.e. architecture, fine-specificity and valency, are shown to have an influence, as cell types can differ in response profiles. Proceeding from light microscopy to monitoring by fluorescence microscopy enables grading of glycocluster activity on individual lectins tested in mixtures. This work provides a robust tool for testing glycoclusters prior to considering in vivo experiments. Introducing tissue sections for testing glycocluster activity as inhibitors of lectin binding close to in vivo conditions.![]()
Collapse
|